
Complexity and Struture in

Formal Language Theory

Klaus-J�orn Lange

Fakult�at f�ur Informatik, Tehnishe Universit�at M�unhen,

80290 M�unhen, Germany

Abstrat: The following survey reviews some onnetions between for-

mal languages and omplexity theory. Families of formal languages are

treated with omplexity theoretial methods. In partiular, the onept

of unambiguity, ommon to both areas, is treated in detail. Some om-

plexity theoretial aspets of operations on formal languages are indi-

ated. This piture is ompleted by taking parallel models into aount.

1 Introdution

The entral aim of this paper is to illustrate the lose relationship between the theory of

formal languages and omplexity theory. This seletion of results is not meant to be a

systemati survey, but represents a rather personal view, strongly biased by disussions

and results of the omplexity group at the Tehnishe Universit�at M�unhen. It is

an extended version of an invited talk at the Struture in Complexity Theory 1993

Conferene [44℄ .

The gist of this work is to see families of formal languages with omplexity theoretial

eyes. Here by family of formal languages we refer to a typial member of the world of

pumping and iteration. More formally, we will treat language families with onstrutive

losure properties and a deidable emptiness problem with tools used in omplexity

theory. Here we will not be interested in absolute lower and upper bounds, but rather

in their behaviour with respet to strutural omplexity theory. To do so, the notion

of a anonial storage type is introdued whih relates families of formal languages and

the omplexity lasses generated by them under appropriate reduibilities.

This paper is divided into two parts: in the �rst part, Sequential Complexity, we

treat relations between families of formal languages and omplexity lasses de�ned by

various types of sequential automata. This is done �rst for deterministi and nondeter-

ministi families and then for the intermediate onepts unambiguity and symmetry.

The seond part, Parallel Complexity, relates these lasses and families to parallel om-

plexity theory. These investigations onentrate on the models of parallel random aess

mahines and of Boolean iruits.

2 Preliminaries

The reader is assumed to be familiar with the basi fats of omplexity theory as they are

ontained in [3℄ or [33℄. So we will use without explanation the lasses DSPACE(logn),

1

NSPACE(logn), P, NP, and PSPACE. In addition, let DEXPOLYTIME denote

DTIME(2

pol

), whih is meant to be an abbreviation of

S

k�1

DTIME(2

n

k

). DTISP(f; g)

and NTISP(f; g) denote the lass of languages reognized by deterministi resp. by non-

deterministi Turing mahines whih are bounded in time by f and, simultaneously, in

spae by g.

For a family A of languages let LOG(A) denote the lass of sets reduible to some

element of A by a many-one logspae redution. For a single language L

0

we will write

LOG(L

0

) instead of LOG(fL

0

g).

Throughout this paper, we will refer to various families of formal languages. In

partiular, we assume the reader to know CFL, the family of ontext-free languages,

LIN, the family of linear ontext-free languages, and DCFL, the family of deterministi

ontext-free languages. Further material may be found in [6, 29, 33℄. DLIN will denote

the family of deterministi linear languages whih are reognized by deterministi one-

turn push down automata [32℄.

By 1{NPDA we denote the family of languages aepted by nondeterministi push

down automata with a one-way input tape. As is well-known, this lass oinides

with CFL. The orresponding lasses for nested stak automata, stak automata,

nonerasing stak automata, heking stak automata, one-turn push down automata,

and one ounter automata are denoted by 1{NNstSA, 1{NSA, 1{NNeSA, 1{NChSA,

1{NPDA

1�turn

= LIN, and 1{NOCA [1, 26, 68℄. For deterministi automata this leads to

the lasses 1{DPDA=DCFL, 1{DNstSA, 1{DSA, 1{DNeSA, 1{DChSA, 1{DPDA

1�turn

= DLIN, and 1{DOCA.

The family INDEX of indexed languages was haraterized by nested stak automata

in [1℄. Maro Grammars were introdued in [21℄ and led to the families IO and OI of

inside-out and outside-in maro languages. The later family oinides with INDEX.

Context-free Lindenmayer languages are de�ned by iterating homomorphisms and

�nite substitutions. For the de�nition of the families EDOL, EDTOL, EOL, and ETOL

we refer to [60℄.

3 Sequential Complexity

The most typial lass of formal languages is CFL, the family of ontext-free languages.

Its relations to omplexity lasses have been investigated by many researhers. In the

following we will look at families of formal languages like CFL as omplexity lasses or as

generators of omplexity lasses. We will �rst review the relation of determinism versus

nondeterminism. In a seond subsetion, unambiguity and symmetry, intermediate

onepts between determinism and nondeterminism, are shortly onsidered.

3.1 Determinism versus Nondeterminism

One of the entral issues of the Theory of Formal Languages is the opposition of deter-

minism versus nondeterminism. In ontrast to the situation in Complexity Theory, the

preise relations within formal language theory are well-known; e.g., it is easy to exhibit

ontext-free languages whih are not deterministi ontext-free and the same holds true

for an abundane of other families of formal languages. On the other hand, nothing like

that is known for the orresponding omplexity lasses LOG(CFL) and LOG(DCFL).

In this subsetion we will �rst look at omplexity lasses generated by families of for-

mal languages. In most ases, the relation between determinism and nondeterminism

2

leads us to the well-known open questions of Complexity Theory, like P versus NP

or DSPACE(logn) versus NSPACE(logn). In a seond paragraph this transition from

determinism to nondeterminism is haraterized by operations on formal languages.

3.1.1 Complexities of Families of Formal Languages

In the following, we will onsider omplexity lasses generated by families of formal

languages via many-one logspae reduibilities. While these reduibilities are well-suited

for tasks of sequential omplexity, they are to powerful and to oarse to deal with small

omplexity lasses below DSPACE(logn), as they appear in parallel omplexity theory.

Fortunately, most of the relations onsidered here, do not vary if we hange to simpler

notions of reduibility like AC

0

redutions or even projetions.

Most of the more prominent families of formal languages are omplete for omplexity

lasses de�ned in terms of time or spae. The following table summarizes some of these

results by listing for some omplexity lasses A some families of formal languages B

i

suh that A = LOG(B

i

). It should be noted that in all these ases these families of

formal languages are omplete in a stronger sense, in that there always exists a single

element in that family whih is omplete for the orresponding omplexity lass.

Complexity Class Complete Families Referenes

NP INDEX = 1{NNstSA = OI, ETOL, 1{NSA, [59, 71, 65℄

1{NNeSA, 1{NChSA

P 1{DNstSA, 1{DSA, 1{DNeSA [45℄

NSPACE(logn) LIN = 1{NPDA

1�turn

, 1{NOCA, EDTOL [67, 68, 37℄

DSPACE(logn) DLIN = 1{DPDA

1�turn

, 1{DOCA, 1{DChSA [32, 34℄

Table 1: Complete Families for Time and Spae Classes

In ontrast to these lose relations between families of formal languages and time

or spae bounded omplexity lasses, LOG(CFL), the lass of all problems reduible

to a ontext-free language, appears to be a lass of its own, not de�nable as a time

or spae lass. Nevertheless, there are many families of formal languages whih are

LOG(CFL)-omplete.

Theorem 1 The following families of formal languages are omplete for LOG(CFL):

a) IO, the family of inside-out maro languages [2℄,

b) EOL, the family of ontext-free Lindenmayer languages without tables [69℄,

) (CF)EDTOL, the family of ontext-free ontrolled, deterministi, Lindenmayer sys-

tems with tables [41℄, and

d) GCSL, the family of growing ontext-sensitive languages [15℄.

Thus, Complexity theory allows us to see some inlusions in a new light. For exam-

ple, the proper inlusions LIN � EDTOL, CFL � EOL, CFL � IO, and ETOL � OI

turn into equalities when onsidering the omplexity lasses generated by these families

3

of formal languages. On the other hand, it is possible to relate the families IO and

OI, whih are inomparable as families of formal languages, within the framework of

omplexity theory by the inlusion LOG(IO) � LOG(OI):

Greibah exhibited in [28℄ a hardest ontext-free language L

Greibah

. Every ontext-

free language is the inverse homomorphi image of L

Greibah

whih is therefore LOG(CFL)-

omplete. Homomorphisms are omputable in linear time and thus redutions by inverse

homomorphisms preserve not only spae bounds, but also running time of ontext-free

languages; i.e.: if you ould parse L

Greibah

in quadrati time, you ould do that for

every ontext-free language. This is no longer true for logspae reduibilities, whih

may distinguish DSPACE(log

2

n) from DSPACE(log

3

n), but not DTIME(n

2

) from

DTIME(n

3

). On the other hand, Greibah's result made use of existene of Greibah

Normal Form for ontext-free languages (or in terms of automata: the fat that eah

ontext-free language an be aepted by a push-down automaton without �-moves).

