
A Ordinal Numbers

We give a short introduction to ordinal numbers. We largely follow the approach presented in [1].
Firstly, we have to define the notion of well-ordering.

Definition 28. A binary relation < of a set A is called a well-ordering if the following hold:

1. a ≮ a for all a ∈ A
2. a < b & b < c ⇒ a < c
3. a < b or a = b or b < a for all a, b ∈ A
4. Every nonempty subset of A has a least element.

Definition 29. A set A is transitive if every element of A is a also a subset of A.

Definition 30. A set α is called an ordinal number if α is transitive and 〈α,∈〉 is a well-ordering.

Example 2. Before we proceed we should observe some important ordinal numbers.

1. The empty set ∅ is an ordinal number. It is also denoted by 0.
2. The sets given by 1 := {0}, 2 := {0, 1}, 3 := {0, 1, 2},. . . are ordinal numbers.
3. If α is an ordinal number, then α+1 := α∪ {α} is also an ordinal number. α+1 is called the
successor ordinal of α. An ordinal that is not a successor is called a limit ordinal.

4. The Axiom of Infinity1 ensures the existence of the least inductive set ω given by the set⋂
{Y ; 0 ∈ Y & ∀x(x ∈ Y ⇒ x ∪ {x} ∈ Y )}. ω is an ordinal number and the elements of ω are
called natural numbers (i.e., ω is the set of natural numbers).

5. An ordinal α is a cardinal number if there is no β ∈ α such that there is a one-to-one mapping
of β onto α. All natural numbers are cardinal numbers and the set of natural numbers is a
cardinal number. In the context of cardinal numbers ω is usually denoted by ℵ0.

Let Y1, ..., Yn be sets and let φ(X,Y1, ..., Yn) be a set-theoretical property. The class of all sets X sat-
isfying the property φ(X,Y1, ..., Yn) is denoted by {X; φ(X,Y1, ..., Yn)} and depends on the param-
eters Yi. Two classes are equal iff they contain the same elements. If we assume that the axioms of
set theory are consistent, then there are classes, such as the class of all sets V and the class of all or-
dinals Ω, that are no sets. We call classes that are sets comprehension terms (i.e., sets that are given
by a set-theoretical property). For example, A∩B = {x; x ∈ A & x ∈ B} is a set for all sets A and
B. One can prove that the class {α; α ∈ Ω such that there is an one-to-one mapping of α into ω}
is a cardinal number. This class is usually denoted by ℵ1 and there is no cardinal κ such that
ℵ0 ∈ κ ∈ ℵ1. Before we proceed we will give some facts about the class Ω. Notice that it is
common to use < instead of ∈.

Lemma 10 (Properties of Ω). Notice that it is common to use < instead of ∈.

1. 〈Ω,<〉 satisfies statement 1., 2., and 3. of Definition 28.
2. For all ordinals α the equation α = {β; β < α} holds.
3. Every nonempty class C of ordinals has a least element α ∈ C. The equation

⋂
C = α holds.

4. If X is a set of ordinals, then
⋃
X is also an ordinal. Moreover,

⋃
X is the least upper bound

of X.
5. The successor α+ 1 of an ordinal α is the least ordinal of the class {β ∈ Ω; α < β}.

Now we are able to introduce two important methods used in this paper. On the one hand Trans-
finite Induction and on the other hand Transfinite Recursion.

Theorem 8 (Transfinite Induction). Let C be an arbitrary class of ordinals such that for all
ordinals α the following properties hold:

1. 0 ∈ C
2. α ∈ C ⇒ α+ 1 ∈ C
1 An axiom of Zermelo-Fraenkel.



3. 0 ∈ α limit ordinal & ∀β ∈ α : β ∈ C ⇒ α ∈ C

Then C is equal to the class of all ordinals Ω.

