Quantifying over tuples with Algebra

The Multidimensional Block Product

Klaus-Jörn Lange

September 2015

Contents

- Logic \mapsto Algebra - The Block Product

Contents

- Logic \mapsto Algebra - The Block Product Lite

Contents

- Logic \mapsto Algebra - The Block Product Lite
- The Counting Case - Sums

The Block Product lite for symmetric quantifiers, only

Contents

- Logic \mapsto Algebra - The Block Product Lite
- The Counting Case - Sums

The Block Product lite for symmetric quantifiers, only

- The General Case - Sequences

3 Equivalent Views

$$
L \subseteq \Sigma^{*}
$$

Existence of constant depth poly-sized circuit family accepting L

\Leftrightarrow

Existance of first-order formula defining L

3 Equivalent Views

$$
L \subseteq \Sigma^{*}
$$

Existence of constant depth poly-sized circuit family accepting L

$$
\Leftrightarrow
$$

Existance of first-order formula defining L
\Leftrightarrow
Existence of morphism into a blockproduct recognizing L

$$
\phi=Q_{1 x_{1}} Q_{2 x_{2}} \cdots Q_{d x_{d}} \psi(\vec{x})
$$

is transformed into

$$
M_{\phi}=M_{Q_{1}} \square M_{Q_{2}} \cdots \square M_{Q_{d}} \square M_{\psi}
$$

and $h_{\phi}: \Sigma^{*} \longrightarrow M_{\phi}$ such that

$$
w \models \phi \Leftrightarrow h_{\phi}(w) \in M_{\phi}^{+} .
$$

$$
\phi=Q_{1 x_{1}} Q_{2 x_{2}} \cdots Q_{d x_{d}} \psi(\vec{x})
$$

is transformed into

$$
M_{\phi}=M_{Q_{1}} \square M_{Q_{2}} \cdots \square M_{Q_{d}} \square M_{\psi}
$$

and $h_{\phi}: \Sigma^{*} \longrightarrow M_{\phi}$ such that

$$
w \models \phi \Leftrightarrow h_{\phi}(w) \in M_{\phi}^{+} .
$$

But this works for unary quantifiers, only!

How to express algebraically $Q_{x_{1}, x_{2}, \cdots, x_{d}} \psi\left(x_{1}, \cdots, x_{d}\right)$?

How to express algebraically $Q_{x_{1}, x_{2}, \cdots, x_{d}} \psi\left(x_{1}, \cdots, x_{d}\right)$?

Need to provide sums of the form

$$
r_{x y} r r+r r_{x y} r+r r r_{x y}+r_{x} r_{y} r+r_{x} r r_{y}+r_{y} r_{x} r+r_{y} r r_{x}+r r_{x} r_{y}+r r_{y} r_{x}
$$

How to express algebraically $Q_{x_{1}, x_{2}, \cdots, x_{d}} \psi\left(x_{1}, \cdots, x_{d}\right)$?

Need to provide sums of the form
$r_{x y} r r+r r_{x y} r+r r r_{x y}+r_{x} r_{y} r+r_{x} r r_{y}+r_{y} r_{x} r+r_{y} r r_{x}+r r_{x} r_{y}+r r_{y} r_{x}$
or sequences/matrices of the form

$$
\begin{array}{lll}
r_{x y} r r & r_{x} r_{y} r & r_{x} r r_{y} \\
r_{y} r_{x} r & r r_{x y} r & r r_{x} r_{y} \\
r_{y} r r_{x} & r r_{y} r_{x} & r r r_{x y}
\end{array}
$$

Algebraic Simulation of Logic

Q a first order quantifier, w a word of length $n=|w|$:

Algebraic Simulation of Logic

Q a first order quantifier, w a word of length $n=|w|$:
When is w a model of $Q_{x} \psi(x)$?

$$
w \models Q x \psi(x) \Leftrightarrow
$$

Algebraic Simulation of Logic

Q a first order quantifier, w a word of length $n=|w|$:
When is w a model of $Q_{X} \psi(x)$?

