Basic concepts of modern standard cosmology: The three cosmic scalars!

- The universe is a spacelike homgeneity
- Cosmic matter density varies inversely proportional to the spacelike volume!
- The universe is characterized by a globally isotropic curvature; i.e. K=0; or =(+/-)1!
- The cosmic vacuum energy density is constant!

Then ---->>>

Present-day standard cosmology with K=Lambda=const!

Kosmologische Konstante

Die Einstein-Gleichung kann formal einen weiteren Term enthalten:

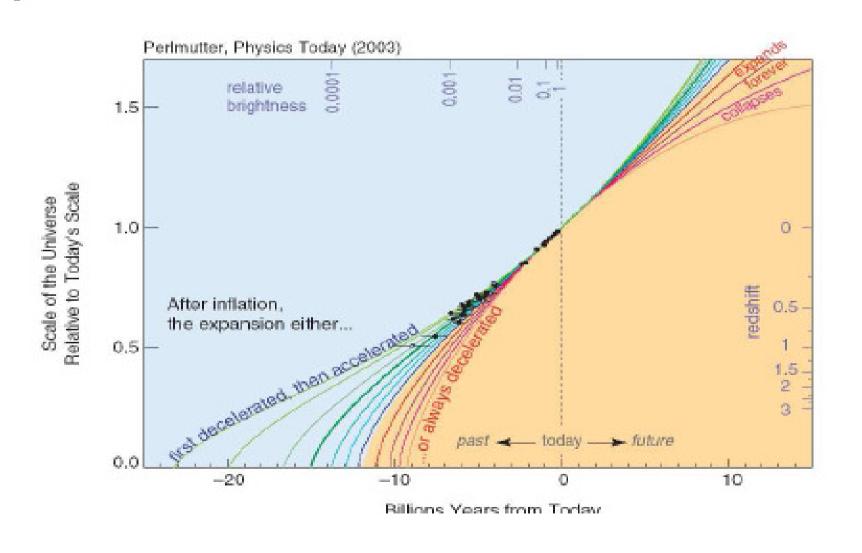
$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G_N}{c^4}T_{\mu\nu}$$

wobei die kosmologische Konstante Λ zeitlich konstant sein muss, damit die BIANCI-Identitäten erfüllt sind. Damit sehen dann die Gleichungen für \dot{R} und \ddot{R} folgendermaßen aus:

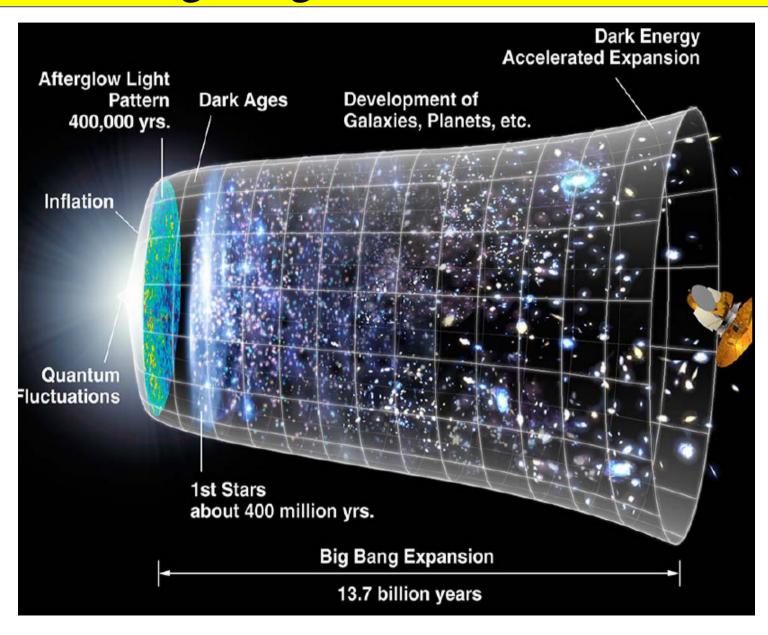
$$\left(\frac{\dot{R}(t)}{R(t)}\right)^{2} = \frac{8\pi G_{N}}{3}\rho(t) - \frac{Kc^{2}}{R^{2}(t)} + \frac{\Lambda c^{2}}{3} \tag{38}$$

$$\frac{\ddot{R}(t)}{R(t)} = -\frac{4\pi G_N}{3c^2} \left(3p(t) + \rho(t)c^2\right) + \frac{\Lambda c^2}{3}$$
(39)

