## A Ordinal Numbers

We give a short introduction to ordinal numbers. We largely follow the approach presented in [1]. Firstly, we have to define the notion of well-ordering.

Definition 28. A binary relation $<$ of a set $A$ is called a well-ordering if the following hold:

1. $a \nless a$ for all $a \in A$
2. $a<b \& b<c \Rightarrow a<c$
3. $a<b$ or $a=b$ or $b<a$ for all $a, b \in A$
4. Every nonempty subset of $A$ has a least element.

Definition 29. A set $A$ is transitive if every element of $A$ is a also a subset of $A$.
Definition 30. A set $\alpha$ is called an ordinal number if $\alpha$ is transitive and $\langle\alpha, \in\rangle$ is a well-ordering.
Example 2. Before we proceed we should observe some important ordinal numbers.

1. The empty set $\emptyset$ is an ordinal number. It is also denoted by 0 .
2. The sets given by $1:=\{0\}, 2:=\{0,1\}, 3:=\{0,1,2\}, \ldots$ are ordinal numbers.
3. If $\alpha$ is an ordinal number, then $\alpha+1:=\alpha \cup\{\alpha\}$ is also an ordinal number. $\alpha+1$ is called the successor ordinal of $\alpha$. An ordinal that is not a successor is called a limit ordinal.
4. The Axiom of Infinity ${ }^{1}$ ensures the existence of the least inductive set $\omega$ given by the set $\bigcap\{Y ; 0 \in Y \& \forall x(x \in Y \Rightarrow x \cup\{x\} \in Y)\} . \omega$ is an ordinal number and the elements of $\omega$ are called natural numbers (i.e., $\omega$ is the set of natural numbers).
5. An ordinal $\alpha$ is a cardinal number if there is no $\beta \in \alpha$ such that there is a one-to-one mapping of $\beta$ onto $\alpha$. All natural numbers are cardinal numbers and the set of natural numbers is a cardinal number. In the context of cardinal numbers $\omega$ is usually denoted by $\aleph_{0}$.

Let $Y_{1}, \ldots, Y_{n}$ be sets and let $\phi\left(X, Y_{1}, \ldots, Y_{n}\right)$ be a set-theoretical property. The class of all sets $X$ satisfying the property $\phi\left(X, Y_{1}, \ldots, Y_{n}\right)$ is denoted by $\left\{X ; \phi\left(X, Y_{1}, \ldots, Y_{n}\right)\right\}$ and depends on the parameters $Y_{i}$. Two classes are equal iff they contain the same elements. If we assume that the axioms of set theory are consistent, then there are classes, such as the class of all sets $V$ and the class of all ordinals $\Omega$, that are no sets. We call classes that are sets comprehension terms (i.e., sets that are given by a set-theoretical property). For example, $A \cap B=\{x ; x \in A \& x \in B\}$ is a set for all sets $A$ and $B$. One can prove that the class $\{\alpha ; \alpha \in \Omega$ such that there is an one-to-one mapping of $\alpha$ into $\omega\}$ is a cardinal number. This class is usually denoted by $\aleph_{1}$ and there is no cardinal $\kappa$ such that $\aleph_{0} \in \kappa \in \aleph_{1}$. Before we proceed we will give some facts about the class $\Omega$. Notice that it is common to use $<$ instead of $\in$.

Lemma 10 (Properties of $\Omega$ ). Notice that it is common to use $<$ instead of $\in$.

1. $\langle\Omega,<\rangle$ satisfies statement 1., 2., and 3. of Definition 28.
2. For all ordinals $\alpha$ the equation $\alpha=\{\beta ; \beta<\alpha\}$ holds.
3. Every nonempty class $C$ of ordinals has a least element $\alpha \in C$. The equation $\cap C=\alpha$ holds.
4. If $X$ is a set of ordinals, then $\bigcup X$ is also an ordinal. Moreover, $\bigcup X$ is the least upper bound of $X$.
5. The successor $\alpha+1$ of an ordinal $\alpha$ is the least ordinal of the class $\{\beta \in \Omega ; \alpha<\beta\}$.

Now we are able to introduce two important methods used in this paper. On the one hand Transfinite Induction and on the other hand Transfinite Recursion.