$$
w \models Q x \psi(x) \Leftrightarrow
$$

First, x is attached to all possible positions

$$
\left.\begin{array}{l}
w_{x=1} \models \psi ?=b_{1} \\
w_{x=2} \models \psi ?=b_{2} \\
\vdots \\
w_{x=i} \models \psi ?=b_{i} \\
\vdots \\
w_{x=n} \models \psi ?=b_{n}
\end{array}\right\}
$$

Algebraic Simulation of Logic

Q a first order quantifier, w a word of length $n=|w|$:
When is w a model of $Q_{X} \psi(x)$?

$$
w \models Q x \psi(x) \Leftrightarrow
$$

First, x is attached to all possible positions

$$
\left.\begin{array}{l}
w_{x=1} \models \psi ?=b_{1} \\
w_{x=2} \models \psi ?=b_{2} \\
\vdots \\
w_{x=i} \models \psi ?=b_{i} \\
\vdots \\
w_{x=n} \models \psi ?=b_{n}
\end{array}\right\} \rightarrow Q \quad \begin{aligned}
& \text { Then the resulting values are } \\
& \text { evaluated by } Q \\
& \\
& \\
& Q \text {-Eval }{ }_{1 \leq i \leq n} b_{i}
\end{aligned}
$$

How to express this in Algebra?

How to express this in Algebra?

Easiest part: express Q by a monoid.

Symmetric Quantifiers

Quantifier

$b_{+} \quad b_{-} \quad$ Accepting
Rejecting

Symmetric Quantifiers

Quantifier
$b_{+} \quad b_{-} \quad$ Accepting
Rejecting

$$
\begin{array}{llll}
\exists & +1 & 0 & >0
\end{array}
$$

Symmetric Quantifiers

Quantifier

$b_{+} \quad b_{-} \quad$ Accepting
Rejecting

$$
\begin{array}{lcccc}
\exists & +1 & 0 & >0 & =0 \\
\forall & 0 & +1 & =0 & >0
\end{array}
$$

Symmetric Quantifiers

Quantifier $\quad b_{+} \quad b_{-} \quad$ Accepting \quad Rejecting

$$
\begin{array}{ccccc}
\exists & +1 & 0 & >0 & =0 \\
\forall & 0 & +1 & =0 & >0 \\
\exists^{\equiv 0(q)} & 1 & 0 & q \cdot \mathcal{N} & q \cdot \mathcal{N}+\{1,2, \cdots q-1\}
\end{array}
$$

Symmetric Quantifiers

Quantifier

$b_{+} \quad b_{-} \quad$ Accepting
Rejecting

$$
\begin{array}{ccccc}
\exists & +1 & 0 & >0 & =0 \\
\forall & 0 & +1 & =0 & >0 \\
\exists^{\equiv 0(q)} & 1 & 0 & q \cdot \mathcal{N} & q \cdot \mathcal{N}+\{1,2, \cdots q-1\} \\
\text { Maj } & +1 & -1 & >0 & \leq 0
\end{array}
$$

Symmetric Quantifiers

Quantifier
$b_{+} \quad b_{-} \quad$ Accepting
Rejecting

$$
\begin{array}{ccccc}
\exists & +1 & 0 & >0 & =0 \\
\forall & 0 & +1 & =0 & >0 \\
\exists^{\equiv 0(q)} & 1 & 0 & q \cdot \mathcal{N} & q \cdot \mathcal{N}+\{1,2, \cdots q-1\} \\
\text { Maj } & +1 & -1 & >0 & \leq 0
\end{array}
$$

Quantifier Q is expressed by
M_{Q} A monoid
M_{Q}^{+}An accepting subset
b_{+}An element of M_{Q} representing the value true
b_ An element of M_{Q} representing the value false

We are now left with the task to check

A sum in M_{Q}

$$
\left(\sum_{i=1}^{n}\left\{\begin{array}{ll}
b_{+}, & w_{x=i} \models \psi \\
b_{-}, & w_{x=i} \not \models \psi
\end{array}\right) \in M_{Q}^{+} ?\right.
$$