Theorem 9 (Transfinite Recursion). Let Y1, .., Yn be arbitrary but fixed sets. Moreover, let
t(X,Y1, ..., Yn) be a comprehension term for any set X. Then there is a unique class

2 F , such that
F is a function on Ω and Fα = t((Fβ)β∈α, Y1, ..., Yn) for every ordinal α.

Remark 6. The proof of the theorem provides a formula φ(X,Y1, ..., Yn) such that the class F
given by {X; φ(X,Y1, ..., Yn)} is a function on Ω and Fα = t((Fβ)β∈α, Y1, ..., Yn) for every ordinal
α. Then, using Transfinite Induction, one can prove that F is unique.

Example 3 (Addition). The function α + ∙ : Ω → Ω is defined to be the unique (class) function
satisfying the following equation for every β ∈ Ω:

α+ β =






α, if β = 0

(α+ γ) + 1, if β = γ + 1 & γ ∈ Ω
⋃
γ<β(α+ γ), if β limit ordinal > 0

Notice that the above case distinction can be described by a comprehension term of the form
t( (α+ ζ)ζ∈β , α).

Example 4 (Multiplication). The function α•∙ : Ω → Ω is defined to be the unique (class) function
satisfying the following equation for every β ∈ Ω:

α • β =






0, if β = 0

(α • γ) + α, if β = γ + 1 & γ ∈ Ω
⋃
γ<β(α • γ), if β limit ordinal > 0

B Omitted Proof

Lemma 5 Under the same conditions as in Theorem 3 for every formula φ ∈ Form and every
assignment h the following holds:

JφKI∞h = Tα ⇒ JφKIih = Tα for some i ∈ ℵ1

Proof. We prove this by induction on the structure of φ. We use IH(ψ) as an abbreviation of

JψKI∞h = Tα ⇒ JψKIih = Tα for some i ∈ ℵ1.

Case 1: φ is an atomic formula. Then, using Definition 15 and Definition 20, the statement of the
lemma is obviously true.
Case 2: φ = ψ1 ∨ ψ2 and both IH(ψ1) and IH(ψ2) holds. Let us assume that JF K

I∞
h = Tα

holds. Moreover, we assume, without loss of generality, that Jψ2K
I∞
h ≤ Jψ1K

I∞
h holds. This implies

Jψ1K
I∞
h = Tα and Jψ2K

I∞
h ≤ Tα. Then, using IH(ψ1), there is an i0 ∈ ℵ1 such that Jψ1K

Ii0
h = Tα. This

implies Jψ2K
Ii0
h ≤ Tα. (Since otherwise, using Lemma 4 and Theorem 1, we would get Tα < Jψ2K

I∞
h

and this contradicts the assumption.) Hence we get that JφK
Ii0
h = Tα holds.

Case 3: φ = ¬(ψ). Let us assume that JF KI∞h = Tα holds. This obviously implies JψK
I∞
h = Fα−1.

Hence, using Theorem 1, we get that JψKIh = Fα−1 and JφK
I
h = Tα hold.

Case 4: φ = ψ1 ∧ ψ2 and both IH(ψ1) and IH(ψ2) holds. Let us assume that JφK
I∞
h = Tα

holds. Moreover, we assume, without loss of generality, that Jψ1K
I∞
h ≤ Jψ2K

I∞
h holds. This implies

Jψ1K
I∞
h = Tα and Tα ≤ Jψ2K

I∞
h . Then, using IH(ψ1), there is an i0 ∈ ℵ1 such that Jψ1K

Ii0
h = Tα.

2 The class depends on the sets Y1, ..., Yn.



Firstly, we assume that Tα = Jψ2K
I∞
h holds. Hence, using IH(ψ2), we get that there is a j0 ∈ ℵ1

such that Tα = Jψ2K
Ij0
h . This implies, together with Lemma 4 and Theorem 1, that Jψ1K

Imax(i0,j0)
h =

Tα = Jψ1K
Imax(i0,j0)
h , and hence JφK

Imax(i0,j0)
h = Tα. Secondly, let us consider the case Tα < Jψ2K

I∞
h .