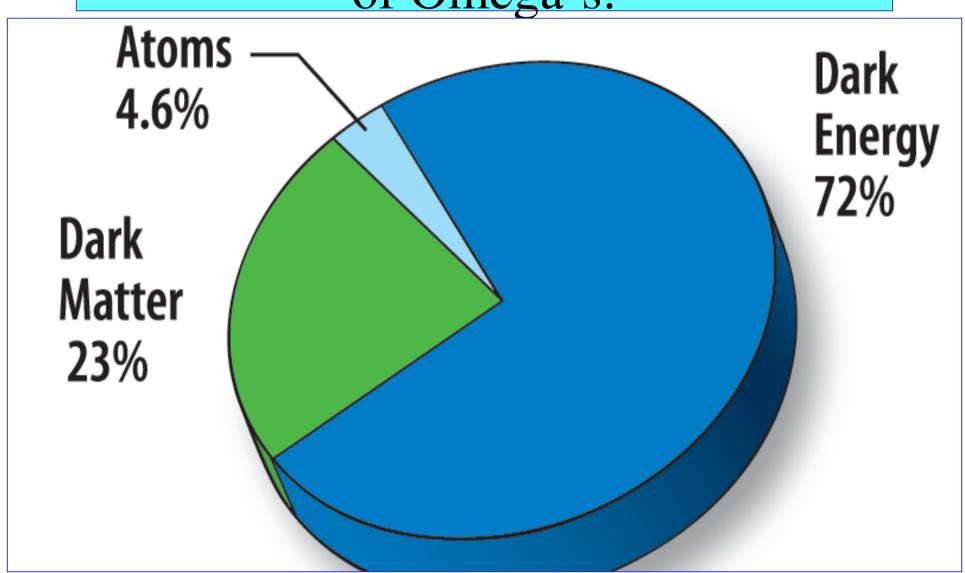
Alternative forms of cosmic expansion:



The Big-bang Universe with K=0!:



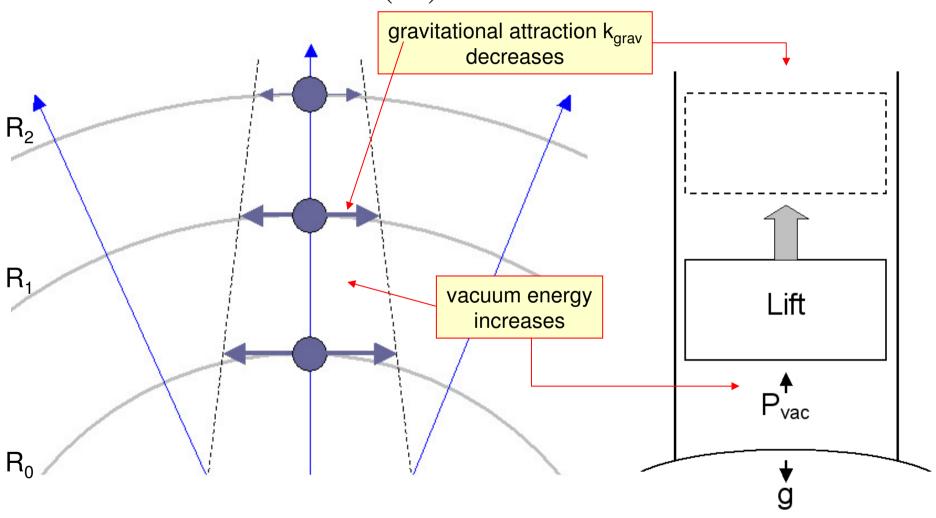
What constitutes the world in terms of Omega's:



The problem with a constant vacuum energy density:

$$(\Lambda = const.)$$

$$k_{grav} = -\frac{8\pi G \rho_0 R_0}{3} \left(\frac{R_0}{R}\right)^2 \quad \text{= intermaterial gravitational force between co-moving masses}$$



