Fig. 1: Age structure in Bavaria, sample 1760-87

5 year birth group

c:\k\z18\agebstr.cht
Fig. 2: Height distributions of Bavarian soldiers

(a) Birth decade 1740s, N=805

(b) Birth decade 1750s, N=1395

(c) Birth decade 1760s, N=302

(d) Birth decade 1770s, N=1138

(e) Birth decade 1780s, N=919

Age 23-50 (adjusted for army category, officers excluded)
Fig. 3: Trends in height, sample 1760-87

Sources:
a) Dummies from table 3; weighted average of army categories; truncation point 165.2 cm; all ages.
b-d) see table 2; ages 23-50; truncation point 165.2 cm; officers excluded.
Fig. 4: Trend in height, sample 1805-11

Sources:

a) Dummies from table 3; weighted average of army categories; truncation point 162.4 cm; all ages.
b-c) see table 2; ages 23-50; truncation point 162.4 cm; officers excluded.
Fig. 5: Real wage in Munich, grain and potato production p.c. (Tithe Werth/K.)

Fig. 6: Heights in Bavaria and grain/potato production per capita
Fig. 7: Winter temperature in Switzerland (Pfister 1988a)

![Graph showing winter temperature in Switzerland](graph1.png)

Figure 8: Height in Bavaria and Swiss winter temperature

![Graph showing height and winter temperature in Bavaria and Switzerland](graph2.png)

Note: Only non-elite-soldiers represented. Winter temperature is the average of the current and previous quinquennial
Fig. 9: Trends in height by region, Habsburg Empire and Britain

Source:

a) Komlos (1989); ages 23-50; truncation point 165.8 cm.
b) Komlos (1993); average of all age groups. Marine excluded.
Fig. 10: Temperature in January, 1785-1849, 10 year moving average

Source: Friedly communication of R. Glaser

Fig. 11: English real wage compared with height and winter temperature

Figure 12: Height trends and winter temperature in England, 18th century

Figure 13: Index of Baltic Sea Freezing

Decade
1901-60=0.4 degree Celsius. The higher the index, the stronger the freezing (and the colder). Source: Koslowski/Glaser (1995), p. 92