Theorem 8 (Transfinite Induction). Let $C$ be an arbitrary class of ordinals such that for all ordinals $\alpha$ the following properties hold:

1. $0 \in C$
2. $\alpha \in C \Rightarrow \alpha+1 \in C$

[^0]$$
\text { 3. } 0 \in \alpha \text { limit ordinal } \& \forall \beta \in \alpha: \beta \in C \Rightarrow \alpha \in C
$$

Then $C$ is equal to the class of all ordinals $\Omega$.
Theorem 9 (Transfinite Recursion). Let $Y_{1}, . ., Y_{n}$ be arbitrary but fixed sets. Moreover, let $t\left(X, Y_{1}, \ldots, Y_{n}\right)$ be a comprehension term for any set $X$. Then there is a unique class ${ }^{2} F$, such that $F$ is a function on $\Omega$ and $F_{\alpha}=t\left(\left(F_{\beta}\right)_{\beta \in \alpha}, Y_{1}, \ldots, Y_{n}\right)$ for every ordinal $\alpha$.

Remark 6. The proof of the theorem provides a formula $\phi\left(X, Y_{1}, \ldots, Y_{n}\right)$ such that the class $F$ given by $\left\{X ; \phi\left(X, Y_{1}, \ldots, Y_{n}\right)\right\}$ is a function on $\Omega$ and $F_{\alpha}=t\left(\left(F_{\beta}\right)_{\beta \in \alpha}, Y_{1}, \ldots, Y_{n}\right)$ for every ordinal $\alpha$. Then, using Transfinite Induction, one can prove that $F$ is unique.

Example 3 (Addition). The function $\alpha+\cdot: \Omega \rightarrow \Omega$ is defined to be the unique (class) function satisfying the following equation for every $\beta \in \Omega$ :

$$
\alpha+\beta= \begin{cases}\alpha, & \text { if } \beta=0 \\ (\alpha+\gamma)+1, & \text { if } \beta=\gamma+1 \& \gamma \in \Omega \\ \bigcup_{\gamma<\beta}(\alpha+\gamma), & \text { if } \beta \text { limit ordinal }>0\end{cases}
$$

Notice that the above case distinction can be described by a comprehension term of the form $t\left((\alpha+\zeta)_{\zeta \in \beta}, \alpha\right)$.

Example 4 (Multiplication). The function $\alpha \bullet: \Omega \rightarrow \Omega$ is defined to be the unique (class) function satisfying the following equation for every $\beta \in \Omega$ :

$$
\alpha \bullet \beta= \begin{cases}0, & \text { if } \beta=0 \\ (\alpha \bullet \gamma)+\alpha, & \text { if } \beta=\gamma+1 \& \gamma \in \Omega \\ \bigcup_{\gamma<\beta}(\alpha \bullet \gamma), & \text { if } \beta \text { limit ordinal }>0\end{cases}
$$

## B Omitted Proof

Lemma 5 Under the same conditions as in Theorem 3 for every formula $\phi \in$ Form and every assignment $h$ the following holds:

$$
\llbracket \phi \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha} \Rightarrow \llbracket \phi \rrbracket_{h}^{I_{i}}=\mathcal{T}_{\alpha} \text { for some } i \in \aleph_{1}
$$

Proof. We prove this by induction on the structure of $\phi$. We use $I_{H}(\psi)$ as an abbreviation of

$$
\llbracket \psi \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha} \quad \Rightarrow \quad \llbracket \psi \rrbracket_{h}^{I_{i}}=\mathcal{T}_{\alpha} \text { for some } i \in \aleph_{1}
$$

Case 1: $\phi$ is an atomic formula. Then, using Definition 15 and Definition 20, the statement of the lemma is obviously true.
Case 2: $\phi=\psi_{1} \vee \psi_{2}$ and both $I_{H}\left(\psi_{1}\right)$ and $I_{H}\left(\psi_{2}\right)$ holds. Let us assume that $\llbracket F \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$ holds. Moreover, we assume, without loss of generality, that $\llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}} \leq \llbracket \psi_{1} \rrbracket_{h}^{I_{\infty}}$ holds. This implies $\llbracket \psi_{1} \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$ and $\llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}} \leq \mathcal{T}_{\alpha}$. Then, using $I_{H}\left(\psi_{1}\right)$, there is an $i_{0} \in \aleph_{1}$ such that $\llbracket \psi_{1} \rrbracket_{h}^{I_{i}}=\mathcal{T}_{\alpha}$. This implies $\llbracket \psi_{2} \rrbracket_{h}^{I_{i}} \leq \mathcal{T}_{\alpha}$. (Since otherwise, using Lemma 4 and Theorem 1, we would get $\mathcal{T}_{\alpha}<\llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}}$ and this contradicts the assumption.) Hence we get that $\llbracket \phi \rrbracket_{h}^{I_{i_{0}}}=\mathcal{T}_{\alpha}$ holds.
Case 3: $\phi=\neg(\psi)$. Let us assume that $\llbracket F \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$ holds. This obviously implies $\llbracket \psi \rrbracket_{h}^{I_{\infty}}=F_{\alpha-1}$. Hence, using Theorem 1, we get that $\llbracket \psi \rrbracket_{h}^{I}=\mathcal{F}_{\alpha-1}$ and $\llbracket \phi \rrbracket_{h}^{I}=\mathcal{T}_{\alpha}$ hold.
Case 4: $\phi=\psi_{1} \wedge \psi_{2}$ and both $I_{H}\left(\psi_{1}\right)$ and $I_{H}\left(\psi_{2}\right)$ holds. Let us assume that $\llbracket \phi \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$ holds. Moreover, we assume, without loss of generality, that $\llbracket \psi_{1} \rrbracket_{h}^{I_{\infty}} \leq \llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}}$ holds. This implies $\llbracket \psi_{1} \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$ and $\mathcal{T}_{\alpha} \leq \llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}}$. Then, using $I_{H}\left(\psi_{1}\right)$, there is an $i_{0} \in \aleph_{1}$ such that $\llbracket \psi_{1} \rrbracket_{h}^{I_{i_{0}}}=\mathcal{T}_{\alpha}$.