Thus, this approah applies neither to the various families of stak languages nor to

DCFL, just to give some examples. With logspae reduibilities, however, it is enough

to know that derivation lengths (resp. the runtimes of the orresponding automata)

are polynomially bounded.

By the algorithms of Coke, Kasami, and Younger [74℄ and of Lewis, Stearns, and

Hartmanis [50℄ we have:

Theorem 2 a) LOG(CFL) � P

b) LOG(CFL) � DSPACE(log

2

n):

It is still open, whether a polynomial time bound and a polylogarithmi spae bound

an be ahieved simultaneously. This is only known for DCFL, for whih Cook exhibited

in [14℄ an algorithm with these simultaneous bounds:

Theorem 3 DCFL � DTISP(pol; log

2

n) = SC

2

.

For arbitrary ontext-free languages only CFL � NTISP(pol,log

2

n) is known (see [73℄).

There is also a mahine haraterization of LOG(CFL) in terms of Auxiliary Push

Down automata, whih were introdued by Cook in [13℄. In an auxiliary push-down

automaton the power of a push-down automaton is enhaned in two ways: �rst, the

mahine is equipped with a worktape bounded logarithmially

1

in the length of the

input, and seond, the mahine has two-way aess to its input. Observe, that the

runtime of this enhaned automaton is no longer linear but may be exponential, i.e.

O(2

pol

). We will denote by NAuxPDA-TIME(f) (resp. DAuxPDA-TIME(f)) the lass

of all languages reognizable by nondeterministi (resp. deterministi) auxiliary push-

down automata in time O(f). Cook showed in [13℄:

Theorem 4 P = NAuxPDA-TIME

�

2

pol

�

= DAuxPDA-TIME

�

2

pol

�

:

The relations to CFL and DCFL were determined by Sudborough, who showed in

[70℄:

Theorem 5 a) LOG(CFL) = NAuxPDA-TIME(pol)

b) LOG(DCFL) = DAuxPDA-TIME(pol):

The relations between formal languages and omplexity lasses resembled in this

setion so far, are depited in Figure 1.

1

Cook worked with arbitrary spae bounds and his results hold in a more general way than indiated

here.

4

DSPACE(log n) � DLIN

SC

2

NAuxPDA{TIME(pol) � CFL� EOL � IO

DAuxPDA-TIME(pol) � DCFL

P

NSPACE(log n) � LIN � EDTOL

NP � INDEX = OI � ETOL

DSPACE(log

2

n)

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

Figure 1: Complexity lasses and families of formal languages

Theorems 4 and 5 are not restrited to the ontext-free languages, but hold for

a large variety of families of formal languages. To express this we use the following

notions:

De�nition 6 a) An automaton type X is alled 2-anonial i� the word prob-

lem of the X automaton with one-way input is omplete for the

lass of languages aepted by polynomially time bounded auxil-

iary X automata, i.e.: by X automata equipped by a logarithmi-

ally spae bounded working tape and with a two-way input tape

restrited by a polynomial time bound.

b) An automaton type X is alled ;-anonial i� the emptiness prob-

lem of the X automaton with one-way input is omplete for the

lass of languages aepted by auxiliary X automata (without any

time bound).

Theorem 5 tells us that both nondeterministi and deterministi pushdown au-

tomata behave 2-anonially. The majority of all automata types onsidered in the

theory of formal languages is 2-anonial. In partiular, all types of automata ourring

in Table 1 are 2-anonial. This is not restrited to determinism or nondeterminism,

but also holds for parity and mod onepts [57℄. On the other hand, unambiguous au-

tomata, whih will be treated in the following subsetion, don't seem to be anonial.

Another ounterexample are �nite automata. But here we have the problem that the

orresponding omplexity lasses are loated below DSPACE(logn). Hene the usual

logspae reduibilities are no longer appropriate. These low lasses will be onsidered

in the setion on parallel omplexity. Throughout of this setion we will use logspae

redutions and just mention that the listed results also hold for simpler types of re-

5

duibilities like DLOGTIME mappings or projetions, sine the typial redutions used

in this ontext are of the form v ! v

p(jvj)

for some polynomial p.

Another ounterexample to 2-anonial relations are Turing mahines or any other

universal automata type, sine then the polynomial time bounds annot be ahieved.

But these don't lead to typial families of formal languages with pumping lemmata and

a deidable emptiness problem. In fat, all known families of formal languages with a

deidable emptiness problem and e�etive losure properties are ontained in NP.

Theorem 4 tells us, that both nondeterministi and deterministi push down stores

are ;-anonial. Again, this is very ommon for many storage types. All storage types

ourring in Table 1 exept for the deterministi heking staks are ;-anonial. The

bakground underlying ;-anonial ompleteness results are relations between word

problems of two-way automata and emptiness problems of one-way automata, whih

hold in a very general way ([20, 18, 48℄). A related lass of problems are General (or

variable) membership problems, i.e., where the grammar or automaton is not �xed

but regarded as part of the input [38℄. They are typially omputationally equivalent

to the emptiness problem, if something orresponding to �-produtions or �-moves is

allowed in the language generating devie given as part of the input. Otherwise, lower

omplexities, typially those of the �xed membership problem are met.

Considering Theorems 4 and 5, we see that push down stores are even fully anon-

ial, i.e.: they are not only 2- and ;-anonial with respet to both determinism and

nondeterminism, but in addition, deterministi and nondeterministi auxiliary push

down automata are of equal omputational power. This pattern of relations is ommon

for a variety of storage types and the automata assoiated with them. The following

table gives some examples for these relations. The �rst olumn lists some storage types.

The seond one gives the omplexity lass for whih the emptiness problem of the or-

responding one-way automaton is omplete. This is equivalent to the word problem of

the orresponding two-way automaton. Here determinism and nondeterminism do not

di�er w.r.t. omplexity. The third and fourth olumn list the omplexity of the word

problem in the one way ase([34, 45, 70℄).

Storage type Two-way lass Nondeterministi Deterministi

one-way lass one-way lass

Nested Stak DEXPOLYTIME NP P

Stak DEXPOLYTIME NP P

Nonerasing Stak PSPACE NP P

Push Down P LOG(CFL) LOG(DCFL)

Table 2: Fully anonial Storage Types

It is possible to show, that this pattern is also full�lled by various types of top-down

automata haraterizing several families of ontext-free Lindenmayer languages [60℄.

3.1.2 Complexity of Operations on Formal Languages

An important topi in the theory of formal languages are investigations of losure prop-

erties, that is of questions under whih operations a given family of formal languages

6

is losed. This results in notions like Trios or AFLs. A Trio (or one) is an nonempty

olletion of sets ontaining at least one nonempty language, losed under homomor-

phisms, inverse homomorphisms, and intersetions with regular sets. An Abstrat

Family of Languages is a Trio whih is additionally losed under the regular opera-

tions, i.e.: union, onatenation, and Kleene's *-operation. CFL, OI, and ETOL are

AFLs, LIN is a Trio, but not an AFL, and DCFL is not a Trio, sine it is not losed

under homomorphisms. There is a rih theory built upon these notions (see e.g. [6, 25℄).

Most of the ties between omplexity and formal languages are found when onsid-

ering the omplexities of deision problems, in partiular of membership problems, of

formal languages. This results in ompleteness of languages and of families of formal

languages. In the following, we briey deal with the omplexity of operations on formal

languages.

AFL Operations

Trio Operations: From the omplexity theoretial view, the easiest operations

are inverse homomorphisms and intersetions with regular sets. Nearly every sequential

mahine with a �nite ontrol admits the appliation of these operations. So, at least

with respet to sequential omplexity, both operations are very easy. In ontrast to

that, the potential omplexity of the remaining Trio operation, the homomorphism, is

unbounded, sine every reursively enumerable set is representable as the homomorphi

image of a simple set. Here simple means ontainment in DSPACE(logn). In fat,

every reursively enumerable set is the homomorphi image of some element in Co-

NLOGTIME.

Here we see a fundamental di�erene of families of formal languages and of om-

plexity lasses onerning the impat of erasing. While formal languages usually are

rather insensitive with respet to erasing homomorphisms, omplexity lasses generate

all reursively enumerable sets in onnetion with erasings. Hene within omplexity

theory only nonerasing homomorphism an be onsidered. Still these an be of a high

omplexity (see e.g. [9℄): eah set in NTIME(n) is the homomorphi image of the

intersetion of three ontext-free sets, as it was shown in [8℄. This implies the NP-

ompleteness of H

nonerasing

(LOG(CFL)), sine LOG(CFL) is losed under intersetion.