The Symmetric Case

The case M_{Q} commutative and cyclic

- Dimension 1: Single Variables
- Dimension > 1: Tuples of Variables

The Symmetric Case

The case M_{Q} commutative and cycic

- Dimension 1: Single Variables only the half story
- Dimension > 1: Tuples of Variables

The Symmetric Case

The case M_{Q} commutative and cycic

- Dimension 1: Single Variables only the half story
- Dimension > 1 : Tuples of Variables only $3 / 4$ of the story

The Symmetric Case

The case M_{Q} commutative and cycic

- Dimension 1: Single Variables only the half story
- Dimension >1 : Tuples of Variables only $3 / 4$ of the story

$$
\begin{gathered}
\text { Alias: } \\
M_{Q} \rightarrow B \text { the Base } \\
M_{\psi} \rightarrow R_{\text {the Rest }}
\end{gathered}
$$

ΣR : finite abstract sums (multisets) over R :

Addition in ΣR :

$$
\Sigma_{i \in I} r_{i}+\Sigma_{j \in J J} r_{j}^{\prime}:=\Sigma_{k \in K} r_{k}^{\prime \prime},
$$

where K is the disjoint union of I with J and $r_{k}^{\prime \prime}=r_{k}$ if $k \in I$ and $r_{k}^{\prime \prime}=r_{k}^{\prime}$ otherwise.

Pointwise Multiplication in ΣR :

$$
\sum_{i \in I} r_{i} \cdot \sum_{j \in J} r_{j}^{\prime}:=\sum_{i \in l, j \in J} r_{i} r_{j}^{\prime}
$$

Neutral element of ΣR is e_{R} regarded as abstract sum.
The empty sum 0 is a zero: $0 \cdot f=f \cdot 0=0$ for all $f \in \Sigma R$ and $0+f=f+0=f$.

Symmetric Construction

The d-dimensional case

$$
\mathcal{N} \| R=\left\{f: 2^{\mathcal{V}} \longrightarrow \Sigma R \mid f(\emptyset) \in R\right\}
$$

Symmetric Construction

The d-dimensional case

$$
\mathcal{N} \boxed{d} R=\left\{f: 2^{\mathcal{V}} \longrightarrow \Sigma R \mid f(\emptyset) \in R\right\}
$$

Multiplication on $\triangle{ }_{d} R: \quad f, f^{\prime} \in \square R$:

$$
f \odot f^{\prime}(A)=
$$

Symmetric Construction

The d-dimensional case

$$
\mathcal{N} \| R=\left\{f: 2^{\mathcal{V}} \longrightarrow \Sigma R \mid f(\emptyset) \in R\right\}
$$

Multiplication on $\triangle R$: $f, f^{\prime} \in \square R$:

$$
f \odot f^{\prime}(A)=\sum_{A=B \cup B^{\prime}, B \cap B^{\prime}=\emptyset}
$$

Symmetric Construction

The d-dimensional case

$$
\mathcal{N} \boxed{d} R=\left\{f: 2^{\mathcal{V}} \longrightarrow \Sigma R \mid f(\emptyset) \in R\right\}
$$

Multiplication on $\triangle{ }_{d} R: \quad f, f^{\prime} \in \square R$:

$$
f \odot f^{\prime}(A)=\sum_{A=B \cup B^{\prime}, B \cap B^{\prime}=\emptyset} f(B) \cdot f^{\prime}\left(B^{\prime}\right)
$$

Symmetric Construction

The d-dimensional case

$$
\mathcal{N} \triangle \mathbb{d} R=\left\{f: 2^{\mathcal{V}} \longrightarrow \Sigma R \mid f(\emptyset) \in R\right\}
$$

Multiplication on $\triangle{ }_{d} R: \quad f, f^{\prime} \in \square R$:

$$
f \odot f^{\prime}(A)=\sum_{A=B \cup B B^{\prime}, B \cap B^{\prime}=\emptyset} f(B) \cdot f^{\prime}\left(B^{\prime}\right)
$$

```
Observe f\odot f
```