Then, using Lemma 4 and Theorem 1, we get that Tα < Jψ2K
Ii0
h . This implies that JφK

Ii0
h = Tα

holds.
Case 5: φ = ∀v(ψ) and IH(ψ). Let us assume that JφK

I∞
h = Tα. This obviously implies that

inf
{
Jψ1K

I∞
h[v 7→u]; u ∈ HU

}
= Tα. (15)

Hence there is a partition HU = HU1 ∪̇HU2 such that HU1 =
{
u ∈ HU ; Tα < JψKI∞

h[v 7→u]

}
and

HU2 =
{
u ∈ HU ; Tα = JψKI∞

h[v 7→u]

}
. Then, using Lemma 4 and Theorem 1, we get that

∀u ∈ HU1 : ∀i < ℵ1 : JψK
I∞
h[v 7→u] = JψKIi

h[v 7→u]. (16)

IH(ψ) implies that for all u ∈ HU2 there is an i ∈ ℵ1 such that Tα = JψKIi
h[v 7→u]. This justifies the

following definition:
ζ : HU2 → ℵ1 : u 7→ min{i ∈ ℵ1; JψK

Ii
h[v 7→u] = Tα}

Theorem 2 implies that the countable image ζ(HU2) cannot be cofinal in ℵ1. Hence, there is an
i0 ∈ ℵ1 such that for all u ∈ HU2 the property ζ(u) ≤ i0 holds. Using again Lemma 4 and Theorem
1 we get that

∀u ∈ HU2 : JψK
Ii0
h[v 7→u] = Tα = JψKI∞

h[v 7→u].

Hence, using (15) and (16), we get that

JφK
Ii0
h = inf{JψK

Ii0
h[v 7→u]; u ∈ HU} = inf{JψK

I∞
h[v 7→u]; u ∈ HU} = Tα.

Case 6: φ = ∃v(ψ) and IH(ψ) holds. Let us assume that JφK
I∞
h = Tα. This implies the following:

sup
{
JψKI∞

h[v 7→u]; u ∈ HU
}
= Tα (17)

Hence, using Lemma 1, we get that there is an u0 ∈ HU such that JψK
I∞
h[v 7→u0]

= Tα. IH(ψ) implies

that there is an i0 < ℵ1 such that JψK
Ii0
h[v 7→u0]

= Tα. Finally, using Lemma 4, Theorem 1, and (17),

we get that ∀u ∈ HU : JψK
Ii0
h[v 7→u] ≤ Tα = JψK

Ii0
h[v 7→u0]

, and thus JφK
Ii0
h = Tα holds. ut

B.1 Example

In this subsection we will consider a formula-based logic program PA from the area of arithmetic.
The underlaying language contains a constant symbol 0̇, a function symbol S of arity 1, a predicate
symbol add of arity 3, a predicate symbolmultiple of arity 2, a predicate symbol smaller of arity
2, a predicate symbol prime of arity 1, and a predicate symbol primesucc of arity 2. For each
natural number n we use ṅ as an abbreviation of Sn(0̇). Moreover, (φ⇒ ψ) is an abbreviation
of the formula (¬φ∨ ψ). The program PA is given by the following rules:

(R1) add(x0,0̇,x0)←
(R2) add(x0,S(x1),S(x2))← add(x0,x1,x2)
(R3) multiple(0̇,x0)←
(R4) multiple(x2,x0)← ∃x1(multiple(x1,x0)∧ add(x1,x0,x2))
(R5) smaller(x0,S(x0))←
(R6) smaller(x0,S(x1))← smaller(x0,x1)
(R7) prime(x0)← smaller(S(0̇),x0)∧
∧∀x1((smaller(S(0̇),x1)∧ smaller(x1,x0))⇒¬multiple(x0,x1))



(R8) primesucc(x1,x0)← smaller(x0,x1)∧ prime(x0)∧ prime(x1)∧
∧∀x2((smaller(x0,x2)∧ smaller(x2,x1))⇒¬prime(x2))

Remark 7. The predicates of the program can be understood as follows:

– add(x,y,z) “x+ y = z”
– multiple(x,y) “x is a multiple of y”
– smaller(x,y) “x < y”
– prime(x) “x is a prime number”
– primesucc(y,x) “y is the prime successor to the prime number x”

Proposition 7. The first approximant M0 of the program PA is as described in Figure 1.