It is easy to see, that this holds even for deterministi logspae:

Proposition 7 NP = LOG(H

nonerasing

(DSPACE(logn))):

On the other hand, NP is losed under nonerasing homomorphisms:

Proposition 8 H

nonerasing

(NP) = NP:

These two equations tell us, that the operation of taking the nonerasing homomorphi

image is NP-omplete. For a more formal treatment see [31℄.

Boolean Operations: Sine the omplexity lasses investigated in this paper are

de�ned by automata with a two-way input tape, they are losed both under union

and under intersetion. Hene there is no inrease in omplexity when applying the

operation of union or intersetion to omplexity lasses like DSPACE(logn).

The situation is similar with respet to the operation of taking omplements. Classes

based on determinism or on nondeterministi spae are losed under omplementation.

But also for lasses and onepts whih possibly are not losed under omplementation

7

like nondeterministi time, symmetry, or unambiguity there is no jump of omplexity.

This may be illustrated by the fat, that the losure of P under nonerasing homomor-

phisms and omplement is only the polynomial hierarhy and not PSPACE.

Regular Operations: In the same way as nonerasing homomorphisms may be

regarded as being NP-omplete, Kleene's

�

-operation is NSPACE(logn)-omplete, sine

we have:

Theorem 9 a) NSPACE(logn) = LOG(DSPACE(logn)

�

)

2

and

b) NSPACE(logn)

�

� NSPACE(logn):

(See [22, 51℄. Again these results hold for omplexity lasses below DSPACE(logn),

e.g. (AC

0

)

�

ontains NSPACE(logn)-omplete sets.)

All omplexity lasses used here are losed under onatenation, whih seems to be as

easy as inverse homomorphisms or intersetion with regular sets. There is one example

due to Inga Niepel whih haraterizes the omplexity of onatenation. Hartmanis and

Mahaney onsidered in [30℄ the LOG(�)-losure of all single letter alphabet languages

in NSPACE(logn). They showed this lass to oinide with the lass of all languages

reognizable by logspae automata whih in the beginning work deterministially and

then enters a seond nondeterministi phase that is blind, that is in whih the input

an no longer be read exept for its length. Niepel renamed this lass ENL (ending

nondeterminism) and onfronted it with BNL (beginning nondeterminism) where the

logspae mahine starts with a blind nondeterministi phase and then enters a seond,

deterministi one in whih the mahine has full aess to its input. Niepel was able to

show:

Theorem 10 ([53℄) a) ENL � BNL,

b) BNL = LOG(ENL�ENL), and

) BNL�BNL � BNL.

Thus the omplexities of ENL and BNL are related by the operation of onatena-

tion.

Iterated Insertions

Another nondeterministi omplexity lass representable in this way is LOG(CFL).

The related operation on formal languages will be B , the operation of iterated binary

insertion [31℄. The underlying idea of this approah is the simulation of the grammar

with rules S ! aSbS j d, whih is a generator of the ontext-free languages (see [6℄).

For languages L

1

; L

2

; and L

3

we de�ne the operation of Binary Insertion by

(L

1

; L

2

)! L

3

:= fuvwxy j v 2 L

1

; x 2 L

2

; uwy 2 L

3

g.

We will now iterate this operation to get the desired operator B . There are two

possibilities to do so:

Outside-In One possibility is to insert atomi words into omposed words, i.e. to

de�ne: L

OI�0

:= f�g, L

OI�i+1

:= L

OI�i

[((L; L)! L

OI�i

), and

L

OI�B

:=

S

i�0

L

OI�i

.

2

Here A

�

denotes fL

�

j L 2 Ag.

8

Inside-Out The other possibility is to insert omposed words into atomi words, i.e.

to de�ne: L

IO�0

:= f�g, L

IO�i+1

:= L

IO�i

[((L

IO�i

; L

IO�i

)! L), and

L

IO�B

:=

S

i�0

L

IO�i

.

Observe, that these two possibilities oinide for assoiative operations like onatena-

tion: the iterated onatenation both in the outside-in and the inside-out way results

in the *-opration. In the ase of binary insertion, these two approahes do not seem

to be equivalent, sine OI-B is NP-omplete and IO-B is LOG(CFL)-omplete; i.e. we

have:

Theorem 11 a) NP = LOG

�

DSPACE(logn)

OI�B

�

= LOG

�

NP

OI�B

�

;

b) NAuxPDA-TIME(pol) = LOG

�

DSPACE(logn)

IO�B

�

, and

) NAuxPDA-TIME(pol) = LOG

�

NAuxPDA-TIME(pol)

IO�B

�

:

(Compare this with the NP-ompleteness of OI and the LOG(CFL)-ompleteness of

IO.) Hene we will in the following only onsider the operation IO-B , whih will be

alled B , for short. These relation also hold on the formal language side: there is a

�nite set F , suh that F

B

is not only a generator of CFL, but also a hardest ontext-

free language. In addition, CFLis losed under the B operation. Further details will

be ontained in [31℄.

Remark 1 It is also possible to do the same for monadi insertions, i.e.: for the

operation L

1

! L

2

:= fuvw j v 2 L

1

; uw 2 L

2

g. Iterating this we get two operations

OI-M and IO-M. Again OI-M is NP-omplete, while IO-M now is NSPACE(logn)-

omplete. Sine OI-M essentially oinides with OI-B, we will deal in the following only

with IO-M, whih we will name M , for short. The M operation is losely onneted with

the linear ontext-free languages.

Relativization

A remarkable fat of these results is that the relations desribed in this paragraph

do relativize. We have [42℄:

Theorem 12 NP

A

= LOG

�

H

�

DSPACE(logn)

A

��

for every orale set A.

When relativizingNSPACE(logn) or NAuxPDA-TIME(pol) we have to be areful whih

kind of relativization to hoose. There are two basi types: In the LL-relativization of

Ladner and Lynh in [40℄ the orale mahine is allowed to perform nondeterministi

steps during the generation of a query string. In the RST-relativization of Ruzzo, Simon,

and Tompa in [63℄, the orale mahine is only allowed to perform nondeterministi

steps, while the query tape is empty. None of the relations Co-NSPACE(logn) =

NSPACE(logn), NSPACE(logn) � DSPACE(log

2

n), or NSPACE(logn) � P does LL-

relativize, but all do when using the RST-relativization. As usual, NSPACE(logn)

A

denotes the LL-relativization, and NSPACE(logn)

hAi

the RST-version. We then have

[42℄:

Theorem 13 NSPACE(logn)

hAi

= LOG

��

DSPACE(logn)

A

�

�

�

for every orale set A.

In the same way we have [31℄:

9

Theorem 14 NSPACE(logn)

hAi

= LOG

�

DSPACE(logn)

A

�

M

!

for every orale set

A.

Essentially, the same holds true for the operation B . Again, we have to use the

RST-relativization, whih in this ase pertains also to the use of the push-down store.

(So, here RST and LL no longer oinide in the deterministi ase.) We then have [31℄

Theorem 15 NAuxPDA-TIME(pol)

hAi

= LOG

�

DSPACE(logn)

A

�

B

!

for every orale set A.

3.2 Between Determinism and Nondeterminism

The onsideration of the relationship between determinism and nondeterminism led

to the investigation of intermediate onepts like symmetry or unambiguity. A non-

deterministi automaton is said to be unambiguous, if for any input there is at most

one aepting omputation. Obviously, every deterministi automaton is unambiguous.

While in a usual de�nition of a language aepted by some automaton the reexive and

transitive losure of some one-step transition relation is used, a symmetri omputation

is based on the symmetri, reexive, and transitive losure of that relation. Sine the

on�guration graph of a deterministi automaton is a tree, the language aepted by

a deterministi automaton oinides with its symmetri language, i.e.: the set of all

words aepted by symmetri omputations. Thus both onepts are loated between

determinism and nondeterminism.

3.2.1 Unambiguity

The onept of Unambiguity is well known from the theory of automata and formal

languages. An automaton is unambiguous if there exists at most one aepting ompu-

tation for every input. Correspondingly, a grammar is unambiguous if there exist no two

di�erent derivations produing the same word. Thus, if there exists an aepting ompu-

tation or a derivation for some input, it is unique. On the formal language side, this leads

to the families UCFL of unambiguous ontext-free languages and ULIN of unambiguous

linear ontext-free languages, whih oinide with the families of languages aepted by

unambiguous push-down and one-turn push-down automata. On the omplexity theo-

retial side, we get lasses like UP, USPACE(logn), and UAuxPDA-TIME(pol).

This feature has to be distinguished from the onept of Uniqueness. While an un-

ambiguous automaton allows for at most one aepting omputation, a unique mahine

simply rejets all words having more than one aepting omputations. Thus unam-

biguity means using the unique existene of aepting omputations as a restrition,

whereas uniqueness is using this as a tool. Hene unambiguity is a onept loated

between determinism and nondeterminism. On the other hand uniqueness seem to be

more powerful than nondeterminism. The lass US of unique polynomial time intro-

dued in [7℄ ontains Co-NP and is onjetured to be di�erent from it. Unique spae

lasses oinide with their nondeterministi ounterparts, beause of the omplement

losure of nondeterministi spae lasses.