The anthropic Lambda-miracle:

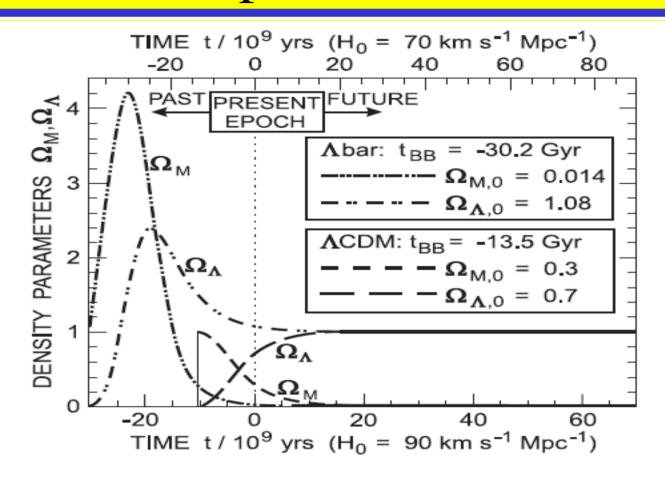
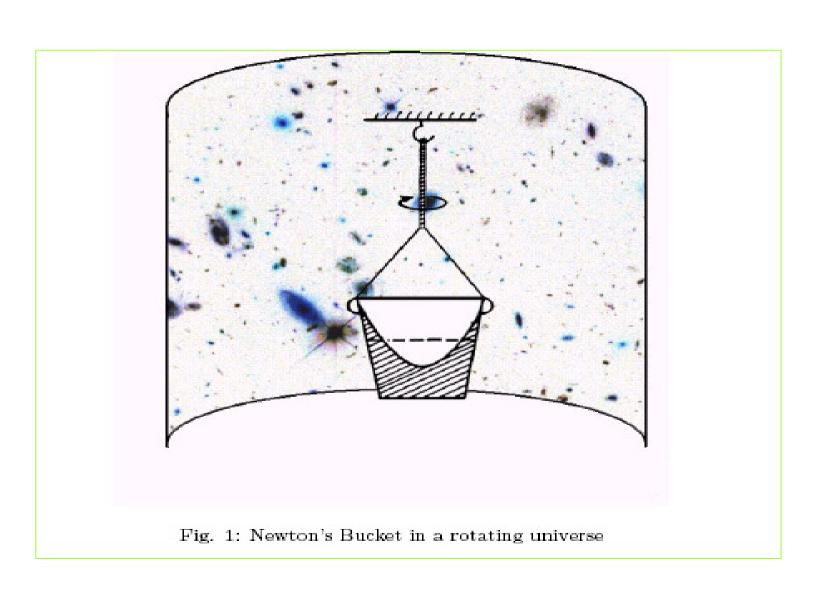


Fig. 7. Evolution of $\Omega_{\rm M}$ and Ω_{Λ} in the Λ bar and Λ CDM models (Models 1 and 6 in Figs. 2 and 3). Time is set to zero at the present epoch; $t_{\rm BB}$, the time of the big bang, is calculated using $h_0 = 0.9$ for Λ bar (bottom scale) and $h_0 = 0.7$ for Λ CDM (top scale). Compare Fig. 3.

Do we have the physical concepts right in FLRW-cosmologies?

- Is the mass of the universe conserved?
- What is the effective cosmic density?
- How is gravitational binding energy entering the ART field equations?
- Is isotropic cosmic curvature reasonable?
- How all of this is reflected in changes of the vacuum energy density?

What is the absolute reference system for centrifugal forces?



The total universe as the cosmic reference system!