Neutral element of ${ }_{d} R$ is f_{0} defined by $f_{0}(\emptyset):=e_{R}$ and $f_{0}(A):=0$ for $A \neq \emptyset$

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square R$ as $\left(r_{x}:=f(\{x\}), r:=f(\emptyset)\right)$

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square R$ as $\left(r_{x}:=f(\{x\}), r:=f(\emptyset)\right)$
Then $f \odot f=\left(r_{x} r+r r_{x}, r r\right)$ Our good old block product

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square R$ as $\left(r_{x}:=f(\{x\}), r:=f(\emptyset)\right)$
Then $f \odot f=\left(r_{x} r+r r_{x}, r r\right)$ Our good old block product
and $f \odot f \odot f=\left(r_{x} r r+r r_{x} r+r r r_{x}, r r r\right)$

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in \boxed{2} R$ as $\left(r_{x y}:=f(\{x, y\}), r_{x}:=f(\{x\}), r_{y}:=f(\{y\}), r:=f(\emptyset)\right)$

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in \boxed{2} R$ as $\left(r_{x y}:=f(\{x, y\}), r_{x}:=f(\{x\}), r_{y}:=f(\{y\}), r:=f(\emptyset)\right)$
Then
$f \odot f=\left(r_{x y} r+r r_{x y}+r_{x} r_{y}+r_{y} r_{x}, r_{x} r+r r_{x}, r_{y} r+r r_{y}, r r\right)^{\text {No longer our good old block product! }}$

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in \boxed{2} R$ as $\left(r_{x y}:=f(\{x, y\}), r_{x}:=f(\{x\}), r_{y}:=f(\{y\}), r:=f(\emptyset)\right)$
Then
$f \odot f=\left(r_{x y} r+r r_{x y}+r_{x} r_{y}+r_{y} r_{x}, r_{x} r+r r_{x}, r_{y} r+r r_{y}, r r\right)^{\text {No longer our good old block product! }}$
$f \odot f \odot f(\{x, y\})=r_{x y} r r+r r_{x y} r+r r r_{x y}+r_{x} r_{y} r+r_{x} r r_{y}+r_{y} r_{x} r+r_{y} r r_{x}+r r_{x} r_{y}+r r_{y} r_{x}$

Evaluation

From $f(\mathcal{V})=\sum_{i \in I} r_{i} \in \sum R$ and accepting subset $R^{+} \subset R$ build:

Evaluation

From $f(\mathcal{V})=\sum_{i \in I} r_{i} \in \sum R$ and accepting subset $R^{+} \subset R$ build:

$$
\sum_{i \in I} \begin{cases}b_{+}, & r_{i} \in R^{+} \\ b_{-}, & r_{i} \notin R^{+}\end{cases}
$$

Evaluation

From $f(\mathcal{V})=\sum_{i \in I} r_{i} \in \sum R$ and accepting subset $R^{+} \subset R$ build:

$$
\sum_{i \in I} \begin{cases}b_{+}, & r_{i} \in R^{+} \\ b_{-}, & r_{i} \notin R^{+}\end{cases}
$$

and then test:

$$
\left(\sum_{i \in I}\left\{\begin{array}{ll}
b_{+}, & r_{i} \in R^{+} \\
b_{-}, & r_{i} \notin R^{+}
\end{array}\right) \in B^{+} ?\right.
$$

Happy End

to cut a long story short
$w \models \phi=Q_{\vec{x}} \psi(\vec{x}) \quad \Leftrightarrow \quad h_{\phi}(w) \in M_{\phi}^{+}=\left(M_{Q \boxed{d}} M_{\psi}\right)^{+}$

Remarks

$\pi_{\emptyset}: \sqrt{v} R \longrightarrow R$ defined by $\pi_{\emptyset}(f):=f(\emptyset)$ is a morphism corresponding to π_{2} in the good old block product.

Remarks

$\pi_{\emptyset}: \boxed{v} R \longrightarrow R$ defined by $\pi_{\emptyset}(f):=f(\emptyset)$ is a morphism corresponding to π_{2} in the good old block product.
$\pi_{\mathcal{V}}:{ }_{V} R \longrightarrow B$ defined by $\pi_{\mathcal{V}}(f):=B \otimes f(\mathcal{V})$ is not a morphism and somehow corresponds to $\pi_{1}().(e, e)$ in the good old block product.