While uniqueness is a onstrutive onept and lasses de�ned by uniqueness possess

omplete sets, unambiguity is a nononstrutive onept. Complexity lasses de�ned

by unambiguity don't seem to be reursively representable or to possess omplete sets.

10

Neither they seem to be 2-anonial: it is not known, whether the families UCFL and

ULIN are omplete for UAuxPDA-TIME(pol) and USPACE(logn). The orrespond-

ing onstrution in [70℄ preserves determinism, but not unambiguity. We only have

LOG(UCFL) � UAuxPDA-TIME(pol) and LOG(ULIN) � USPACE(logn).

There are two possibilities to de�ne unambiguity. Apart from the weak version

of looking only at aepting omputations or whole derivations, we ould be more

restritive and require that for no pairs of on�gurations there are two or more di�erent

omputations leading from the �rst on�guration to the seond one. For grammars

this would mean that for no pair of sentential forms there are two or more di�erent

derivations deriving one out of the other. For time lasses these onepts do not di�er,

sine we have enough spae to keep trak of the whole history of a omputation. In this

way no on�guration has more than one predeessor. For spae bounded lasses and

mahines augmented with a spae bounded working tape this method does not work and

we get additional lasses orresponding to strong unambiguity: StUAuxPDA-TIME(pol)

and StUSPACE(logn). (In fat there are many more variants, see e.g. [12℄.)

These two onepts oinide on the formal language side, sine we an get rid of

both the unprodutive and the unreahable nonterminals of a grammar. With this it

is possible to show the inlusion of formal languages even in the orresponding strong

unambiguous lasses (see [47, 12℄):

Proposition 16 LOG(UCFL) � StUAuxPDA-TIME(pol) � UAuxPDA-TIME(pol)

and

Proposition 17 LOG(ULIN) � StUSPACE(logn) � USPACE(logn):

Allthough we know DCFL � UCFL � CFL and DLIN � ULIN � LIN, the preise

relationship of unambiguous omplexity lasses to deterministi and nondeterministi

ones is open. There are some indiations that unambiguity is a proper restrition of

nondeterminism. An example for this are parity and mod lasses; A language L � X

�

is in
SPACE(logn) (Parity Logspae) i� there is a nondeterministi logarithmially

spae bounded Turing mahine, whih has an odd number of aepting omputations

for eah element of L and an even number number on eah input from X

�

nL. Counting

modulo an arbitrary positive integer instead of ounting modulo two leads from parity

lasses to mod lasses [11℄. By de�ntion of unambiguity we have:

Proposition 18 a) USPACE(logn) �
SPACE(logn) and

b) UAuxPDA-TIME(pol) �
AuxPDA-TIME(pol).

These inlusions are not known to be true forNSPACE(logn) and NAuxPDA-TIME(pol).

The parity onept an also be de�ned for formal languages and leads to the anonial

equations:

Theorem 19 ([57℄) a) LOG(
CFL) =
AuxPDA{TIME(pol) and

b) LOG(
LIN) =
SPACE(logn).

A further hint that unambiguity might be less powerful than nondeterminism and be

rather lose to determinism is given in [12℄ by:

Theorem 20 StUSPACE(logn) � DAuxPDA-TIME(pol):

11

As a onsequene, StUSPACE(logn) and hene ULIN is a subset ofDTISP(pol; log

k

n)

= SC

2

. The orresponding relationship for nondeterminism: NSPACE(logn) � SC

2

is

not known to be true and generally onjetured to be wrong.

The idea underlying the inlusion of StUSPACE(logn) in DAuxPDA-TIME(pol) is

to prune the reahability subtree of the reahability graph of a strongly unambiguous

mahine. The proof an be extended to some slightly larger lasses, but not (yet)

to the lass USPACE(logn) (see [12℄). With the same idea it an be shown that

StUSPACE(logn) is losed under omplement and even oinides with its alternating

version.

One onsequene of this inlusion is, that we now an relate the families ULIN and

DCFL. As families of formal languages they are inomparable: the Dyk languages are

not linear ontext-free and the Mirror Language fw

w

j w 2 fa; bg

�

g is not deterministi

ontext-free. But if we look at them from the omplexity theoretial side, we now have

LOG(ULIN) � DAuxPDA-TIME(pol) = LOG(DCFL):

But it seems appropriate to give a aveat: In the same way CFL and EDTOL

are inomparable as families of formal languages. If we now look at the generated

omplexity lasses, we get

LOG(EDTOL) = NSPACE(logn) � LOG(CFL):

But things turn over, if we look at the AFLs generated by CFL and by EDTOL,

whih in this ase means to allow for inverse homomorphisms. Observe that inverse

homomorphisms are very harmless from the omplexity theoretial point of view in

that very low lasses like NC

1

are losed under inverse homomorphisms. But while

AFL(CFL)=CFL stays in NAuxPDA-TIME(pol), the AFL generated by COPY ontains

NP-omplete languages (see [22℄).

3.2.2 Symmetry

The onept of a symmetry was introdued in [49℄. In a symmetri omputation one

is allowed to go omputational steps both bakward and forward. As unambiguity,

symmetry is intermediate in omputational power between determinism and nondeter-

minism. But in ontrast to unambiguity, symmetry is of a more onstrutable nature,

sine it is de�ned in terms of loally hekable properties. Thus, symmetri lasses

possess omplete problems.

Strutural Relations: At the expense of spae it is possible to make arbitrary non-

deterministi omputations symmetri by keeping trak of the whole history of a om-

putation. This is the reason for the equivalene of symmetri time and nondetermin-

isti time. Muh more interesting is the ase of symmetri spae lasses. They re-

semble ertain similarities with unambiguous spae lasses onerning their strutural

behaviour. As StUSPACE(logn), also SSPACE(logn) is ontained in both SC

2

and

SPACE(logn):

Theorem 21 a) SSPACE(logn) � SC

2

[55℄, and

b) SSPACE(logn) �
SPACE(logn)[39; 11℄:

But it should be mentioned that the proofs on the symmetri side are muh more

involved than those on the unambiguous one. But there are also ertain di�erenes.

12

On the one hand, it was observed in [49℄ that all problems in NSPACE(logn) an be

reognized by symmetri mahines, whih are simultaneously bounded by polynomial

time and O(log

2

n) spae:

Theorem 22 NSPACE(logn) � STISP(pol; log

2

n):

Here STISP(f,g) denotes the lass of all problemes reognizable by symmetri Turing

mahines bounded in time by f and simultaneously in spae by g. An unambiguous

version of this ontainment is not known to be true. On the other hand, it was reently

shown in [56℄ that SSPACE(logn) is ontained in DSPACE(log

1:5

n). Again, it is an

open problem whether the orresponding inlusions hold for the lasses USPACE(logn)

or StUSPACE(logn).

Complete Operations The known omplete sets for SSPACE(logn) are undireted

variants of NSPACE(logn)-omplete problems. But there is up to now no family of

formal languages whih ould play for SSPACE(logn) the role, LIN and DLIN played

for NSPACE(logn) and DSPACE(logn). This seems to be onneted with the problem

of de�ning the onept of symmetry for automata with a one-way aess to the input.

In the following we will desribe an operation SYM-

�

on formal languages whih

is SSPACE(logn)-omplete. To de�ne SYM-

�

whih will be a symmetri version of

the *-operation we need the following notation: If w = a

1

a

2

:::a

n

is a word of length

n, we selet subwords of w for 0 � i � j � n by setting

i

w

j

:= a

i+1

:::a

j

. Then

w is an element of L

�

for some language L i� there exists an integer k and indies

0 =: i

0

< i

1

< i

2

::: < i

k

:= n suh that for all 1 � � � k

i

��1

w

i

�

is in L. We

extend now the

i

w

j

-notation to \negative" subwords by letting

i

w

j

be the reversal of

j

w

i

, i.e. a

i

a

i�1

:::a

j+1

, if j < i. We then de�ne w to be an element of L

SYM-

�

i� there

exist an integer k and indies i

0

:= 0; i

1

; i

2

; :::; i

k

:= n suh that for all 1 � � � k

i

��1

w

i

�

is an element of L. Observe, that now the sequene of the i

�

no longer has

to be inreasing. As for * and NSPACE(logn), there exist a simple set L

0

suh that

L

SYM-

�

0

is SSPACE(logn)-omplete. (In fat we an take the same set L

0

, for whih

L

�

0

is NSPACE(logn)-omplete; ompare to Theorem 9.)