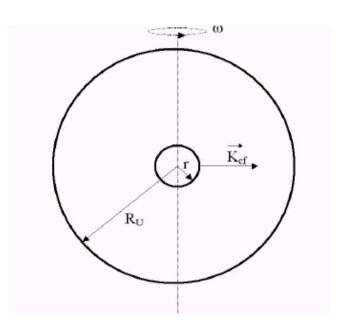


Fig 2.: Illustration of the earth at rest in a rotating universe

$$\overrightarrow{K}_{cf,a} = \psi \cdot \overrightarrow{K}_{cf,b}$$

 ψ can be calculated as:

$$\psi = \frac{2GM_U}{c^2 R_U} = \frac{R_{S,U}}{R_U}$$

The instantaneous mass of the universe?

$$M_{\rm u}(t)c^2 = 4\pi\rho_0(t)c^2 \int_0^{R_{\rm u}} \frac{\exp(\lambda(r)/2)r^2 dr}{\sqrt{1 - (\frac{Hr}{c})^2}}$$

$$\exp[-\lambda(r)] = 1 - \frac{8\pi G}{rc^2} \rho_0 \int_0^r \gamma(x) x^2 dx$$

$$R_{
m u}=rac{1}{\pi}\sqrt{rac{c^2}{2G
ho_0}}$$

$$ho_0(R_{
m u}) = rac{c^2}{2\pi^2 G R_{
m u}^2}$$

Hoyle's creation theory

$$C_{\mu\nu} = \frac{\partial C_{\mu}}{\partial x^{\nu}} - \Gamma^{\alpha}_{\mu\nu} C_{\alpha} \qquad C_{\mu\nu} = -3R\dot{R}\frac{\partial_{\mu\nu}}{\partial A}$$

$$C_{\mu\nu} = -3R\dot{R}\frac{\delta_{\mu\nu}}{cA}$$

$$G_{\mu\nu} - \frac{1}{2}g_{\mu\nu}G + C_{\mu\nu} = \frac{8\pi\gamma}{c^4}T_{\mu\nu}$$

$$R = \exp[ct/A]$$

$$\dot{\rho}_{\rm H} = \frac{c}{A} \rho_{\rm H} = \frac{3c^5}{8\pi\gamma A^3} = \frac{c^5 A_{\rm H}^{3/2}}{8\pi\gamma\sqrt{3}}$$

Vacuum energy and mass creation as analogous actions?

$$\Lambda^{3/2} = \frac{8\pi G\sqrt{3}}{c^5}\dot{\rho}$$

$$M_u = M_{u0} \exp\left[\frac{c(t-t_0)}{A}\right] = (\frac{M_{u0}}{R_0})R(t)$$

A curved universe with metrical reactions to potential energy density (E.Fischer,1993):

$$T^p_{\mu\nu} = -C\frac{\rho_c}{\Gamma}g_{\mu\nu}$$

$$\frac{c^2k}{S^2} + \frac{\dot{S}^2}{S^2} + 2\frac{\ddot{S}}{S} = \frac{\kappa C\rho_{\rm c}}{S}$$

$$-3(\frac{c^{2}k}{S^{2}} + \frac{\dot{S}^{2}}{S^{2}}) = -\kappa\rho_{c} - \frac{\kappa C\rho_{c}}{S}$$

$$\frac{\ddot{S}}{S} = \frac{\kappa \rho_{\rm c}}{6} \left(\frac{S_0}{S} - 1\right)$$

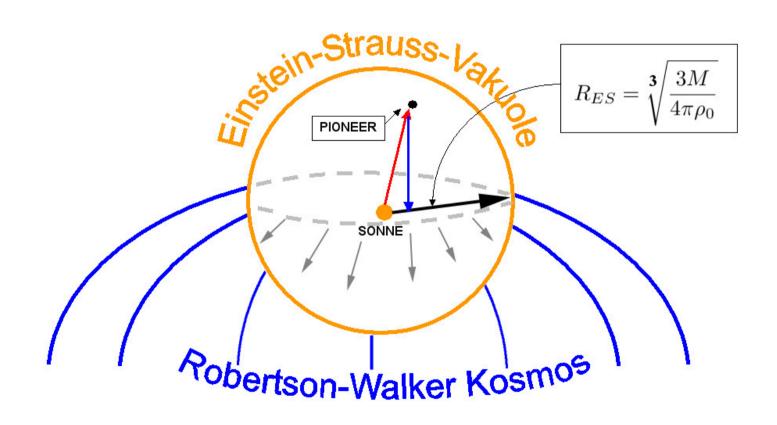
Curvature energy and mass creation:

$$\hat{T}_{00} = T_{00} + T_{00}^p = (\rho - C\frac{\rho}{\Gamma})g_{00}$$

$$\dot{\rho}^* = \frac{d}{dt} [\rho (1 - C \frac{1}{\Gamma})]$$

$$\dot{
ho}^* =
ho C rac{1}{\Gamma^2} \dot{\Gamma}$$

Local masses in the global Universe?



