
Are there formal languages complete for

SymSPACE(logn)?

Klaus-J�orn Lange

Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen

Sand 13, D72076 T�ubingen

Abstract. This article discusses the existence of SymSPACE(log n){

complete formal languages. It is shown that a recent approach of Al-

varez and Greenlaw to de�ne symmetric versions of one-way devices

doesn't lead to SymSPACE(log n){complete problems when applied to

linear context-free or to one-counter languages.

1 Introduction

Investigating the fundamental relation of determinism and nondeterminism the

intermediate concept of symmetry has been introduced by Lewis and Papadim-

itriou [8]. While nondeterminism and symmetry are easily seen to be equiva-

lent for time bounded classes, the case of space bounded computations seems

to be more di�cult. It is not known whether the inclusion SymSPACE(log n) �

NSPACE(logn) is strict or not. There are results indicating that these two classes

should be di�erent. Several interesting problems are complete for symmetric

space, the most important example being UGAP , the connectivity problem for

undirected graphs [2,8].

There are many close connections between formal languages (de�ned by one-

way devices) and complexity classes. But these in most cases pertain to nondeter-

ministic and to deterministic classes. Unfortunately, it seems hard to relate the

concept of symmetry, which is apparently based on two-way devices, with formal

languages, which are built on models with a one-way input. In a recent report,

Alvarez and Greenlaw introduced symmetry for one-way �nite automata [2]. As

a �rst result of this paper, the complexity of this model is determined. Second,

their concept is extended to two families of formal languages related to the class

NSPACE(logn). It turns out that in neither of the two cases we get a charac-

terization of SymSPACE(log n), but stay at NSPACE(logn) or come down to

NC

1

.

2 Preliminaries

For notions of formal languages or complexity theory the reader is referred to

standard text books. For the circuit class NC

1

and its relationship to the regular

languages we refer to the work of Barrington [4].

2.1 Formal Languages and Complexities

There are characterizations for relevant complexity classes in terms of families of

formal languages in the way that a family of formal languages A is contained in a

complexity class B and that A contains a B{complete language. For example, the

family of regular languagesREG corresponds to the class NC

1

[4], both the linear

context-free languages LIN and the one-counter languages characterize the class

NSPACE(logn) [6,13,14], the context-free languages CFL are related to the class

NAuxPDA-TISP(pol; logn) [15], and the indexed languages are representative

fot the class NP [12]. Via deterministic one-way automata or grammars restricted

by LL(k)- or LR(k){conditions these relations carry over to the corresponding

deterministic classes. But nothing like that is known for symmetry.

3 Symmetry

The intuition behind the idea of symmetry is to allow to go computational steps

backwards. Symmetry is a restricted type of nondeterminism and is able to simu-

late determinism because of the tree-like structure of deterministic con�guration

graphs. To de�ne this concept formally needs some care. Lewis and Papadim-

itriou used Turing machines which have something like working heads of width

two. We avoid to go into these details and refer the reader to the article of

Lewis and Papadimitriou [8]. We will use terms like symmetric time or sym-

metric space and notations like SymSPACE(logn) or SymTISP(f; g), the later

denoting the class of all languages recognized by symmetric machines which are

simultaneously time bounded by O(f) and space bounded by O(g). By Lewis

and Papdimitriou we know:

Theorem 1. Nondeterministic time coincides with symmetric time.

It is unknown whether the inclusion of symmetric space in nondeterministic

space is strict.

The reachability problem for undirected graphs is SymSPACE(logn){com-

plete [8]. A collection of further complete problems is contained in the com-

pendium of Alvarez and Greenlaw [2].

There are results indicating that in case of space bounded classes symmet-

ric computations are more restricted than nondeterministic ones. None of the

following inclusions of SymSPACE(logn) is known to hold for NSPACE(logn):

Theorem 2. a) SymSPACE(logn) �

L

SPACE(logn) [7]

b) SymSPACE(logn) � SC

2

[10]

c) SymSPACE(logn) � DSPACE(log

4=3

n) [3]

d) SymSPACE(logn) � CREW-TIME(logn log logn) [5]

Analyzing Savitch's algorithm, Lewis and Papadimitriou were able to show

the following relationship:

Theorem 3. NTISP(f; g) � SymTISP(f �g; g �logf)

In particular, NSPACE(logn) is contained in SymTISP

�

pol; log

2

n

�

, the sym-

metric analogue of SC

2

. It is interesting to compare this inclusion with Nisan's

result SymSPACE(logn) � SC

2

= DTISP

�

pol; log

2

n

�

.