Theorem 23 ([31℄) a) SSPACE(logn) = LOG

�

DSPACE(logn)

SYM-

�

�

and

b) SSPACE(logn)

SYM-

�

� SSPACE(logn).

An interesting question is now, whether the SYM-

�

-operation an be haraterized

as the iteration of a more simple operation, just as the *-operation is iterated on-

atenation, M is iterated monadi insertion, and B is iterated binary insertion. This

question seems to be losely related to the problem of properly de�ning symmetry for

one-way devies.

Relativization: We �nally remark, that as in subsetion 3.1.2 it is possible to

relativize Theorem 23 when using an appropriate relativization of symmetri pae [31℄.

Some of the onnetions between unambiguous and symmetri omplexity lasses

and families of formal languages are indiated in Figure 2.

4 Parallel Complexity

There are several di�erent models used in parallel omplexity theory, the most basis

being parallel random aess mahines, Boolean iruits, alternating automata, and in

13

DSPACE(log n) = LOG(DLIN)

DSPACE(log

1:5

n)

SSPACE(log n)

SC

2

SPACE(log n) NSPACE(log n) = LOG(LIN)

DSPACE(log

2

n)

LOG(ULIN)

StUSPACE(log n)

P

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: Unambiguous and symmetrial aspets of formal languages

some sense auxiliary push-down automata. In the following, we will mainly deal with

PRAMs and iruits.

All these devies lead to the same lass NC of languages, whih are eÆiently

parallelizable. Dealing with PRAMs, this leads to the lass of problems, solvable si-

multaneously with small (i.e.: polylogarithmi) time and moderate (i.e.: polynomial)

number of proessors. For iruits it would mean small depth and moderate size, for

alternating mahines small depth and logarithmi spae, and for auxiliary push-down

automata time O(2

polylog

) and logarithmi size of the auxiliary working tape ([62℄ on-

tains a nie uni�ation of several approahes). Parallel omplexity theory now ontrasts

membership in NC as meaning eÆiently parallelizable with P-ompleteness meaning

inherently sequential. On the one hand, this leads to a beautiful theory, on the other

hand, it is not lear how to relate these results to existing parallel mahines.

The following explanations are entered around CFL and its subfamilies. We start

with a treatment of the most important model of parallel omplexity theory, the PRAM.

LOG(DCFL) oinides with a parallel omplexity lass. Then we review some results

on omplexity lasses repreented by boolean iruits. In this ontext LOG(CFL) will be

exhibited as a parallel omplexity lass, as well. In a third subsetion on unambiguity

we present some of the surprisingly lose relationships between onepts of automata

theory like nondeterminism, unambiguity, and determinism and onepts of aessing

a shared memory like onurrent write, exlusive write, and owner write.

14

4.1 Parallel Random Aess Mahines

The onept of a PRAM goes bak to [23, 27℄. A PRAM is a set of Random Aess

Mahines, alled proessors, ommuniating via a global memory. The proessors work

in a synhronous way, i.e.: eah step takes one time unit regardless whether it performs

a loal or a global (i.e.: remote) operation. The number of proessors is variable,

depending in the size of the input. Unless stated otherwise, we have a polynomial

bound on the number of proessors. An essential restrition we put on this mahine,

is the assumption, that the length o� all register ells, being either global or loal, is

bounded logarithmially in the length of the input. Thus all address and data stored

in a memory ell is polynomially bounded.

There are several types of PRAMs lassi�ed aording to their ability to aess

simultaneously a ell of global memory when reading or writing. We will onsider

three versions onerning the write aess: a mahine with Conurrent Write aess

allows the simultaneous write aess of several proessors to the same memory ell at

one moment. There are several onventions how to solve this onit, i.e.: how to

determine what will be the new value of the referened ell. In our ontext, all these

methods are equivalent. A mahine with Exlusive Write aess forbids simultaneous

writes and requires that in eah step at most one proessor may hange the ontent of

a global memory ell. A mahine with Owner Write aess is even more restrited by

assigning to eah ell of global memory a proessor, alled the Write-Owner, whih is

the only one to have write aess to this memory ell (see [19℄). Correspondingly, we get

three ways to manage read aess to the global memory: Conurrent Read, Exlusive

Read, and Owner Read. In this way we get nine versions of PRAMs, denoted as XRYW-

PRAMs with X; Y 2 fO;E;Cg, where XR spei�es the type of read aess and YW

that of the write aess and where the aess types are designated by their initials.

For historial reasons, the ommonly used models are CRCW-, CREW-, and EREW-

PRAMs. By XRYW-TIME(f(n)) we denote the lass of all languages reognizable in

time f by XRYW-PRAMs with a polynomial number of proessors. By de�nition we

know that XRYW-TIME(f) � X'RY'W-TIME(f) for X,X',Y,Y' 2 fO;E;Cg if X � X'

and Y � Y' where we set O � E � C.

In the most powerful of these models, the CRCW-PRAM, the global memory looks

like a shared memory, sine eah proessor an aess eah ell of global memory. In the

most restrited model, the OROW-PRAM, however, the global memory is deteriorated

to a set of one-diretional hannels between pairs of proessors. Thus an OROW-PRAM

is something like a ompletely onneted synhronous network. Although this mahine

seems to be muh more restrited, the relations to other parallel lasses listed in the

next paragraphs indiate that it is a model as \parallel" as a CRCW-PRAM.

Relations to Context-free Languages The ontext-free languages are well-known

to be ontained in NC . In fat, Ruzzo showed in [61℄:

Theorem 24 CFL � CRCW-TIME(O (log n)):

This algorithm makes essential use of the onurrent write feature and it is open

whether ontext-free languages ould be reognized in logarithmi time by CREW or

CROW-PRAMs. The largest subfamily of CFL known to be reognizable in logarithmi

time without onurrent write, are the unambiguous ontext-free languages sine Rytter

showed in [64℄:

Theorem 25 UCFL � CREW-TIME(O (log n)):

15

Again it is open, whether this ould be done without exlusive write aess. The

largest subfamily of UCFL known to be reognizable in logarithmi time with owner

write aess, are the deterministi ontext-free languages, as Dymond and Ruzzo showed

in [19℄:

Theorem 26 DCFL � CROW-TIME(O (log n)):

The �rst of these three inlusions implies that NSPACE(logn) and NAuxPDA{

TIME(pol) are sublasses of CRCW-TIME(O (log n)). The seond inlusion im-

plies that LOG(UCFL) is ontained CREW-TIME(O (log n)), but says nothing

onerning StUAuxPDA-TIME(pol) or UAuxPDA-TIME(pol). Using the iruit

model, it is possible to inlude StUAuxPDA-TIME(pol) and StUSPACE(logn) in

CREW-TIME(O (log n)), as will be shown below. Also, we will give some evi-

dene, that UAuxPDA-TIME(pol) and USPACE(logn) are probably not ontained in

CREW-TIME(O (log n)). The third inlusion implies that DAuxPDA-TIME(pol) is a

sublass of CROW-TIME(O (log n)). Surprisingly, also the onverse holds, as Dymond

and Ruzzo showed in [19℄:

Theorem 27 DAuxPDA-TIME(pol) = CROW-TIME(O (log n)):

It should be remarked that this result implies the inlusion of DCFL in SC

2

, i.e.:

Theorem 3. All these algorithms make use of the onurrent read feature. Even for the

linear subfamilies LIN and ULIN there is up to now no logarithmially time bounded

algorithm known without using onurrent read. Only for the deterministi linear

ontext-free languages we know something better by Rossmanith (see [58℄):

Theorem 28 DSPACE(logn) � OROW-TIME(O (log n)):

Sine DLIN is ontained in DSPACE(logn) [32℄, this yields an PRAM reognizing

deterministi linear languages in logarithmi time without the onurrent read feature.

Corollary 29 DLIN � OROW-TIME(O (log n))

4.2 Ciruits

A very important parallel model within strutural omplexity theory are boolean ir-

uits. Formally, a iruit is a direted ayli graph C. The nodes, alled gates, are

labelled by boolean funtions suh that the number of arguments of a funtion f or-

responds to the number of ingoing ars of eah node v labelled by f. The nodes of

in-degree 0, whih have to be labelled by boolean onstants, are alled Inputs. Nodes

of outdegree 0 are alled Outputs. By attahing boolean values to eah node aording

to the boolean funtions passed at eah node, going from the inputs into the diretion

of the outputs a iruit C omputes a boolean funtion with domain f0; 1g

n

and range

f0; 1g

m

, if C has n inputs and m outputs. If m = 1, C might be regarded as a language

aeptor by setting L(C):= fw 2 f0; 1g

n

j C on input w evaluates to 1g.