What is the effective cosmic mass density?

$$\rho^* = \frac{M}{V_{\rm ES}^3} = \frac{\frac{4\pi}{3}\rho_{\rm o}R_{\rm ES}^3}{V_{\rm ES}^3}$$

$$\rho^* = \frac{\frac{4\pi}{3}\rho_{\rm o}R_{\rm ES}^3}{4\pi(\frac{3c^2}{8\pi G\rho_{\rm o}})^{3/2}[\frac{1}{2}\arcsin\xi_{\rm ES} - \frac{\xi_{\rm ES}}{2}\sqrt{1-\xi_{\rm ES}^2}]}$$

$$\rho^* = \rho_0 \frac{1}{1 + \frac{3}{10} \xi_{ES}^2} \simeq \rho_0 \cdot (1 - \frac{3}{10} \Psi^2 \rho_0^{1/3})$$

The effective cosmic mass density (high density limit):

$$ho^* = rac{M}{V_{
m ES}^3} = rac{rac{4\pi}{3}
ho_{
m o}R_{
m ES}^3}{V_{
m ES}^3}$$

$$\xi_{\rm ES} = \sqrt{\frac{8\pi G \rho_0}{3c^2}} R_{\rm ES} = \frac{\dot{S}}{cS} R_{\rm ES} = \frac{S_{\rm u} H}{c} \frac{R_{\rm ES}}{S_{\rm u}} = \frac{R_{\rm ES}}{S_{\rm u}} \ll 1$$

$$\rho^* = \rho_0 \frac{\xi_{\rm ES}^3}{\frac{3}{2} [\arcsin \xi_{\rm ES} - \xi_{\rm ES} \sqrt{1 - \xi_{\rm ES}^2}]}$$

The local spacetime and the expansion of the

Einstein-Straus vacuole

$$r_{ES} = \left(\frac{3M}{4\pi\rho_0}\right)^{1/3}$$

$$\frac{\dot{r}_{ES}}{r_{ES}} = \frac{\dot{R}_0}{R_0} = H_0$$

The local world embedded in a vacuumenergy-loaded universe

$$c^2 \dot{M}(t) = -(4\pi R_{\rm ES}^2 \dot{R}_{\rm ES}) p_{\rm vac}$$

$$p_{\rm vac} = -\frac{3-n}{3}\rho_{\rm vac}c^2$$

$$c^2 \dot{M}(t) = 3M \frac{\dot{R}_{ES}}{R_{ES}} \frac{3 - n}{3} \frac{\rho_{\text{vac}}}{\rho_{\text{mat}}} c^2$$

$$\frac{\dot{M}(t)}{M} = 3 \frac{\dot{R}_{\rm ES}}{R_{\rm ES}} \frac{1}{3} \frac{\rho_{\rm vac}}{\rho_{\rm mat}}$$