[^1]Firstly, we assume that $\mathcal{T}_{\alpha}=\llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}}$ holds. Hence, using $I_{H}\left(\psi_{2}\right)$, we get that there is a $j_{0} \in \aleph_{1}$ such that $\mathcal{T}_{\alpha}=\llbracket \psi_{2} \rrbracket_{h}^{I_{j_{0}}}$. This implies, together with Lemma 4 and Theorem 1, that $\llbracket \psi_{1} \rrbracket_{h}^{I_{\max \left(i_{0}, j_{0}\right)}}=$ $\mathcal{T}_{\alpha}=\llbracket \psi_{1} \rrbracket_{h}^{I_{\max \left(i_{0}, j_{0}\right)}}$, and hence $\llbracket \phi \rrbracket_{h}^{I_{\max \left(i_{0}, j_{0}\right)}}=\mathcal{T}_{\alpha}$. Secondly, let us consider the case $\mathcal{T}_{\alpha}<\llbracket \psi_{2} \rrbracket_{h}^{I_{\infty}}$. Then, using Lemma 4 and Theorem 1, we get that $\mathcal{T}_{\alpha}<\llbracket \psi_{2} \rrbracket_{h}^{I_{i}}$. This implies that $\llbracket \phi \rrbracket_{h}^{I_{i}}=\mathcal{T}_{\alpha}$ holds.
Case 5: $\phi=\forall v(\psi)$ and $I_{H}(\psi)$. Let us assume that $\llbracket \phi \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$. This obviously implies that

$$
\begin{equation*}
\inf \left\{\llbracket \psi_{1} \rrbracket_{h[v \mapsto u]}^{I_{\infty}} ; u \in H U\right\}=\mathcal{T}_{\alpha} \tag{15}
\end{equation*}
$$

Hence there is a partition $H_{U}=H_{U_{1}} \dot{\cup} H_{U_{2}}$ such that $H_{U_{1}}=\left\{u \in H_{U} ; \mathcal{T}_{\alpha}<\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}}\right\}$ and $H_{U_{2}}=\left\{u \in H_{U} ; \mathcal{T}_{\alpha}=\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}}\right\}$. Then, using Lemma 4 and Theorem 1, we get that

$$
\begin{equation*}
\forall u \in H_{U_{1}}: \forall i<\aleph_{1}: \llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}}=\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i}} . \tag{16}
\end{equation*}
$$

$I_{H}(\psi)$ implies that for all $u \in H_{U_{2}}$ there is an $i \in \aleph_{1}$ such that $\mathcal{T}_{\alpha}=\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i}}$. This justifies the following definition:

$$
\zeta: H_{U_{2}} \rightarrow \aleph_{1}: u \mapsto \min \left\{i \in \aleph_{1} ; \llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i}}=\mathcal{T}_{\alpha}\right\}
$$

Theorem 2 implies that the countable image $\zeta\left(H_{U_{2}}\right)$ cannot be cofinal in $\aleph_{1}$. Hence, there is an $i_{0} \in \aleph_{1}$ such that for all $u \in H_{U_{2}}$ the property $\zeta(u) \leq i_{0}$ holds. Using again Lemma 4 and Theorem 1 we get that

$$
\forall u \in H_{U_{2}}: \llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i_{0}}}=\mathcal{T}_{\alpha}=\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}} .
$$