Throughout of this paper, we will work with disjuntions and onjuntions as labels,

only. Negation is avoided by the usual assumption, that the inputs are given pairwise,

i.e.: with eah input x

i

also an input x

i

is given, labelled with the negation of the label

of x

i

.

Sine a �xed iruit has always some �nite domain f0; 1g

n

, it is neessary to onsider

iruit families C = (C

n

)

n�1

, where C

n

is a iruit with n inputs. To apture omplexity

16

lasses, it is usual to assume Uniformity restritions whih make the struture of eah

C

n

easily omputable for given n and thus relate the elements of a iruit family with

eah other (see [62℄).

Complexity measures of a iruit are the size, whih is the number of nodes of a

iruit, and the depth, whih is the height, i.e.: the length of the longest path from

any input to any output. In the following we will be interested in iruit families

of polynomial size, i.e.: the size of C

n

is bounded by some polynomial p(n), and of

polylogarithmi depth, i.e.: the depth of C

n

is bounded by log

k

n, for some and k

independently of n.

Ciruit families are lassi�ed aording the fan-in, that is the in-degree of the nodes

of eah iruit. A iruit family C is of bounded fan-in if there is a onstant , suh

that the indegree of every node in every C

n

is not larger than . C is of semi-unbounded

fan-in if all nodes, labelled by a onjuntion, have an indegree bounded by some �xed .

If the indegrees of neither the onjuntions nor the disjuntions are uniformly bounded,

C is said to be of unbounded fan-in. Let AC

k

be the lass of all languages reognized

by uniform iruit families of polynomial size, depth O(log

k

n), and unbounded fan-in.

The orresponding lasses for iruit families of semi-unbounded and bounded fan-in

are denoted by SAC

k

and NC

k

.

By de�nition, we have

Proposition 30 NC

k

� SAC

k

� AC

k

for eah positive integer k.

Sine a node of large indegree t labelled by a disjuntion (resp. onjuntion) may

be replaed by a tree of disjuntions (resp. onjuntions) of height log t, we have

Proposition 31 AC

k

� NC

k+1

for eah k � 1.

4.2.1 Strutural Relations

Stokmeyer and Vishkin proved in [66℄:

Theorem 32 CRCW-TIME

�

O

�

log

k

n

��

= AC

k

for eah positive integer k.

This result implies a \log-length" normal form for CRCW-PRAMs: eah CRCW-

PRAM A with polynomially many proessors working in time O(f) an be simulated

by a CRCW-PRAM B with polynomially proessors working in time O(f) suh that

in B all values stored in global or loal memory ells are polynomially bounded and

thus an be stored in O(logn) bits. This kind of normal form is not known to exist

for exlusive write or owner write PRAMs. Hene we had to add this restrition as a

property of PRAMs as they were desribed in the previous subsetion.

By [58℄ we have

Theorem 33 NC

k

� OROW-TIME

�

O

�

log

k

n

��

for eah k � 1.

Sine OROW-TIME

�

O

�

log

k

n

��

is a subset of DAuxPDA-TIME

�

2

O

(

log

k

n

)

�

(for

this inlusion we need the restrition that PRAMs have a logarithmially bounded

word length), this result implies the following inlusion of Ruzzo derived in [62℄:

Theorem 34 NC

k

� DAuxPDA-TIME

�

2

O

(

log

k

n

)

�

for k � 1.

For k = 1 it is possible to show ([10, 72℄):

17

Proposition 35 NC

1

� DSPACE(logn) � SAC

1

:

None of these inlusions is known, but all are onjetured, to be proper.

A rather surprising relation, motivating the notion of semi-unbounded fan-in, is the

equation

Theorem 36 SAC

k

= NAuxPDA-TIME

�

2

O

(

log

k

n

)

�

for every k � 1

by Venkatesvaran in [72℄. In partiular, this gives a new omplexity theoretial

haraterization of the ontext-free languages:

Corollary 37 LOG(CFL) = SAC

1

Thus, in view of Theorem 24 iruits give a very informative haraterizations of

the relations between CRCW-PRAMs and NAuxPDAs in terms of the onepts of

unbounded and semi-unbounded fan-in.

4.2.2 Low iruit lasses

In this part the very lose onnetions between low iruit lasses and subfamilies of

regular languages are shortly indiated.

The lowest iruit lasses and sequential omplexity lasses are related by the in-

lusions

AC

0

� NC

1

� DSPACE(logn) � NSPACE(logn) � AC

1

:

When dealing with omplexity lasses below DSPACE(logn) it is neessary to use re-

duibility notions whih are �ner than the usual logspae or polynomial time redutions.

This leads to many-one reduibilities based on funtions omputable by AC

0

or NC

1

iruits or even to DLOGTIME redutions and projetions [36℄. We don't go into the

details here, but only mention that the following relations of this subsetion hold for

DLOGTIME redutions. Let DLOGTIME(A) be the lass of all problems many-one

reduible to some element of A by a DLOGTIME omputable funtion.

The preise relation between NC

1

and DSPACE(logn) is unknown. The general

onjeture assumes these lasses to be di�erent. There is a haraterization of this

relation in terms of formal languages. Let LIN

LL(1)

and LIN

LR(1)

denote the set of all

languages generated by linear ontext-free grammars subjet to a LL(1) respetively

LR(1) ondition. We then have 1{DPDA

1�turn

= LIN

LR(1)

[32℄. This is the reason why

LIN

LR(1)

and not the proper subset LIN

LL(1)

should be alled DLIN, the family of deter-

ministi linear ontext-free languages. The relation between NC

1

and DSPACE(logn)

is now haraterized by:

Theorem 38 a) DLOGTIME

�

LIN

LL(1)

�

= NC

1

[35℄ and

b) DLOGTIME

�

LIN

LR(1)

�

= DSPACE(logn) [32℄.

Thus we see that deterministi one-turn push down automata are 2-anonial.

On the other hand AC

0

is known to be a proper subset of NC

1

[24℄. Again there

is a haraterization of this relation in terms of formal languages:

Theorem 39 a) DLOGTIME(REG) = NC

1

[4℄ and

b) DLOGTIME(REG

��free

) = AC

0

[5℄.

18

Here REG

��free

denotes the family of star-free regular sets. It oinides with the family

of those regular sets, in whih the transformation monoid of the minimal automaton

doesn't ontain any nontrivial group. If solvable groups are allowed, this orresponds

to AC

0

iruits enrihed by mod gates [5℄. If the transformation monoid ontains a

nonsolvable group, the aepted language is NC

1

-omplete [4℄.

It is remarkable, that EDOL is of an even lower omplexity:

Theorem 40 ([16, 17℄) DLOGTIME(EDOL) is a proper subset of AC

0

.

4.3 Unambiguity

We will now deal with unambiguity in parallel models. As suggested by Rytter's in-

lusion UCFL � CREW-TIME(O (log n)), the onept of exlusive aess to a global

memory turns out to be very losely related to unambiguity. The way to show this is

by introduing unambiguity for iruits.

The notion of an unambiguous iruit is introdued in [46℄. It might be explained

by the intuitive notion of a vulnerable gate: In ontrast to a normal robust OR-gate, a

vulnerable OR-gate or vulnerable disjuntion is a partially de�ned OR-funtion whih

works orretly on inputs ontaining at most one bit equal to 1. On inputs ontaining

more than 1, the output is unde�ned and the gate is assumed to be destroyed. We

assume that the value unde�ned as input of a vulnerable gate implies the output of

that gate to be unde�ned, too. On the other hand, unde�ned as an input to a robust

gate behaves like a value \0:5".

Unambiguous iruits onsist in two types of gates:

� Small robust AND and OR-gates of bounded fan-in and

� Large vulnerable AND and OR-gates of unbounded fan-in.

Aording to the two types of weak and strong unambiguity for sequential mahines,

there are two types of unambiguous iruits:

In order to haraterize CREW-PRAMs by iruits, the following notion has been

introdued in [46℄: A iruit is alled unambiguous, i� for all ombinations of the input

bits no vulnerable gate reeives an input ontaining more than one 1.

In [47℄ an notion orresponding to the usual version of unambiguity has been in-

vestigated: A iruit is alled weakly unambiguous, i� for all ombinations of the input

bits the result of no destroyed vulnerable gate a�ets the output bit of the iruit.

That is, in a weakly unambiguous iruit we allow some vulnerable gate to be

destroyed, but require that the output of every destroyed gate on its way to the output

of the whole iruit is later either robustly onjoined with a 0 or robustly disjoined with

a 1.