Towards more realistic universes: The 2-phase structured universe

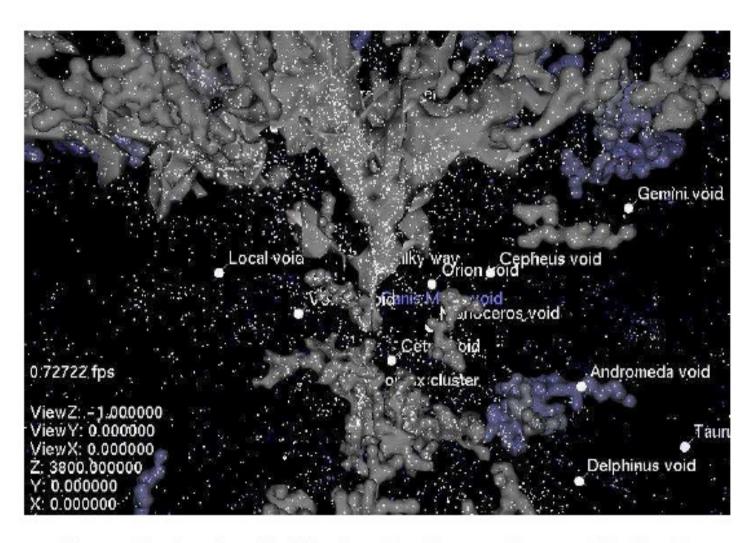
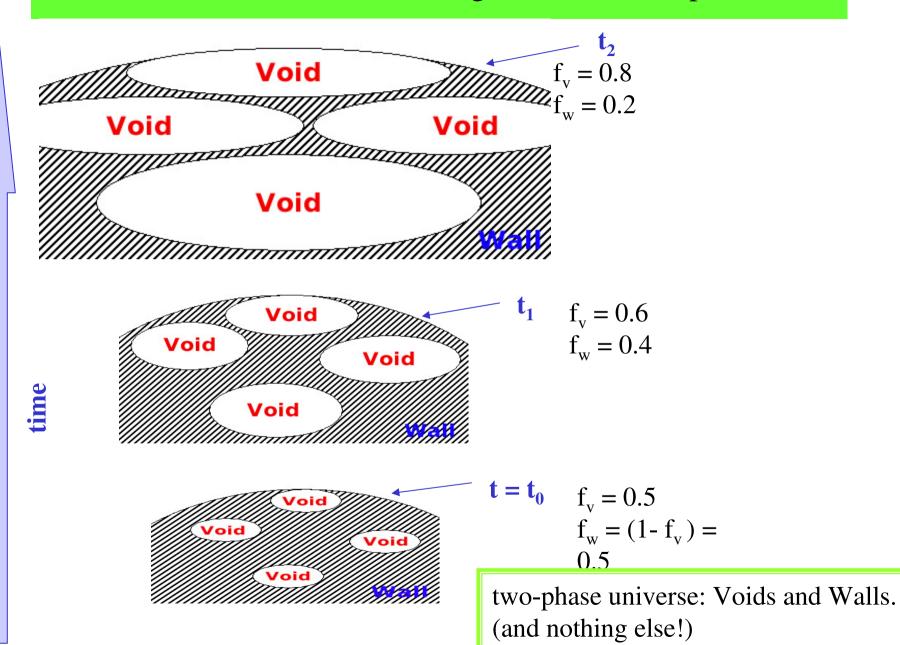


Fig. 1. Local voids and bubbles from the 6df survey. Courtesy of A. Fairall.

Voids and Walls: !Non-homologous structure expansions!



General-Relativistic spacetime averages and GRT FRW equations

$$\langle \mathcal{R} \rangle \equiv \left(\int_{\mathcal{D}} \mathrm{d}^3 x \sqrt{\det {}^3\!g} \mathcal{R}(t, \mathbf{x}) \right) / \mathcal{V}(t)$$

with $V(t) \equiv \int_{\mathcal{D}} d^3x \sqrt{\det {}^3g}$. The important lesson of Buchert averaging is that time evolution and averaging to do not commute.⁵ Generally for any scalar Ψ ,

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\Psi\rangle - \langle\frac{\mathrm{d}\Psi}{\mathrm{d}t}\rangle = \langle\Psi\vartheta\rangle - \langle\vartheta\rangle\langle\Psi\rangle \tag{1}$$

The fact that the r.h.s. of (1) does not vanish, as is the case for the FLRW cosmologies, is a manifestation of *backreaction*.

Applied to the equations of cosmic evolution one obtains the exact Buchert equations

$$3\frac{\dot{\bar{a}}^2}{\bar{a}^2} = 8\pi G\langle\rho\rangle - \frac{1}{2}\langle\mathcal{R}\rangle - \frac{1}{2}\mathcal{Q},\tag{2}$$

$$3\frac{\ddot{\bar{a}}}{\bar{a}} = -4\pi G \langle \rho \rangle + \mathcal{Q},\tag{3}$$

$$\partial_t \langle \rho \rangle + 3 \frac{\dot{a}}{\bar{a}} \langle \rho \rangle = 0,$$
 (4)