Remarks

$\pi_{\emptyset}: \boxed{v} R \longrightarrow R$ defined by $\pi_{\emptyset}(f):=f(\emptyset)$ is a morphism corresponding to π_{2} in the good old block product.
$\pi_{\mathcal{V}}:{ }_{V} R \longrightarrow B$ defined by $\pi_{\mathcal{V}}(f):=B \otimes f(\mathcal{V})$ is not a morphism and somehow corresponds to $\pi_{1}().(e, e)$ in the good old block product.

Nesting the v-operator needs (finite) formal sums of (finite) formal sums.

The General Case

Case: M_{Q} not even commutative

- Remarks
- Dimension > 1: Tuples of Variables

The General Case

Case: M_{Q} not even commutative

- Remarks
- Dimension > 1: Tuples of Variables

Alias:

$$
\begin{aligned}
M_{Q} & \rightarrow B_{\text {the Base }} \\
M_{\psi} & \rightarrow R_{\text {the Rest }}
\end{aligned}
$$

Remarks

Example: oracle quantifier Q^{L} for $L \subset\{0,1\}^{*}$
$B=\{0,1\}^{*}, B^{+}+L, b_{+}=1, b_{-}=0$.

By convention, quantifiers over tuples are evaluated in lexicographic order, i.e.:

$$
Q_{x_{1}, \cdots, x_{d}}^{L} \psi\left(x_{1}, \cdots, x_{d}\right) \text { is evaluated as } \prod_{x_{1}=1}^{n} \cdots \prod_{x_{d}=1}^{n} \psi(\vec{x})
$$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$

Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$
Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

$$
\left(f \odot f^{\prime}\right)_{A}\left(i_{x}\right)_{x \in A}:=
$$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$
Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

$$
\left(f \odot f^{\prime}\right)_{A}\left(i_{x}\right)_{x \in A}:=
$$

$$
1 \leq i_{x} \leq\left|f \odot f^{\prime}\right|:=|f|+\left|f^{\prime}\right|
$$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$
Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

$$
\left(f \odot f^{\prime}\right)_{A}\left(i_{x}\right)_{x \in A}:=
$$

where $B:=\left\{x \in A\left|i_{x} \leq|f|\right\}\right.$ and $B^{\prime}:=A \backslash B, 1 \leq i_{x} \leq\left|f \odot f^{\prime}\right|:=|f|+\left|f^{\prime}\right|$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$
Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

$$
\left(f \odot f^{\prime}\right)_{A}\left(i_{x}\right)_{x \in A}:=f_{B}\left(i_{x}\right)_{x \in B} f_{B^{\prime}}^{\prime}\left(i_{x}-|f|\right)_{x \in B^{\prime}}
$$

a multipication in R. Observe: $\left(f \odot f^{\prime}\right)_{\theta} \in R$
where $B:=\left\{x \in A\left|i_{x} \leq|f|\right\}\right.$ and $B^{\prime}:=A \backslash B, 1 \leq i_{x} \leq\left|f \odot f^{\prime}\right|:=|f|+\left|f^{\prime}\right|$

General Construction

The d-dimensional case:
Again $\mathcal{V}=\left\{x_{1}, x_{2}, \cdots, x_{d}\right\}$

$$
\Sigma^{*} d^{\prime} R=\left\{f=\left(f_{A}\right)_{A \subseteq \mathcal{V}} \mid n \geq 0, f_{A}:\{1,2, \cdots, n\}^{A} \longrightarrow R\right\}
$$

up to d-dimensional cubes in R where $d=|\mathcal{V}|$. Observe $f_{\emptyset} \in R$
We set $|f|:=n$
Multiplication \odot on $d^{\prime} R: \quad f, f^{\prime} \in d^{\prime} R$ and $A \subseteq \mathcal{V}:$