F0 F1 F2

T0T1T2

n, k, c ∈ N & c 6= n+ k
add(ṅ,k̇,ċ);

n, c ∈ N & c /∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & m ≤ n
smaller(ṅ,ṁ);

prime(0̇), prime(1̇)

{n,m}∩{0, 1}6=∅ or m≤n
primesucc(ṁ,ṅ);

prime(ṅ); n ∈ N>1

n,m ∈ N>1 & n < n
primesucc(ṁ,ṅ);

n, k, c ∈ N & c = n+ k
add(ṅ,k̇,ċ);

n ∈ N & c ∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & n < m
smaller(ṅ,ṁ);

Fig. 1. The first approximant M0

Proof. As a first approximation we calculate the approximant M0 from the interpretation ∅ that
maps everything to the least value F0. By induction on the natural number m ∈ N it is easy to
prove that the following statements must hold true:

n ∈ N & 0 ≤ k < m ⇒ add(ṅ,k̇, ˙n + k) ∈ TmPA(∅)‖T0 (18)

(a, b, c) ∈ N3 & (m ≤ b or c 6= a+ b) ⇒ add(ȧ,ḃ,ċ) ∈ TmPA(∅)‖F0 (19)

n ∈ N & 0 ≤ k < m ⇒ multiple(k̇n,ṅ) ∈ TmPA(∅)‖T0 (20)

(b, a) ∈ N2 & b 6= ka (∀k : 0 ≤ k < m)⇒multiple(ḃ,ȧ) ∈ TmPA(∅)‖F0 (21)

n ∈ N & 0 < k ≤ m ⇒ smaller(ṅ, ˙n + k) ∈ TmPA(∅)‖T0 (22)

(a, b) ∈ N2 & b 6= a+ k (∀k : 0 < k ≤ m)⇒ smaller(ȧ,ḃ) ∈ TmPA(∅)‖F0 (23)



The above statements (18) and (19), together with Definition 20, imply that the following must
hold:

n, k ∈ N ⇒ add(ṅ,k̇, ˙n + k) ∈ TωPA,0(∅)‖T0 (24)

(a, b, c) ∈ N3 & c 6= a+ b ⇒ add(ȧ,ḃ,ċ) ∈ TωPA,0(∅)‖F0 (25)

The above statements (20) and (21), together with Definition 20, imply that the following must
hold:

n, k ∈ N ⇒ multiple(k̇n,ṅ) ∈ TωPA,0(∅)‖T0 (26)

(b, a) ∈ N2 & b 6∈ Na ⇒multiple(ḃ,ȧ) ∈ TωPA,0(∅)‖F0 (27)

The above statements (22) and (23), together with Definition 20, imply that the following must
hold:

n ∈ N & 0 < k ⇒ smaller(ṅ, ˙n + k) ∈ TωPA,0(∅)‖T0 (28)

(a, b) ∈ N2 & b ≤ a ⇒ smaller(ȧ,ḃ) ∈ TωPA,0(∅)‖F0 (29)

It is easy to prove that TωPA,0(∅) is a fixed point with respect to the ground atoms of the form
add( ∙ , ∙ , ∙ ), multiple( ∙ , ∙ ), and smaller( ∙ , ∙ ). Hence, using again Definition 20 and Definition
23, we get that the following hold, where n, k, l ∈ N:

M0(add(ṅ,k̇,l̇) ) =

{
T0, if n+ k = l

F0, otherwise
(30)

M0(multiple(ṅ,k̇) ) =

{
T0, if n ∈ Nk

F0, otherwise
(31)

M0( smaller(ṅ,k̇) ) =

{
T0, if n < k

F0, otherwise
(32)