The back-reaction of curvature averages

$$\mathcal{Q} \equiv \frac{2}{3} \left(\langle \vartheta^2 \rangle - \langle \vartheta \rangle^2 \right) - 2 \langle \sigma \rangle^2$$

$$\bar{\Omega}_{M} = \frac{8\pi G \bar{\rho}_{M0} \bar{a}_{0}^{3}}{3\bar{H}^{2} \bar{a}^{3}} \; ; \; \bar{\Omega}_{k} = \frac{-k_{\rm v} f_{\rm vi}^{2/3} f_{\rm v}^{1/3}}{\bar{a}^{2} \bar{H}^{2}} \; ; \; \bar{\Omega}_{\mathcal{Q}} = \frac{-\dot{f_{\rm v}}^{2}}{9 f_{\rm v} (1 - f_{\rm v}) \bar{H}^{2}}$$

$$f_{\rm v} = \frac{3f_{\rm v0}\bar{H}_{\rm 0}t}{3f_{\rm v0}\bar{H}_{\rm 0}t + (1 - f_{\rm v0})(2 + f_{\rm v0})}$$

$$q = \frac{-(1 - f_{\rm v}) (8f_{\rm v}^3 + 39f_{\rm v}^2 - 12f_{\rm v} - 8)}{(4 + f_{\rm v} + 4f_{\rm v}^2)^2}$$

Redshift-magnitude relation in different universes

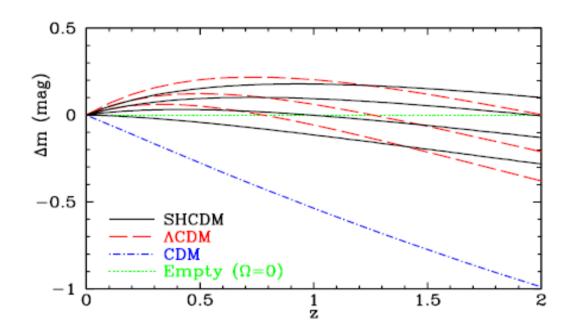


FIG. 1: The apparent magnitude difference as a function of redshift between SHCDM and Λ CDM models compared to a model empty universe. The SHCDM models from top to bottom are for $\Psi_{\ell 0} = -1.0$, -0.75, -0.5, and -0.25, while the Λ CDM models from top to bottom are for $\Omega_{\Lambda} = 0.8$, 0.7, and 0.6 (all with w = -1). Also indicated is the CDM model ($\Omega_{\Lambda} = 0$).

Structured cosmic matter in a 2-phase universe as analogy to vacuum energy

$$\bar{\rho}_2 = \rho_v f_v + \rho_w f_w = \rho_v f_v + \rho_w (1 - f_v)$$

$$\rho_{vac} = \frac{\bar{\rho}_2(1 - 2\bar{q}_2)}{2(\bar{q}_2 + 1)}$$

$$\bar{\rho}_2(f_v \ge f_{vc}) = \bar{\rho}_2 - \bar{\rho}_{vac}(f_v \ge f_{vc}) = \bar{\rho}_2(1 - \frac{1 - 2\bar{q}_2}{2(\bar{q}_2 + 1)})$$

$$f_v \ge f_{vc} = 0.57$$

Vacuum action in GRT?

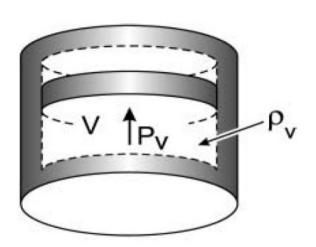


Fig. 6 Equation of state of the vacuum. As the vacuum does work to push out the piston, it creates *more* vacuum inside the chamber, increasing its internal energy. Ordinary intuition fails here if we imagine the piston in a typical laboratory environment, surrounded by high-pressure gas. In cosmology, there is no container, and no "outside" at all

$$dU = -p_{\text{Vac}}dV$$

$$dU=\rho_{\text{Vac}} c^2 dV$$

$$p_{\text{Vac}} = -\rho_{\text{Vac}}c^2$$

$$T_{\mu\nu}^{\text{Vac}} = (\rho_{\text{Vac}}c^2 + p_{\text{Vac}})U_{\mu}U_{\nu} - p_{\text{Vac}}g_{\mu\nu}$$

