Evidence of mass ejection in Her X-1

Dmitry Klochkov

IAA Tübingen

Swift/BAT

While searching for bursts, *BAT* points at different locations of the sky, thus, performing an all-sky monitoring in hard X-rays.

The total count rate measured by the *BAT* detector can be used to search for coherent pulsations exhibited by X-ray sources in the FoV (1.4 sterad!)

Accretion torque models Ghosh&Lamb (1979)

Measured P and \dot{P}

Klochkov et al. 2009 +

Comparison with BATSE

Klochkov et al. 2009 +

CGRO/BATSE Archive, R. Staubert, priv. comm.

Measured P, \dot{P} , and $L_{\rm X}$

Strong spin-down episodes

Strong spin-down episodes

Wind ejection

Secular decrease of the orbital period

Staubert, Klochkov & Wilms (2008)

Observed $\dot{P}_{\rm orb} = -4.85(13) \times 10^{-11} \, {\rm d} \, {\rm d}^{-1}$, $L_{\rm X} \simeq 2 \times 10^{37} \, {\rm erg \, s}^{-1}$ – cannot be reconciled within conservative scenario (e.g. Deeter et al. 1991)

Non-conservativeness parameter (e.g. Ritter & Kolb 1992):

$$\eta = -rac{\dot{M}_X}{\dot{M}_O} \leq 1, \quad \dot{M}_O < 0.$$

The ejected mass carries away the specific angular momentum of the NS: $j_x = \omega_{\rm orb} a_x^2 = \omega_{\rm orb} a^2 (M_o/(M_x+M_o))^2$. Using the Kepler's 3-rd law and the total angular momentum balance,

$$\dot{J}=j_{x}(\dot{M}_{x}+\dot{M}_{o}),$$

we obtain:

$$\frac{1}{3} \frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} = -\frac{\dot{M}_{x}}{M_{x}} \left[1 - \frac{q}{\eta} - \left(1 - \frac{1}{\eta} \right) \frac{q/3 + 1}{q + 1} \right].$$

Non-conservative scenario

From the total angular momentum balance and the observed L_X (which can be converted into \dot{M}_X) one gets $\eta \sim 0.1 - 0.4$ (!).

Non-conservative scenario

From the total angular momentum balance and the observed L_X (which can be converted into \dot{M}_X) one gets $\eta \sim 0.1 - 0.4$ (!).

Schandl & Meyer (1994) estimated strength of the accretion disk wind in Her X-1 taking into account *irradiation* from NS:

$$2\dot{M}_{\rm acc} \le \dot{M}_{\rm wind} \le 5\dot{M}_{\rm acc} \quad (q < 0.3).$$

Boroson et al. (2001) used UV data from HST to infer the wind strength in the system:

$$\dot{M}_{\rm wind} \sim 2 \times 10^{18} \Omega / 4\pi \, {\rm g \, s^{-1}} \quad (q \sim 0.1!) \, .$$

Matter ejection

During strong spin-down episodes, the spin-down power of NS $I\omega\dot{\omega}$ is spent to expel accreting matter from the inner disk radius $R_d \sim R_c$:

$$I\omega\dot{\omega}\sim\dot{M}_{\rm ej}\frac{GM}{R_c}$$
.

For the observed parameters of Her X-1: $\dot{M}_{\rm ej} \sim 0.5 \dot{M}_{\rm x} \simeq 10^{17} \, {\rm g \, s^{-1}}, \, \dot{P} \simeq 10^{-12} \, {\rm s \, s^{-1}}, \, {\rm and} \, R_c \simeq 1.3 \times 10^8 \, {\rm cm},$ the equation is satisfied!

Direct observations of the outflow

 $Ji\ et\ al.\ 2009$ (Chandra data): An accretion disk corona is present in Her X-1 \Rightarrow There should be a **permanent coronal accretion disk wind!** Idea of XMM proposal: try to compare soft X-ray spectra during spin-down and equilibrium episodes (unfortunately rejected..)

Summary & Conclusions

- For the first time the pulse period derivative of Her X-1 was measured for a long regular series of observations.
- This allowed us for the first time to test the correlation between
 L_X and the locally measured spin-up rate of NS in Her X-1.
- We argue that together with the long-term decrease of $P_{\rm orb}$ the measured spin-up/spin-down behaviour requires the presence of mass ejection from the inner parts of the accretion disk with $\dot{M}_{\rm ej} \geq \dot{M}_{\rm acc}$ which is consistent with the spectroscopic X-ray and UV observations.
- The mass ejection episodes take place during strong spin-downs associated with small X-ray luminosity.

Our work stresses the importance of the disk outflows for the torque interaction between the accretion disk and NS in Roche lobe overflowing neutron star X-ray binaries.