Hence, using (15) and (16), we get that

$$
\llbracket \phi \rrbracket_{h}^{I_{i_{0}}}=\inf \left\{\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i_{0}}} ; u \in H_{U}\right\}=\inf \left\{\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}} ; u \in H_{U}\right\}=\mathcal{T}_{\alpha}
$$

Case 6: $\phi=\exists v(\psi)$ and $I_{H}(\psi)$ holds. Let us assume that $\llbracket \phi \rrbracket_{h}^{I_{\infty}}=\mathcal{T}_{\alpha}$. This implies the following:

$$
\begin{equation*}
\sup \left\{\llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{\infty}} ; u \in H_{U}\right\}=\mathcal{T}_{\alpha} \tag{17}
\end{equation*}
$$

Hence, using Lemma 1 , we get that there is an $u_{0} \in H_{U}$ such that $\llbracket \psi \rrbracket_{h\left[v \mapsto u_{0}\right]}^{I_{\infty}}=\mathcal{T}_{\alpha} . I_{H}(\psi)$ implies that there is an $i_{0}<\aleph_{1}$ such that $\llbracket \psi \rrbracket_{h\left[v \mapsto u_{0}\right]}^{I_{i_{0}}}=\mathcal{T}_{\alpha}$. Finally, using Lemma 4, Theorem 1, and (17), we get that $\forall u \in H_{U}: \llbracket \psi \rrbracket_{h[v \mapsto u]}^{I_{i_{0}}} \leq \mathcal{T}_{\alpha}=\llbracket \psi \rrbracket_{h\left[v \mapsto u_{0}\right]}^{I_{i_{0}}}$, and thus $\llbracket \phi \rrbracket_{h}^{I_{i_{0}}}=\mathcal{T}_{\alpha}$ holds.

## B. 1 Example

In this subsection we will consider a formula-based logic program $P_{A}$ from the area of arithmetic. The underlaying language contains a constant symbol $\dot{\mathbf{0}}$, a function symbol $\mathbf{S}$ of arity 1 , a predicate symbol add of arity 3 , a predicate symbol multiple of arity 2 , a predicate symbol smaller of arity 2 , a predicate symbol prime of arity 1 , and a predicate symbol primesucc of arity 2 . For each natural number $n$ we use $\dot{\mathbf{n}}$ as an abbreviation of $\mathbf{S}^{\mathbf{n}}(\dot{\mathbf{0}})$. Moreover, $(\phi \Rightarrow \psi)$ is an abbreviation of the formula ( $\neg \phi \vee \psi$ ). The program $P_{A}$ is given by the following rules:

```
(R1) \(\operatorname{add}\left(\mathrm{x}_{0}, \dot{0}, \mathrm{x}_{0}\right) \leftarrow\)
(R2) \(\operatorname{add}\left(\mathrm{x}_{0}, \mathrm{~S}\left(\mathrm{x}_{1}\right), \mathrm{S}\left(\mathrm{x}_{2}\right)\right) \leftarrow \operatorname{add}\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\)
(R3) multiple \(\left(\dot{0}, \mathrm{x}_{\mathbf{0}}\right) \leftarrow\)
(R4) multiple \(\left(\mathrm{x}_{2}, \mathrm{x}_{0}\right) \leftarrow \exists \mathrm{x}_{1}\left(\right.\) multiple \(\left.\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right) \wedge \operatorname{add}\left(\mathrm{x}_{1}, \mathrm{x}_{0}, \mathrm{x}_{2}\right)\right)\)
(R5) smaller \(\left(\mathrm{x}_{0}, \mathrm{~S}\left(\mathrm{x}_{0}\right)\right) \leftarrow\)
(R6) smaller \(\left(\mathrm{x}_{0}, \mathbf{S}\left(\mathrm{x}_{1}\right)\right) \leftarrow \operatorname{smaller}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)\)
(R7) prime \(\left(\mathrm{x}_{0}\right) \leftarrow \operatorname{smaller}\left(\mathrm{S}(\dot{0}), \mathrm{x}_{0}\right) \wedge\)
    \(\wedge \forall \mathrm{x}_{1}\left(\left(\operatorname{smaller}\left(\mathrm{~S}(\dot{0}), \mathrm{x}_{1}\right) \wedge \operatorname{smaller}\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right)\right) \Rightarrow \neg \operatorname{multiple}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)\)
```

(R8) primesucc $\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right) \leftarrow \operatorname{smaller}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \wedge \operatorname{prime}\left(\mathrm{x}_{0}\right) \wedge \operatorname{prime}\left(\mathrm{x}_{1}\right) \wedge$
$\wedge \forall \mathrm{x}_{2}\left(\left(\operatorname{smaller}\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right) \wedge \operatorname{smaller}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)\right) \Rightarrow \neg \operatorname{prime}\left(\mathrm{x}_{2}\right)\right)$
Remark 7. The predicates of the program can be understood as follows:
$-\operatorname{add}(x, y, z) \quad " x+y=z "$

- multiple $(x, y) \quad " x$ is a multiple of $y "$
- smaller $(x, y) \quad " x<y "$
$-\operatorname{prime}(x) \quad$ " $x$ is a prime number"
$-\operatorname{primesucc}(y, x) \quad$ " $y$ is the prime successor to the prime number $x "$
Proposition 7. The first approximant $M_{0}$ of the program $P_{A}$ is as described in Figure 1.