In orrespondene to AC

k

, we get the unambiguous lasses UAC

k

and WUAC

k

. It

was shown in [46℄ that

Theorem 41 CREW-TIME

�

O

�

log

k

n

��

= UAC

k

for eah k � 1:

When looking for unambiguous iruit lasses orresponding to SAC

1

, two possibil-

ities may be onsidered:

� A more powerful one using large vulnerable disjuntions, small robust disjun-

tions, and small robust onjuntions or

19

� A more restrited one without the use of any robust disjuntion.

In [43℄, the original version of [46℄, the �rst lass was named USAC, and the seond one

URAC. But the properties of these two lasses strongly suggest to hoose the seond

possibility to be the unambiguous version of SAC iruits.

3

Thus, in the following

USAC

k

and WUSAC

k

denote language lasses orresponding to unambiguous iruits

using vulnerable disjuntions and small robust onjuntions.

That these are the orret hoie as unambiguous versions of SAC

k

is illustrated by

the two equations from [47℄:

Theorem 42 a) USAC

1

= StUAuxPDA-TIME(pol) and

b) WUSAC

1

= UAuxPDA-TIME(pol):

It is remarkable how the strutural properties of unambiguity (and the exlusive

write feature) resemble the nondeterministi ase (and the onurrent write feature).

In [46℄ the inlusion NC

k

� USAC

k

was shown for all k� 1. For the ase k = 1,

the more re�ned inlusion struture is:

NC

1

� DSPACE(logn) � OROW-TIME(O (log n))

� LOG(DCFL) � LOG(UCFL) � USAC

1

:

These relations are summarized in Figure 3.

We mention in passing, that there is also a iruit haraterization of exlusive read

(see [54℄).

Disussion and Open Questions

One aim of this paper was to illustrate the very many and very deep onnetions

between omplexity lasses and families of formal languages. One striking example

for this is the lose orrespondene of the following pairs: determinism versus owner

aess, unambiguity versus exlusive aess, and nondeterminism versus onurrent a-

ess. For historial reasons, exlusive write and read are very ommonly used models.

The onnetion to unambiguity explains the many nononstrutive aspets of this on-

ept, e.g. the apparent nonexistene of omplete problems. Even worse, for polynomial

size, i.e.: for logarithmially spae bounded Turing mahines or auxiliary push-down

automata, there is no single problem known, being a member of some unambiguous

lass, whih is suspet of being not an element of the orresponding deterministi lass.

Relations like that are only known for families; e.g.: UCFL, whih is known to be in

UAuxPDA-TIME(pol), is onjetured not to be in DAuxPDA-TIME(pol). Thus the use

of PRAMs of exlusive aess type to solve a single problem should be regarded as

a bit lazy. It might be probable, that all existing XREW-PRAM algorithms solving

spei� problems ould be onverted into XROW-algorithms. It would be very inter-

esting to single out a spei� problem resisting this approah, sine this would be a

andidate of a single problem known to be unambiguously solvable, but apparently not

deterministially in polynomial size.

We lose with a list of open questions:

3

Some new results onerning the lasses built aording to the �rst possibility may be found in

[52℄.

20

NC

1

DSPACE(log n)

OROW-TIME(log n) StUSPACE(log n)

CROW-TIME(log n) = DAuxPDA-TIME(pol)

USAC

1

= StUAuxPDA-TIME(pol)

NSPACE(log n)

CREW-TIME(log n) = UAC

1

SAC

1

= NAuxPDA-TIME(pol)

CRCW-TIME(log) = AC

1

EREW-TIME(log)

P

H

H

H

H

H

H

H

H

H

H

H

H

H

H �

�

�

�

�

�

�

�

�

�

�

�

�

� H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�H

H

H

H

H

H

H

�

�

�

�

�

�

� H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

Figure 3: The NC-Struture between NC

1

and AC

1

1. Are there families of formal languages whih are omplete for SSPACE(logn)? In

partiular, is there a reasonable de�nition of a symmetri (one-turn) push down

automaton whih would be 2-anonial?

2. Under whih onditions storage types are 2-anonial or fully anonial? (See

[20, 18℄ for ;-anonial storage types.)

3. Are there families of formal languages omplete for AC

k

, k� 1, or for NC

k

, k� 2?

4. Is every family of formal languages whih is e�etively losed under the AFL

operations and whih has a deidable emptiness problem ontained in NP?

5. Sequential and parallel models provide a unifying framework to struture families

of formal languages. In partiular, this is true for boolean iruits. It would

be interesting to �nd a iruit feature representing determinism as a subase of

nondeterminism. In partiular this would mean to haraterize DSPACE(logn),

LOG(DCFL), or P by iruits of logarithmi depth.

6. Are there versions of PRAMs or iruits whih orrespond to symmetri omplex-

ity lasses?

21

Referenes

[1℄ A. Aho. Nested stak automata. J. Asso. Comp. Mah., 16:383{406, 1969.

[2℄ P. Asveld. Time and spae omplexity of inside-out maro languages. Internat. J.

Comput. Math., 10:3{14, 1981.

[3℄ J. Bal�aar, J. Di�az, and J. Gab�arro. Strutural Complexity Theory I. Springer,

1988.

[4℄ D.A. Barrington. Bounded-width polynomial-size branhing programs an reog-

nize exatly those languages in NC

1

. J. Comp. System Si., 38:150{164, 1989.

[5℄ D.A. Barrington, N. Immerman, and H. Straubing. On uniformity onditions

within NC

1

. In Pro. 3rd Struture in Complexity Theory, pages 47{59. IEEE,

1988.

[6℄ J. Berstel. Transdutions and Context-Free Languages. Teubner Verlag, Stuttgart,

1979.

[7℄ A. Blass and Y. Gurevih. On the unique satis�ability problem. Inform. and

Control, 55:80{88, 1982.

[8℄ R. Book and S. Greibah. Quasi-realtime languages. Math. System Theory, 4:97{

111, 1970.

[9℄ R. Book, S. Greibah, and B. Wegbreit. Time- and tape-bounded turing aeptors

and AFLs. J. Comp. System Si., 4:606{621, 1970.

[10℄ A. Borodin. On relating time and spae to size and depth. SIAM Journal on

Computing, 6(4):733{744, 1977.

[11℄ G. Buntrok, C. Damm, U. Hertrampf, and C. Meinel. Struture and importane

of logspae-MOD-lasses. In Pro. 7th Symposium Theoretial Aspets of Computer

Siene, number 480 in LNCS, pages 360{371. Springer, 1991.

[12℄ G. Buntrok, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and few-

ness for logarithmi spae. In Pro. of the 8th Conferene on Fundamentals of

Computation Theory, number 529 in LNCS, pages 168{179, 1991.

[13℄ S. Cook. Charaterizations of pushdown mahines in terms of time-bounded om-

puters. J. Asso. Comp. Mah., 18:4{18, 1971.

[14℄ S. Cook. Deterministi CFL's are aepted simultaneously in polynomial time

and log squared spae. In Pro. of the 11th Annual ACM Symp. on Theory of

Computing, pages 338{345, 1979.

[15℄ E. Dahlhaus and M. K. Warmuth. Membership for growing ontext-sensitive gram-

mars is polynomial. J. Comp. System Si., 33:456{472, 1986.

[16℄ C. Damm, M. Holzer, and K.-J. Lange. The parallel omplexity of iterated mor-

phisms and the arithmeti of small numbers. In Pro. 17th Symposium on Math-

ematial Foundations of Computer Siene, number 629 in LNCS, pages 227{235.

Springer, 1992.

22

[17℄ C. Damm, M. Holzer, K.-J. Lange, and P. Rossmanith. The very low omplexity

of deterministi 0L languages: D0L is in AC

0

. In Pro. Developments in Language

Theory, 1993. to appear.

[18℄ J. Dassow and K.-J. Lange. Complexity of automata with abstrat storages. In

Pro. of the 8th Conferene on Fundamentals of Computation Theory, number 529

in LNCS, pages 200{209. Springer, 1991.

[19℄ P. Dymond and W. Ruzzo. Parallel RAMs with owned global memory and deter-

ministi ontext-free language reoginition. In Pro. of 13th International Collo-

quium on Automata, Languages and Programming, number 226 in LNCS, pages

95{104. Springer, 1986.

[20℄ J. Engelfriet. Iterated pushdown automata and omplexity lasses. In Pro. on the

15th Annual ACM Symp. on Theory of Computing, pages 365{373, 1983.

[21℄ M.J. Fisher. Grammars with maro-like prodution. Ph.d. thesis, Harvard Univ.,

1968.

[22℄ P. Flajolet and J. Steyaert. Complexity of lasses of languages and operators. Rap.

de Reherhe 92, IRIA Laboria, Nov. 1974.

[23℄ S. Fortune and J. Wyllie. Parallelism in random aess mahines. In Pro. of the

10th Annual ACM Symposium on Theory of Computing, pages 114{118, 1978.