The above statement (32) implies that

smaller(1̇,0̇), smaller(1̇,1̇) ∈ TαPA,0(∅)‖F0

for each ordinal α ∈ ℵ1. Hence, using rule (R7), we get that

prime(0̇), prime(1̇) ∈ TαPA,0(∅)‖F0

for every ordinal α ∈ ℵ1. This implies the following statement:

prime(0̇), prime(1̇) ∈M0‖F0 (33)

Let us assume that n is a natural number such that 1 < n. Definition 15 implies that for all
interpretations I the value

J∀x1((smaller(S(0̇),x1)∧ smaller(x1,ṅ))⇒¬multiple(ṅ,x1))K
I

is an element of [F1, T1]. Thus, using (R7), we get that (for all α < ℵ1)

prime(ṅ) /∈ TαPA,0(∅)‖T0.

Statement (22) implies that smaller(1̇,ṅ) ∈ Tn−1PA,0
(∅)‖T0 and hence we get that prime(ṅ) /∈

TnPA,0(∅)‖F0. This implies, together with Definition 20 and Definition 23, that

for all n ∈ N>1: prime(ṅ) /∈M0‖F0 & prime(ṅ) /∈M0‖T0. (34)



To complete the construction of the first approximant M0 we have to consider the predicate
primesucc. Let m,n be natural numbers such that m ≤ n. Hence, using statement (32), we get
that smaller(ṅ, ṁ) ∈ TαPA,0(∅)‖F0 for all α ∈ ℵ1. This implies for all n,m ∈ N:

if m ≤ n, then primesucc(ṁ,ṅ) ∈M0‖F0 (35)

Statement (33) implies the following (for all n,m ∈ N):

if {n,m} ∩ {0, 1} 6= ∅, then primesucc(ṁ,ṅ) ∈M0‖F0 (36)

Let n,m ∈ N be natural numbers such that 1 < n < m. This, together with the statements (32)
and (34) and Lemma 4, implies that there is an α ∈ ℵ1 such that the following four properties
hold (for all ordinals k ≥ α):

smaller(ṅ,ṁ) /∈ T kPA,0(∅)‖F0

prime(ṅ) /∈ T kPA,0(∅)‖F0

prime(ṁ) /∈ T kPA,0(∅)‖F0

F0 < J∀x2((smaller(ṅ,x2)∧ smaller(x2,ṁ))⇒¬prime(x2))K
TkPA,0

(∅) < T0

These properties imply, together with (R8), that for all n,m ∈ N the following must hold:

1 < n < m ⇒ primesucc(ṁ,ṅ) /∈M0‖F0 ∪M0‖T0 (37)

The above results completely describe the first approximant M0 of PA.

Proposition 8. The second approximant M1 of the program PA is as described in Figure 2.

F0 F1 F2

T0T1T2

n, k, c ∈ N & c 6= n+ k
add(ṅ,k̇,ċ);

n, c ∈ N & c /∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & m ≤ n
smaller(ṅ,ṁ);

prime(0̇), prime(1̇)

{n,m}∩{0, 1}6=∅ or m≤n
primesucc(ṁ,ṅ);

prime(ṅ);

1<n<m& not(n,mprime)

primesucc(ṁ,ṅ);

n, k, c ∈ N & c = n+ k
add(ṅ,k̇,ċ);

n ∈ N & c ∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & n < m
smaller(ṅ,ṁ);

1 < n not prime

prime(ṅ);
n is prime

n<m 6= 3 prime numbers
primesucc(ṁ,ṅ);

primesucc(3̇,2̇);

Fig. 2. The second approximant M1



Proof. As a second approximation we calculate the approximant M1 from the approximant M0.
The results (31), (32) and the body of the rule (R7) imply that for all natural numbers n > 1 and
all 0 ≤ α ∈ ℵ1 the following holds:

If n is a prime number, then prime(ṅ) ∈ TPA(M0)‖T1.
If n is not prime number, then prime(ṅ) ∈ TαPA,1(M0)‖F1.