Fig. 1. The first approximant $M_{0}$

Proof. As a first approximation we calculate the approximant $M_{0}$ from the interpretation $\emptyset$ that maps everything to the least value $\mathcal{F}_{0}$. By induction on the natural number $m \in \mathbb{N}$ it is easy to prove that the following statements must hold true:

$$
\begin{gather*}
n \in \mathbb{N} \& 0 \leq k<m \Rightarrow \operatorname{add}(\dot{\mathbf{n}}, \dot{\mathbf{k}}, \mathbf{n} \dot{+} \mathbf{k}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{T}_{0}  \tag{18}\\
(a, b, c) \in \mathbb{N}^{3} \&(m \leq b \text { or } c \neq a+b) \Rightarrow \operatorname{add}(\dot{\mathbf{a}}, \dot{\mathbf{b}}, \dot{\mathbf{c}}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{F}_{0}  \tag{19}\\
n \in \mathbb{N} \& 0 \leq k<m \Rightarrow \text { multiple(kn}, \dot{\mathbf{n}}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{T}_{0}  \tag{20}\\
(b, a) \in \mathbb{N}^{2} \& b \neq k a(\forall k: 0 \leq k<m) \Rightarrow \text { multiple }(\dot{\mathbf{b}}, \dot{\mathbf{a}}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{F}_{0}  \tag{21}\\
n \in \mathbb{N} \& 0<k \leq m \Rightarrow \operatorname{smaller}(\dot{\mathbf{n}}, \mathbf{n} \dot{+} \mathbf{k}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{T}_{0}  \tag{22}\\
(a, b) \in \mathbb{N}^{2} \& b \neq a+k(\forall k: 0<k \leq m) \Rightarrow \operatorname{smaller}(\dot{\mathbf{a}}, \dot{\mathbf{b}}) \in T_{P_{A}}^{m}(\emptyset) \| \mathcal{F}_{0} \tag{23}
\end{gather*}
$$

The above statements (18) and (19), together with Definition 20, imply that the following must hold:

$$
\begin{gather*}
n, k \in \mathbb{N} \Rightarrow \operatorname{add}(\dot{\mathbf{n}}, \dot{\mathbf{k}}, \mathbf{n} \dot{+} \mathbf{k}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{T}_{0}  \tag{24}\\
(a, b, c) \in \mathbb{N}^{3} \& c \neq a+b \Rightarrow \operatorname{add}(\dot{\mathbf{a}}, \dot{\mathbf{b}}, \dot{\mathbf{c}}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{F}_{0} \tag{25}
\end{gather*}
$$

The above statements (20) and (21), together with Definition 20, imply that the following must hold:

$$
\begin{gather*}
n, k \in \mathbb{N} \Rightarrow \text { multiple }(\dot{\operatorname{kn}}, \dot{\mathbf{n}}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{T}_{0}  \tag{26}\\
(b, a) \in \mathbb{N}^{2} \& b \notin \mathbb{N} a \Rightarrow \operatorname{multiple}(\dot{\mathbf{b}}, \dot{\mathbf{a}}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{F}_{0} \tag{27}
\end{gather*}
$$

The above statements (22) and (23), together with Definition 20, imply that the following must hold:

$$
\begin{align*}
& n \in \mathbb{N} \& 0<k \Rightarrow \operatorname{smaller}(\dot{\mathbf{n}}, \mathbf{n} \dot{+} \mathbf{k}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{T}_{0}  \tag{28}\\
& (a, b) \in \mathbb{N}^{2} \& b \leq a \Rightarrow \operatorname{smaller}(\dot{\mathbf{a}}, \dot{\mathbf{b}}) \in T_{P_{A}, 0}^{\omega}(\emptyset) \| \mathcal{F}_{0} \tag{29}
\end{align*}
$$