Applying the ideas used in Theorem 3 to the algorithm of Lewis, Stearns,

and Hartmanis instead to that of Savitch, the equivalence of nondeterminism and

symmetry for polynomially time bounded auxiliary pushdown automata will be

shown in [1]:

Theorem 4. NAuxPDA{TISP(pol; logn) = SymAuxPDA{TISP(pol; log n)

This result is not restricted to logarithmic space and polynomial time bounds,

but holds in general if space bounds and time bounds are in an exponential

relation.

3.1 Formal Languages and Symmetry

We now want to consider the possibilities of characterizing symmetric complexity

classes in terms of formal languages. For time bounded classes there is no need

to do so because of Theorem 1. Neither, this is necessary for polynomially time

bounded auxiliary pushdown automata, i.e.: the class LOG(CFL) [15], because

of Theorem 4.

The class NC

1

is characterized by the regular languages [4]. Since determin-

istic and nondeterministic �nite automata are equivalent, there seems to be no

need to look for characterizations of symmetry. On the other hand, the relation

\determinism� symmetry� nondeterminism" is valid only in the two-way case.

and there was up to now no notion of a symmetric �nite automaton with one-way

input. A de�nition of this notion was given by Alvarez and Greenlaw [2]. They

introduced symmetric �nite automata by adding dual transitions, but without

reverting the direction of the reading head. That is, an NFA A = (Q;�; �; q

0

; Q

f

)

with � � Q � � � Q is symmetric i� with each (p; a; q) 2 � also (q; a; p) is an

element of �. Alvarez and Greenlaw were able to show that the emptiness for

symmetric �nite automata is indeed SymSPACE(logn){complete.

Observe that the languages accepted by symmetric �nite automata are a

proper subfamily of REG. In particular, no �nite regular language containing a

nonempty word can be symmetric. This indicates that this version is a strong

restriction not able to simulate determinism. Nevertheless, the membership-

problem of symmetric �nite automata keeps the complexity of the whole class

REG:

Theorem 5. There exists a symmetric �nite automaton which accepts a lan-

guage with an NC

1

{complete membership problem.

Proof: Consider the DFA A = (Q;�; �; id; fidg) where Q := � := S

5

, the group

of all permutations over �ve elements, id is the identity, and � is de�ned by

�(�; �) := � � �, i.e.: from permutation � reading permutation � we enter the

composition of � followed by �. Barrington showed that A accepts an NC

1

{

complete language [4]. A �rst idea now could be to augment A by the reversals

of all transitions. But the resulting symmetric automaton no longer represents

S

5

since it would be necessary to mirror a transition �(�; �) = � by �(�; �

�1

) = �

instead of �(�; �) = � in order to preserve the structure of the S

5

.

Instead we will use the following easy trick, which will be used several times

throughout the paper. The simple idea is to intertwine all the words of a language

with a new symbol a. We set B := (Q

0

:= Q

a

[Q;�

0

:= � [fag; �

0

; id; fidg),

where a is a new input symbol,Q

a

a copy of Q, and �

0

is de�ned by �

0

(�; a) := �

a

and �

0

(�

a

; �) := �(�; �) for � 2 Q and � 2 �. �

0

(�

a

; a) and �

0

(�; �) are unde�ned.

If we de�ne the monomorphism h : �

�

�! (� [fag)

�

by h(�) := a�, we have

L(B) = h(L(A)). Since h is one-to-one, L(B) is NC

1

{complete.

Now let C be the symmetric closure of A, i.e.: C = (Q

0

; �

0

; �; id; fidg), where

� is the de�ned by � := f(p; b; �(p; b))jp 2 Q

0

; b 2 �

0

g [f(�(p; b); b; p)jp 2 Q

0

; b 2

�

0

g. Clearly, every word accepted by C using a reversed transition of the type

(�(p; b); b; p) must contain a subword in �

2

[faag and thus L(C)\(a�)

�

= L(B).