And this obviously implies

M1(prime(ṅ) ) =






T1, if n is prime

F1, if 1 < n is not prime

F0, otherwise

. (38)

Let us assume that 1 < n < m are natural numbers such that n or m is not a prime number.
Hence, using Statement (38) and rule (R8), we get that for all α ∈ ℵ1 the ground atom

primesucc(ṁ, ṅ) is an element of TαPA,1(M0)‖F1. (39)

Let us assume that n < m are prime numbers such that n+ 1 = m. Obviously, this implies n = 2
and m = 3. The above statement implies that

prime(2̇),prime(3̇) ∈ TPA(M0)‖T1.

Moreover, it is easy to prove that

J∀z
((
smaller(2̇, z) ∧ smaller(z, 3̇)

)
⇒ ¬prime(z))

y
TPA (M0)

= T1.

This implies that
primesucc(2̇, 3̇) ∈M1‖T1. (40)

Let us now assume that n < m are prime numbers such that n + 1 < m. The above statement
implies that

prime(ṅ),prime(ṁ) ∈ T 1PA,1(M0)‖T1.

Moreover, it is easy to prove that

J∀z ((smaller(ṅ, z) ∧ smaller(z, ṁ))⇒ ¬prime(z))KTαPA,1(M0)
∈ [F2, T2]

for all α ∈ ℵ1. This implies that both primesucc(ṅ, ṁ) /∈ T 2PA,1(M0)‖F1 and primesucc(ṅ, ṁ) /∈
TαPA,1(M0)‖T1 (for all α ∈ ℵ1) must hold true. Hence, using the above statements (39) and (40),
we get that the following holds:

M1(primesucc(ṅ, ṁ) ) =






F1, if 1 < n < m and (n or m not prime)

T1, n = 2 and m = 3

F2, if m 6= 3 and n < m prime

The above results completely describe the second approximant M1.

Proposition 9. The least infinite-valued model M∞
PA
of the program PA is as described in Figure

3.

Proof. As a third approximation we calculate the approximant M2 from the approximant M1.
Statement (32), Statement (38), and the rule (R8) obviously imply the following (similar to the
above argumentation):



F0 F1 F2

T0T1T2

n, k, c ∈ N & c 6= n+ k
add(ṅ,k̇,ċ);

n, c ∈ N & c /∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & m ≤ n
smaller(ṅ,ṁ);

prime(0̇), prime(1̇)

{n,m}∩{0, 1}6=∅ or m≤n
primesucc(ṁ,ṅ);

prime(ṅ);

1<n<m& not(n,mprime)

primesucc(ṁ,ṅ);

n, k, c ∈ N & c = n+ k
add(ṅ,k̇,ċ);

n ∈ N & c ∈ n ∙ N
multiple(ċ,ṅ);

n,m ∈ N & n < m
smaller(ṅ,ṁ);

1 < n not prime

prime(ṅ);
n is prime

∃p:n<p<mprimenumbers
primesucc(ṁ,ṅ);

primesucc(3̇,2̇);

&m prime suc. to prime n

primesucc(ṁ,ṅ);m>3

Fig. 3. The least infinite-valued model M∞
PA

If n < p < m prime numbers, then primesucc(ṁ,ṅ) ∈M2‖F2.
If n < m 6= 3 & m prime successor to n, then primesucc(ṁ,ṅ) ∈M2‖T2.

The above statement completely describes the third approximant M2. Moreover, all ground atoms
receive a value within [F0,F2] ∪ [T2, T0] (with respect to M2). Hence we get that M2 is equal to
the least infinite-valued model M∞

PA
.

Corollary 2. The depth δPA of the program PA is equal to 3. Moreover, the collapsed Model MPA
is a classical 2-valued interpretation and the following statements hold true (n,m, l ∈ N):

1. MPA(add(ṅ,ṁ,l̇) ) = T ⇔ n+m = l
2. MPA(multiple(ṅ,ṁ) ) = T ⇔ n ∈ Nm
3. MPA( smaller(ṅ,ṁ) ) = T ⇔ n < m
4. MPA(prime(ṅ) ) = T ⇔ n is a prime number
5. MPA(primesucc(ṅ,ṁ) ) = T ⇔ n is the prime successor to the prime m