[24℄ M. Furst, J. B. Saxe, and M. Sipser. Parity, iruits, and the polynomial-time

hierarhy. Math. Systems Theory, 17:13{27, 1984.

[25℄ S. Ginsburg. Formal Languages. North-Holland, Amsterdam, 1975.

[26℄ S. Ginsburg, S. Greibah, and M. Harrison. One-way stak automata. J. Asso.

Comp. Mah., 14:389{418, 1967.

[27℄ L. M. Goldshlager. A uni�ed approah to models of synhronous parallel om-

putation. In Pro. of the 10th Annual ACM Symposium on Theory of Computing,

pages 89{94, 1978.

[28℄ S. Greibah. The hardest ontext-free language. SIAM J. Comp., 2:304{310, 1973.

[29℄ M.A. Harrison. Introdution to Formal Language Theory. Addison-Wesley, Reading

Mass., 1978.

[30℄ J. Hartmanis and S. Mahaney. Languages simultaneously omplete for one-way

and two-way log-tape automata. SIAM J. Comp., 10:383{390, 1981.

[31℄ M. Holzer and K.-J. Lange. On the omplexity of operations on formal languages.

In preparation.

[32℄ M. Holzer and K.-J. Lange. On the omplexities of linear LL(1) and LR(1) gram-

mars. In Pro. of the 9th FCT, number 710 in LNCS, pages 299{308. Springer

Verlag, 1993.

[33℄ J. Hoproft and J. Ullman. Introdution to Automata Theory, Language, and

Computation. Addison-Wesley, Reading Mass., 1979.

23

[34℄ O. Ibarra. Charaterizations of some tape and time omplexity lasses of Turing

mahines in terms of multihead and auxiliary stak automata. J. Comp. System

Si., 5:88{117, 1971.

[35℄ O.H. Ibarra, T. Jiang, and B. Ravikumar. Some sublasses of ontext-free lan-

guages in NC

1

. Information Proessing Letters, 29:112{117, 1988.

[36℄ D.S. Johnson. A atalog of omplexity lasses. In J. van Leeuwen, editor, Handbook

of Theoretial Computer Siene, Vol. A, pages 67{161. Elsevier, Amsterdam, 1990.

[37℄ N. Jones and S. Skyum. Reognition of deterministi ETOL languages in logarith-

mi spae. Inform. and Control, 35:177{181, 1977.

[38℄ N. Jones and S. Skyum. Complexity of some problems onerning L systems. Math.

Systems Theory, 13:29{43, 1979.

[39℄ M. Karhmer and A. Wigderson. On span programs. In Pro. of the 8th IEEE

Struture in Complexity Theory Conferene, pages 102{111, 1993.

[40℄ R. Ladner and N. Lynh. Relativization of questions about log spae omputability.

Math. Systems Theory, 10:19{32, 1976.

[41℄ K.-J. Lange. Context-free ontrolled ETOL systems. In Pro. of 9th International

Colloquium on Automata, Languages and Programming, number 154 in LNCS,

pages 723{733. Springer, 1983.

[42℄ K.-J. Lange. Deompositions of nondeterministi redutions. Theoret. Comput.

Si., 58:175{181, 1988.

[43℄ K.-J. Lange. Unambiguity of iruits. In Pro. of the 5th IEEE Struture in

Complexity Conferene, pages 130{137, 1990.

[44℄ K.-J. Lange. Complexity and struture in formal language theory. In Pro. of the

8th IEEE Struture in Complexity Conferene, pages 224{238, 1993.

[45℄ K.-J. Lange. A note on the P-ompleteness of deterministi one-way stak lan-

guages. In preperation, 1993.

[46℄ K.-J. Lange. Unambiguity of iruits. Theoret. Comput. Si., 107:77{94, 1993.

[47℄ K.-J. Lange and P. Rossmanith. Charaterizing unambiguous augmented push-

down automata by iruits. In Pro. of 15th Symposium on Mathematial Founda-

tions of Computer Siene, number 452 in LNCS, pages 399{406. Springer, 1990.

[48℄ K.-J. Lange and M. Shudy. The omplexity of the emptiness problem for EOL

systems. In G. Rozenberg and A. Salomaa, editors, Lindenmayer Systems, pages

167{175, Berlin, 1992. Springer.

[49℄ P. Lewis and C.H. Papadimitriou. Symmetri spae-bounded omputation. Theo-

ret. Comput. Si., 19:161{187, 1982.

[50℄ P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for reognition of ontext-

free and ontext-sensitive languages. In Pro. 6th Annual IEEE Symp. on Swithing

Ciruit Theory and Logial Design, pages 191{209, 1965.

24

[51℄ B. Monien. About the deterministi simulation of nondeterministi (logn)-tape

bounded turing mahines. In 2-te GI Fahtagung Automatentheorie und Formale

Sprahen, number 33 in LNCS, pages 118{126. Springer, 1975.

[52℄ R. Niedermeier and P. Rossmanith. Unambiguous simulations of auxiliary push-

down automata and iruits. Inform. and Control, 1993. (to appear).

[53℄ I. Niepel. Logarithmish platzbeshr�ankte Kompleit�atsklassen - Charakterisierung

und o�ene Fragen. Diplomarbeit, Universit�at Hamburg, 1987. (in German).

[54℄ I. Niepel and P. Rossmanith. Uniform iruits and exlusive read PRAMs. In Pro.

of the 11th FST&TCS, number 560 in LNCS, pages 307{318. Springer Verlag, 1990.

[55℄ N. Nisan. RL � SC. In Pro. of the 24th Annual ACM Symposium on Theory of

Computing, pages 619{623, 1992.

[56℄ N. Nisan, E. Szemeredi, and A. Wigderson. Undireted onnetivity in O(log

1:5

n)

spae. In Pro. of 34th Annual IEEE Symposium on Foundations of Computer

Siene, pages 24{29, 1992.

[57℄ K. Reinhardt. Counting and empty alternating pushdown automata. In Pro. 7th

International Meeting of Young Computer Sientists, pages 198{207, Smolenie

Castle, Tshehoslowakei, 1992.

[58℄ P. Rossmanith. The owner onept for PRAMs. In Pro. of the 8th STACS, number

480 in LNCS, pages 172{183. Springer, 1991.

[59℄ W. C. Rounds. Complexity of reognition in intermediate-level languages. In Pro.

of the 14th Annual IEEE Symposium on Swithing and Automata Theory, pages

145{158, 1973.

[60℄ G. Rozenberg and A. Salomaa. The Mathematial Theory of L Systems. Aademi

Press, New York, 1980.

[61℄ W. Ruzzo. Tree-size bounded alternation. J. Comp. System Si., 21:218{235, 1980.

[62℄ W. Ruzzo. On uniform iruit omplexity. J. Comp. System Si., 22:365{338,

1981.

[63℄ W. Ruzzo, J. Simon, and M. Tompa. Spae { bounded hierarhies and probabilisti

omputations. J. Comp. System Si., 28:216{230, 1984.

[64℄ W. Rytter. Parallel time O(log n) reognition of unambiguous ontext-free lan-

guages. Inform. and Control, 73:75{86, 1987.

[65℄ E. Shamir and C. Beeri. Cheking staks and ontext-free programmed grammars

aept p-omplete languages. In Pro. of 2nd ICALP, number 14 in LNCS, pages

277{283. Springer, 1974.

[66℄ L. Stokmeyer and C. Vishkin. Simulation of random aess mahines by iruits.

SIAM J. Comp., 13:409{422, 1984.

[67℄ I. Sudborough. A note on tape-bounded omplexity lasses and linear ontext-free

languages. J. Asso. Comp. Mah., 22:499{500, 1975.

25

[68℄ I. Sudborough. On tape-bounded omplexity lasses and multi-head �nite au-

tomata. J. Comp. System Si., 10:62{76, 1975.

[69℄ I. Sudborough. The omplexity of the membership problem for some extensions of

ontext-free languages. Internat. J. Comput. Math. SECT A, 6:191{215, 1977.

[70℄ I. Sudborough. On the tape omplexity of deterministi ontext-free languages. J.

Asso. Comp. Mah., 25:405{414, 1978.

[71℄ J. van Leeuwen. The membership question for ETOL languages is polynomially

omplete. Information Proessing Letters, 3:138{143, 1975.

[72℄ H. Venkateswaran. Properties that haraterize LOGCFL. In Pro. of the 19th

Annual ACM Symp. on Theory of Computing, pages 141{150, 1987.

[73℄ T. Verbeek. Time-spae trade-o�s for general reursion. In Pro. of 22th Annual

IEEE Symposium on Foundations of Computer Siene, pages 228{234, 1981.

[74℄ D. Younger. Reognition and parsing of ontext-free languages in time n

3

. Inform.

and Control, 10:189{208, 1967.

26