It is easy to prove that $T_{P_{A}, 0}^{\omega}(\emptyset)$ is a fixed point with respect to the ground atoms of the form $\operatorname{add}(\cdot, \cdot, \cdot)$, multiple $(\cdot, \cdot)$, and smaller $(\cdot, \cdot)$. Hence, using again Definition 20 and Definition 23 , we get that the following hold, where $n, k, l \in \mathbb{N}$ :

$$
\begin{align*}
& M_{0}(\operatorname{add}(\dot{\mathbf{n}}, \dot{\mathbf{k}}, \mathbf{i}))= \begin{cases}\mathcal{T}_{0}, & \text { if } n+k=l \\
\mathcal{F}_{0}, & \text { otherwise }\end{cases}  \tag{30}\\
& M_{0}(\operatorname{multiple}(\dot{\mathbf{n}}, \dot{\mathbf{k}}))= \begin{cases}\mathcal{T}_{0}, & \text { if } n \in \mathbb{N} k \\
\mathcal{F}_{0}, & \text { otherwise }\end{cases}  \tag{31}\\
& M_{0}(\operatorname{smaller}(\dot{\mathbf{n}}, \dot{\mathbf{k}}))= \begin{cases}\mathcal{T}_{0}, & \text { if } n<k \\
\mathcal{F}_{0}, & \text { otherwise }\end{cases} \tag{32}
\end{align*}
$$

The above statement (32) implies that

$$
\text { smaller }(\mathbf{i}, \dot{\mathbf{0}}), \text { smaller }(\mathbf{i}, \mathbf{i}) \in T_{P_{A}, 0}^{\alpha}(\emptyset) \| \mathcal{F}_{0}
$$

for each ordinal $\alpha \in \aleph_{1}$. Hence, using rule (R7), we get that

$$
\operatorname{prime}(\dot{\mathbf{0}}), \operatorname{prime}(\mathbf{i}) \in T_{P_{A}, 0}^{\alpha}(\emptyset) \| \mathcal{F}_{0}
$$

for every ordinal $\alpha \in \aleph_{1}$. This implies the following statement:

$$
\begin{equation*}
\operatorname{prime}(\dot{\mathbf{0}}), \operatorname{prime}(\mathbf{i}) \in M_{0} \| \mathcal{F}_{0} \tag{33}
\end{equation*}
$$

Let us assume that $n$ is a natural number such that $1<n$. Definition 15 implies that for all interpretations $I$ the value

$$
\llbracket \forall \mathbf{x}_{1}\left(\left(\operatorname{smaller}\left(\mathbf{S}(\dot{\mathbf{0}}), \mathbf{x}_{1}\right) \wedge \operatorname{smaller}\left(\mathbf{x}_{1}, \dot{\mathbf{n}}\right)\right) \Rightarrow \neg \text { multiple }\left(\dot{\mathbf{n}}, \mathbf{x}_{1}\right)\right) \rrbracket^{I}
$$

is an element of $\left[\mathcal{F}_{1}, \mathcal{T}_{1}\right]$. Thus, using (R7), we get that (for all $\alpha<\aleph_{1}$ )

$$
\operatorname{prime}(\dot{\mathbf{n}}) \notin T_{P_{A}, 0}^{\alpha}(\emptyset) \| \mathcal{T}_{0}
$$

Statement (22) implies that $\operatorname{smaller}(\mathbf{i}, \dot{\mathbf{n}}) \in T_{P_{A}, 0}^{n-1}(\emptyset) \| \mathcal{T}_{0}$ and hence we get that prime( $(\dot{\mathbf{n}}) \notin$ $T_{P_{A}, 0}^{n}(\emptyset) \| \mathcal{F}_{0}$. This implies, together with Definition 20 and Definition 23, that

$$
\begin{equation*}
\text { for all } n \in \mathbb{N}_{>1}: \operatorname{prime}(\dot{\mathbf{n}}) \notin M_{0}\left\|\mathcal{F}_{0} \& \operatorname{prime}(\dot{\mathbf{n}}) \notin M_{0}\right\| \mathcal{T}_{0} . \tag{34}
\end{equation*}
$$

To complete the construction of the first approximant $M_{0}$ we have to consider the predicate primesucc. Let $m, n$ be natural numbers such that $m \leq n$. Hence, using statement (32), we get that smaller $(\dot{n}, \dot{m}) \in T_{P_{A}, 0}^{\alpha}(\emptyset) \| \mathcal{F}_{0}$ for all $\alpha \in \aleph_{1}$. This implies for all $n, m \in \mathbb{N}$ :

$$
\begin{equation*}
\text { if } m \leq n \text {, then } \operatorname{primesucc}(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \in M_{0} \| \mathcal{F}_{0} \tag{35}
\end{equation*}
$$