Hence, L(C) is NC

1

{complete, as well. 2

After discussing the situation for the classes NP, LOG(CFL), and NC

1

, the

case of nondeterministic space remains to be treated. The class NSPACE(logn)

is characterized by two well-known subclasses of CFL: the counter languages

and the linear context-free languages. The latter coincide with the languages

accepted by pushdown automata which make only one turn. But we will consider

the representation by grammars since this will make our treatment easier. In the

following we extend the approach of Alvarez and Greenlaw to these two families

of formal languages.

We will have two possibilities to de�ne symmetry with respect to the access

of the pushdown store. In the crossed version we let the reversal of a transition

which pushes a symbol or increments a counter be one which pops this symbol

from the stack or decrements the counter. Since in the Alvarez and Greenlaw

approach this principle is not applied to the input head, we also consider the

straight version in which the reversal of a push (or increment) stays a push (or

increment) and the reversal of a pop (or decrement) is a pop (or decrement).

One-CounterLanguages We now consider nondeterministic counter automata

with emptiness test. These are also called iterated counter automata. In order

to investigate symmetric versions of these, we use them in the following normal

form.The set of transitions of a counter automatonA = (Q;�; �; q

0

; Q

f

) consists

in four sets of transitions � = (�

r

; �

i

; �

d

; �

e

). �

r

� Q���Q contains the reading

transitions which neither test nor change the counter. All other transitions do

not move the input head. �

i

� Q�Q contains the incrementing transitions which

cause the counter to be incremented by one. �

d

� Q�Q contains the decrement-

ing transitions which decrement the counter by one. The decrementing transi-

tions can only be executed if the counter is nonempty. �

e

� Q�Q contains the

emptiness tests. A transition (p; q) 2 �

e

can only be used if the counter is empty.

We don't need explicit tests for nonemptiness since these could be simulated by

a decrement followed by an increment.

As usual, a con�guration of a counter automaton is a triple (p; i; w) where p

is the actual state, i the current value of the counter, and w the remaining input

to be read.

The following de�nition of symmetry for counter automata is given in the

two versions described above: one changing the direction of the pushdown head

when reversing a transition and one keeping the direction of the pushdown head.

De�nition 6. a) A counter automatonA = (Q;�; (�

r

; �

i

; �

d

; �

e

); q

0

; Q

f

) is called

symmetric in the crossed version or crossed symmetric if we have

(p; a; q) 2 �

r

implies (q; a; p) 2 �

r

; (p; q) 2 �

i

implies (q; p) 2 �

d

;

(p; q) 2 �

d

implies (q; p) 2 �

i

; and (p; q) 2 �

e

implies (q; p) 2 �

e

:

b) A counter automaton A = (Q;�; (�

r

; �

i

; �

d

; �

e

); q

0

; Q

f

) is called symmetric

in the straight version or straight symmetric if we have

(p; a; q) 2 �

r

implies (q; a; p) 2 �

r

; (p; q) 2 �

i

implies (q; p) 2 �

i

;

(p; q) 2 �

d

implies (q; p) 2 �

d

; and (p; q) 2 �

e

implies (q; p) 2 �

e

:

We will now show that these two versions of symmetric counter automata be-

have di�erently w.r.t. complexity.While crossed symmetry staysNSPACE(logn){

complete, straight symmetry allows only for the acceptance of regular languages.

To show the hardness in the crossed case we �rst exhibit an example of a re-

stricted counter automaton accepting an NSPACE(logn){complete language.

Lemma 7. There is counter automaton A = (Q;�; (�

r

; �

i

; �

d

; �

e

); q

0

; Q

f

) ac-

cepting an NSPACE(logn){complete language ful�lling the following properties:

a) No valid computation of A contains two or more successive nonreading steps.

In particular, this means that a state reached by a nonreading transition can only

be left by reading transitions. b) For each nonreading transition (p; q) 2 �

i

[�

d

[�

e

there is no other transition in � leading to q.

Proof:We follow the usual construction [14]. The language accepted by A repre-

sents the reachability problem for topologically sorted, acyclic graphs where the

inner nodes have outdegree two. A graph will be accepted if there is a path from

node v

0

to v

n

where v

n

is the last node in the order. A will also accept inputs

not following this paradigm, but not well-presented graphs without that path.