= $\rho_{\text{Vac}}c^2g_{\mu\nu}$

A rational concept of empty space

$$S_{\rm GR} = \frac{-1}{16\pi G} \int d^4x \sqrt{-g} \left(R + 2\Lambda\right) + S_{\rm Mat}$$

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = \frac{-8\pi G}{c^4} \left(T_{\mu\nu}^{\text{Mat}} + \frac{\Lambda c^4}{8\pi G} g_{\mu\nu} \right)$$

the spacetime of "nothing

$$R_{\mu
u} - rac{1}{2} R \, g_{\mu
u} = - \Lambda_{
m Eff} g_{\mu
u},$$

where the *effective* cosmological constant is

$$\Lambda_{
m Eff} \equiv \Lambda + rac{8\pi G
ho_{
m Vac}}{c^2},$$

!No photon redshift in empty space!

$$ds^{2} = c^{2}dt^{2} - R^{2} \left[\frac{dr^{2}}{(1 - kr^{2})} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

$$R(t) \approx \begin{cases} \cosh\left(\sqrt{\Lambda_{\rm Eff}/3} \, ct\right) & \text{if} \quad k = +1 \\ \exp\left(\sqrt{\Lambda_{\rm Eff}/3} \, ct\right) & \text{if} \quad k = 0 \\ \sinh\left(\sqrt{\Lambda_{\rm Eff}/3} \, ct\right) & \text{if} \quad k = -1 \end{cases}$$

A photon will thus experience conting interaction with *empty space* at a rate

$$\frac{dz}{dt} = \sqrt{\frac{\Lambda_{\rm Eff}}{3}}c,$$

where $t \equiv t_{\rm O} - t_{\rm E}$, unless we set $\Lambda_{\rm Eff} = 0$

$$\Lambda_{eff} = \frac{8\pi G}{c^2} (\rho_{vac} - \rho_{vac,0})$$

The "zero energy" universe:

$$E = \int_{0}^{V^{3}} (\rho c^{2} + 3p) \sqrt{-g_{3}} d^{3}V = \frac{4\pi}{3} S^{3} (\rho c^{2} + 3p)$$

$$\rho = \rho_b + \rho_d + \rho_{vac}$$

and the total pressure is given by

$$p = p_b + p_d + p_{\text{vac}}$$

In the present phase of the evolution of the universe, baryonic and dark matter can be considered as cold and pressure-less, i.e., $p_b + p_d = 0$. Assuming, furthermore, a general dependence of $\rho_{\text{vac}} \sim S^{-n}$ (see Fahr and Heyl 2006b), one then obtains $p = p_{\text{vac}} = -\frac{3-n}{3}\rho_{\text{vac}}c^2$ and finds

$$E = \frac{4\pi}{3}S^3c^2(\rho_b + \rho_d + (n-2)\rho_{\text{vac}})$$
 (15)

$$\frac{3c^2}{2\pi GS^2} = (\rho_b + \rho_d + (n-2)\rho_{\text{vac}})$$

Now, the requirement that the total energy of the universe L = E + U vanishes – with E and U given by

$$U = -\frac{8\pi^2 G}{15} (\rho_b + \rho_d + (n-2)\rho_{\text{vac}})^2 S^5$$

$$\Phi(r) = -\frac{2}{3}\pi G(\rho_{b} + \rho_{d} + (n-2)\rho_{vac})r^{2}$$

$$U = \int_0^S 4\pi r^2 (\rho_b + \rho_d + (n-2)\rho_{\text{vac}}) \Phi(r) dr$$

The "Zero-Energy" universe

We could get the physical concepts right,...if....!

- Is the mass of the universe conserved?
- There is mass creation due to vacuum decay!
- What is the effective cosmic density?
- It is the metrically modulated proper density!
- How is gravitational binding energy entering the ART field equations?
- It reduces the effective density!
- How changes the vacuum energy density?
- It decays inversely proportional to the square of S

All stories and books have a begin; the universe has none! unless we make a story out of it!

But all over the world doubts come up.....