Statement (33) implies the following (for all $n, m \in \mathbb{N}$ ):

$$
\begin{equation*}
\text { if }\{n, m\} \cap\{0,1\} \neq \emptyset \text {, then } \operatorname{primesucc}(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \in M_{0} \| \mathcal{F}_{0} \tag{36}
\end{equation*}
$$

Let $n, m \in \mathbb{N}$ be natural numbers such that $1<n<m$. This, together with the statements (32) and (34) and Lemma 4, implies that there is an $\alpha \in \aleph_{1}$ such that the following four properties hold (for all ordinals $k \geq \alpha$ ):

$$
\begin{gathered}
\operatorname{smaller}(\dot{\mathbf{n}}, \dot{\mathbf{m}}) \notin T_{P_{A}, 0}^{k}(\emptyset) \| \mathcal{F}_{0} \\
\operatorname{prime}(\dot{\mathbf{n}}) \notin T_{P_{A}, 0}^{k}(\emptyset) \| \mathcal{F}_{0} \\
\operatorname{prime}(\dot{\mathbf{m}}) \notin T_{P_{A}, 0}^{k}(\emptyset) \| \mathcal{F}_{0} \\
\mathcal{F}_{0}<\llbracket \forall \mathbf{x}_{\mathbf{2}}\left(\left(\operatorname{smaller}\left(\dot{\mathbf{n}}, \mathbf{x}_{\mathbf{2}}\right) \wedge \operatorname{smaller}\left(\mathbf{x}_{\mathbf{2}}, \dot{\mathbf{m}}\right)\right) \Rightarrow \neg \operatorname{prime}\left(\mathbf{x}_{\mathbf{2}}\right)\right) \rrbracket^{T_{P_{A}, 0}^{k}(\emptyset)}<\mathcal{T}_{0}
\end{gathered}
$$

These properties imply, together with (R8), that for all $n, m \in \mathbb{N}$ the following must hold:

$$
\begin{equation*}
1<n<m \Rightarrow \operatorname{primesucc}(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \notin M_{0}\left\|\mathcal{F}_{0} \cup M_{0}\right\| \mathcal{T}_{0} \tag{37}
\end{equation*}
$$

The above results completely describe the first approximant $M_{0}$ of $P_{A}$.
Proposition 8. The second approximant $M_{1}$ of the program $P_{A}$ is as described in Figure 2.


Fig. 2. The second approximant $M_{1}$

Proof. As a second approximation we calculate the approximant $M_{1}$ from the approximant $M_{0}$. The results (31), (32) and the body of the rule (R7) imply that for all natural numbers $n>1$ and all $0 \leq \alpha \in \aleph_{1}$ the following holds:

$$
\text { If } n \text { is a prime number, then } \operatorname{prime}(\dot{\mathbf{n}}) \in T_{P_{A}}\left(M_{0}\right) \| \mathcal{T}_{1} .
$$

If $n$ is not prime number, then $\operatorname{prime}(\dot{\mathbf{n}}) \in T_{P_{A}, 1}^{\alpha}\left(M_{0}\right) \| \mathcal{F}_{1}$.
And this obviously implies

$$
M_{1}(\operatorname{prime}(\dot{\mathbf{n}}))= \begin{cases}\mathcal{T}_{1}, & \text { if } n \text { is prime }  \tag{38}\\ \mathcal{F}_{1}, & \text { if } 1<n \text { is not prime } \\ \mathcal{F}_{0}, & \text { otherwise }\end{cases}
$$

Let us assume that $1<n<m$ are natural numbers such that $n$ or $m$ is not a prime number. Hence, using Statement (38) and rule (R8), we get that for all $\alpha \in \aleph_{1}$ the ground atom

$$
\begin{equation*}
\operatorname{primesucc}(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \text { is an element of } T_{P_{A}, 1}^{\alpha}\left(M_{0}\right) \| \mathcal{F}_{1} \tag{39}
\end{equation*}
$$

Let us assume that $n<m$ are prime numbers such that $n+1=m$. Obviously, this implies $n=2$ and $m=3$. The above statement implies that

$$
\operatorname{prime}(\dot{2}), \operatorname{prime}(\dot{3}) \in T_{P_{A}}\left(M_{0}\right) \| \mathcal{T}_{1}
$$

Moreover, it is easy to prove that

$$
\llbracket \forall z((\operatorname{smaller}(\dot{2}, z) \wedge \operatorname{smaller}(z, \dot{3})) \Rightarrow \neg \operatorname{prime}(z)) \rrbracket_{T_{P_{A}}\left(M_{0}\right)}=\mathcal{T}_{1} .
$$