An inner node v

i

with its two successors v

j

and v

k

will be represented by a word

b

i

cb

j

cb

k

d. The graph is given by the sorted sequence of these words followed by

the su�x b

n

e. For lack of space we give no proof but instead give the exact con-

struction of A, only. Q := fq

0

; q

1

; � � � ; q

12

g, � := fb; c; d; eg, Q

f

:= fq

12

g, �

r

:=

f(q

0

; c; q

1

); (q

0

; c; q

4

);(q

0

; e; q

12

); (q

1

; c; q

3

); (q

2

; b; q

1

); (q

3

; b; q

3

);(q

3

; d; q

7

); (q

4

; b; q

4

);

(q

4

; c; q

5

); (q

5

; d; q

7

);(q

6

; b; q

5

); (q

7

; b; q

8

); (q

8

; b; q

8

); (q

8

; c; q

8

)(q

8

; d; q

7

); (q

9

; b; q

10

);

(q

11

; b; q

10

)g; �

i

:= f(q

1

; q

2

); (q

5

; q

6

)g; �

d

:= f(q

7

; q

9

); (q

10

; q

11

)g; �

e

:= f(q

10

; q

0

)g.

2

Theorem 8. There is a counter automaton which is symmetric in the crossed

version recognizing an NSPACE(logn){complete language.

Proof: Let A = (Q;�; (�

r

; �

i

; �

d

; �

e

); q

0

; Q

f

) be the counter automaton of the

previous lemma.We will now apply the trick used in Theorem 5 on A, intertwin-

ing L(A) with a new terminal symbol a. Set B := (Q

0

:= Q

a

[Q;�

0

:= � [fag;

�

0

:= (�

0

r

; �

i

; �

d

; �

e

); q

0

; Q

f

) where Q

a

is a copy of Q and �

0

r

:= f(p; a; p

a

)jp 2 Qg[

f(p

a

; b; q) j (p; b; q) 2 �

r

g. Using again the monomorphism h : �

�

�! �

0�

de-

�ned by h(b) := ab, we have L(B) = h(L(A)). Since h is one-to-one, L(B) is

NSPACE(logn)-complete. In addition, B still ful�lls the properties of Lemma 7.

We now consider the crossed symmetric closure of B: set C := (Q

0

; �

0

; �̂ :=

(�̂

r

; �̂

i

; �̂

d

; �̂

e

); q

0

; Q

f

) where �̂

r

:= �

0

r

[f(q; b; p) j (p; b; q) 2 �

0

r

g, �̂

i

:= �

i

[�

�1

d

,

�̂

d

:= �

d

[�

�1

i

, and �̂

e

:= �

e

[�

�1

e

. Clearly we have L(B) � L(C). Now consider

a computation R of C accepting some word v in (a�)

�

. Obviously, as in Theo-

rem 5, R cannot use any reversal of a reading transition since only the reading

transitions switch between the states of Q and of Q

a

. Otherwise, the input has

to contain a subword in �

2

[faag. But if R contains a reversal (q; p) of a non-

reading transition (p; q) we know by the construction that q has been reached

by (p; q) or by the inverse of a reading transition. Hence, the only way R could

have reached q was using (p; q). But by construction of crossed symmetry, (p; q)

and (q; p) cancel each other and can be removed from R resulting in a valid com-

putation accepting v. The last possibility to consider is that C leaves the initial

state by the inverse of a nonreading transition. But a simple case analysis shows

that this either will end in a cancellation as above or will lead to the acceptance

of an element not in (a�)

�

. In total, we get L(C) \ (a�)

�

= L(B) which gives

us the NSPACE(logn){completeness of L(C). 2

While crossed symmetry of counter automata leads to the same complexity

of the word problem as unrestricted nondeterminism, straight symmetry is a

strong restriction and diminishes the complexity from NSPACE(logn) down to

NC

1

since now only regular languages can be accepted.

Theorem 9. Languages accepted by counter automata which are symmetric in

the straight version are regular and hence in NC

1

.

Proof: Let A = (Q;�; (�

r

; �

i

; �

d

; �

e

); q

o

; Q

f

) be symmetric in the straight ver-

sion. We now construct a nondeterministic (not symmetric) �nite automaton

A

0

= (Q

0

; �; �

0

; q

0

0

; Q

0

f

) which accepts L(A). The idea is to use the fact that

in a straight symmetric automaton every increment or decrement (p; q) can be

repeated using the reversed transition to (p; q)(q; p)(p; q) and so on. Instead of

increasing or decreasing by one we can now add or subtract an arbitrary odd

number. The state set of A

0

is Q

0

:= Q � f0; 1g � fi; d; eg. The second compo-

nent of a state hp; x; yi will represent the value of the counter modulo 2. The

third component will mark the type of the last preceding nonreading transition.