$$
\left(f \odot f^{\prime}\right)_{A}\left(i_{x}\right)_{x \in A}:=f_{B}\left(i_{x}\right)_{x \in B} f_{B^{\prime}}^{\prime}\left(i_{x}-|f|\right)_{x \in B^{\prime}}
$$

where $B:=\left\{x \in A\left|i_{x} \leq|f|\right\}\right.$ and $B^{\prime}:=A \backslash B, 1 \leq i_{x} \leq\left|f \odot f^{\prime}\right|:=|f|+\left|f^{\prime}\right|$
Neutral element of ${ }_{d}{ }^{\prime} R$ is ϵ which is the f with $|f|=0$ and $f_{\emptyset}=e_{R}$

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square^{\prime} R$ as $\left(r_{x}:=f_{\{x\}}, r:=f_{\emptyset}\right)$

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square^{\prime} R$ as $\left(r_{x}:=f_{\{x\}}, r:=f_{0}\right)$
Then $f \odot f=\left(\left(r_{x} r, r r_{x}\right), r r\right)$ Our good old block product

The Onedimensional Case

Assume $\mathcal{V}=\{x\}$
Write $f \in \square \square^{\prime} R$ as $\left(r_{x}:=f_{\{x\}}, r:=f_{0}\right)$
Then $f \odot f=\left(\left(r_{x} r, r r_{x}\right), r r\right)$ Our good old block product
And $f \odot f \odot f=\left(\left(r_{x} r r, r r_{x} r, r r r_{x}\right), r r r\right)$

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in 2^{\prime} R$ as $\left(r_{x y}:=f_{\{x, y\}}, r_{x}:=f_{\{x\}}, r_{y}:=f_{\{y\}}, r:=f_{\emptyset}\right)$

Then

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in 2^{\prime} R$ as $\left(r_{x y}:=f_{\{x, y\}}, r_{x}:=f_{\{x\}}, r_{y}:=f_{\{y\}}, r:=f_{ø}\right)$
Then $f \odot f=\left(\begin{array}{ll}r_{x y} r & r_{x} r_{y} \\ r_{y} r_{x} & r r_{x y}\end{array}, \begin{array}{l}r_{x} r \\ r r_{x}\end{array},\left(r_{y} r, r r_{y}\right), r r\right)$ No longer our good old block product!

The Twodimensional Case

Assume $\mathcal{V}=\{x, y\}$
Write $f \in \square^{\prime} R$ as $\left(r_{x y}:=f_{\{x, y\}}, r_{x}:=f_{\{x\}}, r_{y}:=f_{\{y\}}, r:=f_{\emptyset}\right)$
Then $f \odot f=\left(\begin{array}{ll}r_{x y} r & r_{x} r_{y} \\ r_{y} r_{x} & r r_{x y}\end{array}, \begin{array}{l}r_{x} r \\ r r_{x}\end{array},\left(r_{y} r, r r_{y}\right), r r\right)$ No longer our good old block product!

$((f \odot f) \odot f)_{\{x, y\}}=$| $r_{x y} r r$ | $r_{x} r_{y} r$ | $r_{x} r r_{y}$ |
| :--- | :--- | :--- |
| $\begin{array}{ll}r_{y} r_{x} r & r r_{x y} r\end{array}$ | $r r_{x} r_{y}$ | |
| $r_{y} r r_{x}$ | $r r_{y} r_{x}$ | $r r r_{x y}$ |$=$

$r_{x y} r r$	$r_{x} r_{y} r$	$r_{x} r r_{y}$
$r_{y} r_{x} r$	$r r_{x y} r$	$r r_{x} r_{y}$

$r_{y} r r_{x} \quad r r_{y} r_{x} \quad r r r_{x y}$

Happy End

to cut a long story short
$w \models \phi=Q_{\vec{x}} \psi(\vec{x}) \quad \Leftrightarrow \quad h_{\phi}(w) \in M_{\phi}^{+}=\left(M_{Q \boxed{d}} M_{\psi}\right)^{+}$

Discussion

- Construction works only for strong block product, not for weak one?

Discussion

- Construction works only for strong block product, not for weak one?
- Thanks for your patience!