This implies that

$$
\begin{equation*}
\operatorname{primesucc}(\dot{2}, \dot{3}) \in M_{1} \| \mathcal{T}_{1} \tag{40}
\end{equation*}
$$

Let us now assume that $n<m$ are prime numbers such that $n+1<m$. The above statement implies that

$$
\operatorname{prime}(\dot{n}), \operatorname{prime}(\dot{m}) \in T_{P_{A}, 1}^{1}\left(M_{0}\right) \| \mathcal{T}_{1} .
$$

Moreover, it is easy to prove that

$$
\llbracket \forall z((\operatorname{smaller}(\dot{n}, z) \wedge \operatorname{smaller}(z, \dot{m})) \Rightarrow \neg \operatorname{prime}(z)) \rrbracket_{T_{P_{A}, 1}^{\alpha}\left(M_{0}\right)} \in\left[\mathcal{F}_{2}, \mathcal{T}_{2}\right]
$$

for all $\alpha \in \aleph_{1}$. This implies that both primesucc $(\dot{n}, \dot{m}) \notin T_{P_{A}, 1}^{2}\left(M_{0}\right) \| \mathcal{F}_{1}$ and $\operatorname{primesucc}(\dot{n}, \dot{m}) \notin$ $T_{P_{A}, 1}^{\alpha}\left(M_{0}\right) \| \mathcal{T}_{1}$ (for all $\alpha \in \aleph_{1}$ ) must hold true. Hence, using the above statements (39) and (40), we get that the following holds:

$$
M_{1}(\operatorname{primesucc}(\dot{n}, \dot{m}))= \begin{cases}\mathcal{F}_{1}, & \text { if } 1<n<m \text { and }(n \text { or } m \text { not prime }) \\ \mathcal{T}_{1}, & n=2 \text { and } m=3 \\ \mathcal{F}_{2}, & \text { if } m \neq 3 \text { and } n<m \text { prime }\end{cases}
$$

The above results completely describe the second approximant $M_{1}$.
Proposition 9. The least infinite-valued model $M_{P_{A}}^{\infty}$ of the program $P_{A}$ is as described in Figure 3.

Proof. As a third approximation we calculate the approximant $M_{2}$ from the approximant $M_{1}$. Statement (32), Statement (38), and the rule (R8) obviously imply the following (similar to the above argumentation):


Fig. 3. The least infinite-valued model $M_{P_{A}}^{\infty}$

If $n<p<m$ prime numbers, then primesucc $(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \in M_{2} \| \mathcal{F}_{2}$.
If $n<m \neq 3 \& m$ prime successor to $n$, then $\operatorname{primesucc}(\dot{\mathbf{m}}, \dot{\mathbf{n}}) \in M_{2} \| \mathcal{T}_{2}$.
The above statement completely describes the third approximant $M_{2}$. Moreover, all ground atoms receive a value within $\left[\mathcal{F}_{0}, \mathcal{F}_{2}\right] \cup\left[\mathcal{T}_{2}, \mathcal{T}_{0}\right]$ (with respect to $M_{2}$ ). Hence we get that $M_{2}$ is equal to the least infinite-valued model $M_{P_{A}}^{\infty}$.

Corollary 2. The depth $\delta_{P_{A}}$ of the program $P_{A}$ is equal to 3 . Moreover, the collapsed Model $M_{P_{A}}$ is a classical 2-valued interpretation and the following statements hold true ( $n, m, l \in \mathbb{N}$ ):

1. $M_{P_{A}}(\boldsymbol{\operatorname { a d d }}(\dot{\mathbf{n}}, \dot{\mathbf{m}}, \mathbf{i}))=\mathcal{T} \quad \Leftrightarrow n+m=l$
2. $M_{P_{A}}($ multiple $(\dot{\mathbf{n}}, \dot{\mathbf{m}}))=\mathcal{T} \quad \Leftrightarrow n \in \mathbb{N} m$
3. $M_{P_{A}}(\operatorname{smaller}(\dot{\mathbf{n}}, \dot{\mathbf{m}}))=\mathcal{T} \Leftrightarrow n<m$
4. $M_{P_{A}}(\operatorname{prime}(\dot{\mathbf{n}}))=\mathcal{T} \quad \Leftrightarrow n$ is a prime number
5. $M_{P_{A}}(\operatorname{primesucc}(\dot{\mathbf{n}}, \dot{\mathbf{m}}))=\mathcal{T} \Leftrightarrow n$ is the prime successor to the prime $m$

[^0]:    ${ }^{1} \mathrm{An}$ axiom of Zermelo-Fraenkel.

[^1]:    ${ }^{2}$ The class depends on the sets $Y_{1}, \ldots, Y_{n}$.