q

0

0

:= hq

0

; 0; ei, Q

0

f

:= Q

f

� f0; 1g � fi; d; eg, and �

0

is set to be the following

union:

f(hp; x; yi; a; hq; x; yi) j (p; a; q) 2 �

r

; x 2 f0; 1g; y 2 fi; d; egg[

f(hp; x; yi; hq; 1� x; ii) j (p; q) 2 �

i

; x 2 f0; 1g; y 2 fi; d; egg[

f(hp; x; yi; hq; 1� x; di) j (p; q) 2 �

d

; x 2 f0; 1g; y 2 fi; dgg[

f(hp; 0; yi; hq; 0; ei) j (p; q) 2 �

e

; y 2 fd; egg:

The construction assures that a decrement cannot be applied when the last

preceding nonreading transition was a successful test for emptiness. Further on,

a test cannot be successfully passed if the last preceding nonreading transition

was an increment or if the counter contains an odd value.

Clearly we have L(A) � L(A

0

) since every accepting computation of A can

be mimicked in A

0

by forgetting the counter. To get the other inclusion it is

su�cient to show the following: if there is a path of A

0

leading from a state

hp; 0; ei to a state hq; x; yi while reading the input word v 2 �

�

then there is

a valid computation (p

0

; i

0

; w

0

) ` (p

1

; i

1

; w

1

) � � � ` (p

n

; i

n

; w

n

) of A such that

(p

0

; i

0

; w

0

) = (p; 0; v), p

n

= q, w

n

is the empty word, and x = i

n

modulo 2. The

proof is done by induction over k, the length of the path of A

0

.

The statement obviously holds for k = 1. Now let there be a path in A

0

of length k + 1 leading from hp; 0; ei to hq; x; yi reading the word v. Further

on, let hp

0

; x

0

; y

0

i be the state in this path reached after k steps. There is a

decomposition v = v

0

a where v

0

is read during the �rst k steps, and a is the

empty word or an element of � depending of the type of the transition of the

last step. By induction we know that there is a valid computation of A leading

from con�guration (p; 0; v) to con�guration (p

0

; i; a) for some i reading the word

v

0

. If the last transition of A

0

mimicks an element of �

r

or of �

i

then obviously the

computation of A reaching (p

0

; i; a) can be extended as claimed in the statement.

This is also true if we simulate an element of �

d

and i > 0. If i = 0, i.e.:

the counter is empty, then by construction we know that the last state in this

computation with a third component unequal d must have a third component i,

but not e, since there is no way in A

0

from a third component e directly to a d.

There is always an i in between. But by replacing in the existing computation of

A this increment step S by the sequence S followed by the reversal of S followed

by S we can increase the value of the counter by two compared to the original

computation. Repeating this process we can change the value of the counter by

an arbitrary even number so that we can �nally extend the modi�ed computation

by the decrement. Further on, there is no test for emptiness after S so we obtain

a valid computation of A.

The last case to consider is that A

0

mimicks an element T of �

e

. In this case

we know x = x

0

= 0 and hence i is even. If i = 0 we consistently can extend the

computation of A by T . Let's assume i > 0. By construction we then know that

y

0

is either d or e. But if it were e the last nonreading transition would have

been a successfully passed test for emptiness which contradicts i > 0. Hence

y

0

= d and the last nonreading transition was a decrement. Using the method

described above we can decrease the value of the counter by an arbitrary even

number which �nally leads us to an empty counter where we successfully can

apply T . Since there is no decrement after T , the modi�ed computation is valid.

2

Linear Languages We now consider linear grammars. We will always assume

them to be in normal form, that is a production is of the form A! a;A! aB,

or A! Ba. The two versions of symmetry now look as follows:

De�nition 10. a) A linear grammar G = (V;�; P; S) is called symmetric in

the crossed version or crossed symmetric if we have

(A! aB) 2 P implies (B ! Aa) 2 P and

(A! Ba) 2 P implies (B ! aA) 2 P:

b) A linear grammarG = (V;�; P; S) is called symmetric in the straight version

or straight symmetric if we have

(A! aB) 2 P implies (B ! aA) 2 P and

(A! Ba) 2 P implies (B ! Aa) 2 P:

The word problem for linear context free languages is NSPACE(logn){com-

plete ([6,13]). This complexity is not hidden in the knowledge of the place of the

terminating rule:

Lemma 11. There is a linear grammar G = (V;�; P; S) generating a language

complete for NSPACE(logn) such that there is a terminal symbol $ 2 � which is

the only used in terminating rules and which does not occur in nonterminating

rules, i.e.: each rule in P is of the form A! $; A! aB, or A! Ba for a 6= $.

Theorem 12. There is a crossed symmetric linear grammar generating a lan-

guage which is NSPACE(logn){complete.

Proof: We start with a grammar G = (V;�; P; S) from Lemma 11. Now set

�

0

:= �

l

[�

r

[f$g where �

l

:= fb

l

j b 2 �; b 6= $g and �

r

:= fb

r

j b 2

�; b 6= $g. Construct G

0

:= (V;�

0

; P

0

; S) by P

0

:= fA! b

l

B j (A! bB) 2 Pg[

fA! Bb

r

j (A ! Bb) 2 Pg [fA! $ j (A! $) 2 Pg. Then L(G

0

) � �

�

l

$�

�

r

is

obtained by marking all terminal symbols left of $ with the subscript l and those

to the right of $ with the subscript r. Obviously, L(G

0

) is still NSPACE(logn)-

complete.

Now let's look at the crossed symmetric closure ofG

0

. SetG

00

:= (V;�

0

; P

00

; S)

where P

00

:= P

0

[fB ! bA j (A! Bb) 2 Pg [fB ! Ab j (A! bB) 2 Pg. It is

easy to see that the application of a reversed production leads to a word outside

of �

�

l

$�

�

r

. Hence L(G

00

) \ �

�

l

$�

�

r

= L(G

0

) which gives us the NSPACE(logn){

completeness of L(G

00

). 2

Finally, we show that straight symmetric linear grammars can have member-

ship problems, which are NSPACE(logn){complete. The main idea is again the

simple trick used in Theorem 5.

Theorem 13. There is a straight symmetric linear grammar generating a lan-

guage which is NSPACE(logn){complete.

Proof: Let L � �

�

be a linear NSPACE(logn)-complete language as stated in

Lemma 11. Let L be generated by the linear grammar G = (V;�; P; S). Let

a be a new terminal symbol not in � and set �

0

:= � [fag. Consider the

monomorphism h : �

�

�! �

0�

de�ned by h(b) := ab. Then h(L) � (a�)

�

is

both linear context-free and NSPACE(logn){complete. h(L(G)) is generated by

the grammar G

0

= (V

0

; �

0

; P

0

; S) where V

0

:= V [V

a

[(� � V)[fXg. Here V

a

is a copy of V , ��V is the set of new nonterminals fhb; Bi j b 2 �;B 2 V g, and

X is a single new nonterminal. Further on, P

0

is the following set of productions:

fA ! Xb j (A ! b) 2 Pg [fX ! ag[fA ! B

a

b j (A ! Bb) 2 Pg [fB

a

!

Ba jB 2 V g[fA! ahb; Bi j (A! bB) 2 Pg [fhb; Bi ! bB j b 2 �;B 2 V g.

CLAIM: Let A

�

=)

G

0

�B� be a derivation in G

0

for some A 2 V . Then the

following implications are induced by the structure of G

0

and can inductively be

shown without di�culty:

{ If B 2 V then �; � 2 (a�)

�

,

{ If B = X or B 2 V

a

then � 2 (a�)

�

and � 2 �(a�)

�

, and

{ If B 2 (� � V) then � 2 (a�)

�

a and � 2 (a�)

�

.

Now consider the straight symmetric closure of G

0

, i.e.: G

00

:= (V

0

; �

0

; P

00

; S)

where P

00

:= P

0

[fhb; Bi ! aA j (A! bB) 2 Pg[fB! bhb; Bi jB 2 V; b 2 �g[

fB

a

! Ab j (A ! Bb) 2 Pg [fB ! B

a

a jB 2 V g[fX ! Ab j (A! B) 2 Pg.

By construction, we have L(G

0

) � L(G

00

).

Finally, we now show L(G

00

)\ (a�)

�

= L(G

0

) which implies that the straight

symmetric linear grammar G

00

generates an NSPACE(logn)-complete language.

Let S = �

0

A

0

�

0

1

=) �

1

A

1

�

1

1

=) � � ��

n

A

n

�

n

1

=) w be a derivation in G

00

of a

word w 2 (a�)

�

. Here A

i

2 V

0

and �

i

; �

i

2 �

0�

. Let j be the minimal number

such that in the derivation step from �

j

A

j

�

j

1

=) �

j+1

A

j+1

�

j+1

a reversed

production, i.e.: a production from P

00

nP

0

, has been used. We distinguish three

cases.

Case 1: A

j

2 V . By the claim we then have �

j

; �

j

2 (a�)

�

. But the right hand

sides of the reversed rules for elements of V either end with an a or begin

with an element of � which leads to a contradiction to w being an element

of (a�)

�

.

Case 2: A

j

2 V

a

or A

j

= X. By the claim we then have �

j

2 �(a�)

�

. But the

right hand sides of the reversed productions for elements of V

a

[fXg always

end with a symbol from �. Again, this contradicts the fact that w 2 (a�)

�

.

Case 3: A

j

2 (� � V). By the claim we have �

j

2 (a�)

�

a. But the right hand

sides of the reversed productions for elements of � � V always begin with

the symbol a, in contradiction to w 2 (a�)

�

.

Thus in the derivation of w in G

00

no reversed production can be used which

implies w 2 L(G

0

) and thus L(G

00

) \ (a�)

�

= L(G

0

). 2

4 Discussion

Despite the many recent results concerning symmetric space and the many re-

sulting relations to other complexity classes, it seems to be very di�cult to

get characterizations of classes like SymSPACE(logn) in terms of families of

formal languages. The approach of Alvarez and Greenlaw, applied here to two

NSPACE(logn){complete families, either leads to no restriction in complexity or

leads to a collapse down to the regular languages and the class NC

1

. One reason

for the latter result could be the strong normal form we used. Without the total

separation of reading from nonreading steps the proof of Theorem 9 wouldn't

work. But considering the other results obtained here, this should again lead

to NSPACE(logn){complete problems and not to SymSPACE(logn)-complete

ones.

Acknowledgement

I wish to thank an anonymous referee for his careful reading of the paper.

References

1. E. Allender, K.{J. Lange. Symmetry coincides with nondeterminism for time

bounded auxiliary pushdown automata. in preparation, 1997.

2. C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric

logarithmic space. Report TR96-039, ECCC, 6 1996.

3. R. Armoni, A. Ta-shma, A. Wigderson, and S. Zhou. SL � L

4=3

. submitted, 1996.

4. D.A. Barrington. Bounded-width polynomial-size branching programs can recog-

nize exactly those languages in NC

1

. J. Comp. System Sci., 38:150{164, 1989.

5. Ka Wong Chong and Tak Wah Lam. Finding connected components in

O(log n log log n) time on the EREW PRAM. In Proceedings of the Fourth An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 11{20, 1993.

6. P. Flajolet and J. Steyaert. Complexity of classes of languages and operators. Rap.

de Recherche 92, IRIA Laboria, Nov. 1974.

7. M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE

Structure in Complexity Theory Conference, pages 102{111, 1993.

8. P. Lewis and C.H. Papadimitriou. Symmetric space-bounded computation. Theo-

ret. Comput. Sci., 19:161{187, 1982.

9. P. Lewis, R. Stearns, and J. Hartmanis. Memory bounds for recognition of context-

free and context-sensitive languages. In Proc. 6th Annual IEEE Symp. on Switching

Circuit Theory and Logical Design, pages 191{209, 1965.

10. N. Nisan. RL � SC. In Proc. of the 24th Annual ACM Symposium on Theory of

Computing, pages 619{623, 1992.

11. W. Ruzzo. Tree-size bounded alternation. J. Comp. System Sci., 21:218{235, 1980.

12. E. Shamir and C. Beeri. Checking stacks and context-free programmed grammars

accept p-complete languages. In Proc. of 2nd ICALP, number 14 in LNCS, pages

277{283. Springer, 1974.

13. I. Sudborough. A note on tape-bounded complexity classes and linear context-free

languages. J. Assoc. Comp. Mach., 22:499{500, 1975.

14. I. Sudborough. On tape-bounded complexity classes and multi-head �nite au-

tomata. J. Comp. System Sci., 10:62{76, 1975.

15. I. Sudborough. On the tape complexity of deterministic context-free languages. J.

Assoc. Comp. Mach., 25:405{414, 1978.

