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Abstract We investigate the significance of higher-level generalized elimination
rules as proposed by the author and compare them with standard-level generalized
elimination rules as proposed by Dyckhoff, Tennant, López-Escobar and von Plato.
Many of the results established for natural deduction with higher-level rules such as
normalization and the subformula principle immediately translate to the standard-
level case. The sequent-style interpretation of higher-level natural deduction as pro-
posed by Avron and by the author leads to a system with a weak rule of cut, which
enjoys the subformula property. The interpretation of implications-as-rulesmotivates
a different left-introduction schema for implication in the ordinary (standard-level)
sequent calculus, which conceptually is more basic than the implication-left schema
proposed by Gentzen. Corresponding to the result for the higher-level system, it
enjoys the subformula property and cut elimination in a weak form.
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2 P. Schroeder-Heister

1 Generalized Higher-Level Elimination Rules

In [27, 28], generalized elimination rules for logical constants were proposed in order
to obtain a general schema for introduction and elimination rules for propositional
operators.1 Given m introduction rules for an n-ary constant of propositional logic c

(cI)
β1(A1, . . . , An)

c(A1, . . . , An)
. . .

βm(A1, . . . , An)

c(A1, . . . , An)
,

where the βi (A1, . . . , An) are premisses structured in a certain way, the elimination
rule is

(cE)
c(A1, . . . , An)

[β1(A1, . . . , An)]
C

. . .
[βm(A1, . . . , An)]

C

C
,

where the brackets indicate the possibility of discharging the assumption structures
mentioned. For conjunction and implication these rules specialize to the following:

A B(∧ I)
A∧B

A∧B
[A B]

C(∧EGEN) C
[A]
B(→ I)

A → B
A → B

[A ⇒ B]
C(→EHL) C

.

Here, (∧ I) and (→ I) are the usual introduction rules for conjunction and implication,
and (∧EGEN) and (→EHL)are their generalized elimination rules, following the
pattern of (cE). The index “hl” indicates that our generalized elimination schema
for → is a rule of higher level, in contradistinction to generalized standard-level
elimination rules, which will be discussed in Sect. 2.

The motivation for the generalized introduction and elimination rules (c I) and
(cE) can be given in different ways: One is that the introduction rules represent
a kind of ‘definition’ of c, and the elimination rule says that everything that fol-
lows from each defining condition βi (A1, . . . , An) of c(A1, . . . , An) follows from
c(A1, . . . , An) itself. This can be seen as corresponding to Gentzen’s ([6] p. 189)
viewof introduction inferences in natural deduction as a sort of definition, or as apply-
ing an inversion principle or a principle of definitional reflection to the introduction
rules (for Lorenzen’s ‘inversion principle’ and the related principle of definitional
reflection and its usage in proof-theoretic semantics, see [8, 32, 34, 35, 38]).

1 In [29] this approach was extended to quantifiers, and in [30] to various other applications,
including the sequent calculus, certain substructural logics (in particular relevant logic), andMartin-
Löf’s logic. In [7, 32] and in later publications itwas extended to the realmof clausal-based reasoning
in general. For a general description of the programme of proof-theoretic semantics see [38], and
for a formal rendering of proof-theoretic harmony see [19, 40]
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Generalized Elimination Inferences 3

A slightly different idea (preferred by the author in [27, 28]) that focusses
more on the elimination rules is that c(A1, . . . , An) expresses the ‘common con-
tent’ of β1(A1, . . . , An), . . . , βm (A1, . . . , An), i.e., the set of consequences of
c(A1, . . . , An) is exactly the intersection of the sets of consequences of the
βi (A1, . . . , An) (1 ≤ i ≤ n). Formally, both interpretations amount to the same,
viz., the ‘indirect’ form of the elimination rule which generalizes the standard pattern
of introduction and elimination rules for disjunction:

A
A ∨ B

B
A ∨ B

A ∨ B
[A]
C

[B]
C

C .

In the generalized elimination rule (cE) the premiss structures occur in assumption
position. In the case of → this means that the dependency of B from A must be
represented as a form of assumption. Our proposal in [27, 28] was to read this de-
pendency as a rule, since the fact that B has been derived from A can be naturally
understood as the fact that the rule allowing one to pass over from A to B has been
established. Conversely, assuming that the rule permitting to pass from A to B is
available, is naturally understood as expressing that we can in fact derive B from A.
Consequently, the minor premiss of generalized → elimination (→EHL)depends
on the rule A ⇒ B, which is discharged at the application of this elimination infer-
ence. (→EHL)is therefore a rule of higher level, i.e., a rule that allows for a proper
rule to be discharged, rather than for only formulas as (dischargeable) assumptions.
Actually, the ‘usual’ → elimination rule, which is modus ponens, is a rule without
any discharge of assumptions at all:

(→EMP)
A → B A

B
,

as are the usual ∧ elimination rules2:

2 A generalized schema for elimination rules which contains (∧EGEN) as an instance was proposed
by Prawitz in [25]. I have made this point clear in all relevant publications. In fact, a fundamental
error in Prawitz’s treatment of implication in his elimination schema was one of my motivations
to develop the idea of rules of higher levels, another one being von Kutschera’s [11] treatment
of logical constants in terms of an iterated sequent arrow in what he very appropriately called
Gentzen semantics (Ger. ‘Gentzensemantik’). So I claim authorship for the general schema for
elimination rules, but not for the particular idea of generalized conjunction elimination (∧EGEN).
I mention this point as I have been frequently acknowledged as the author or (∧EGEN), without
reference to its embedding into a higher-level framework. When the higher-level framework is
mentioned, it is often not considered relevant, as transcending the means of expression of standard
natural deduction. Although it extends natural deduction, the results obtained for the general higher-
level case can easily be specialized to the case of generalized standard-level elimination rules for
implication. In this sense, a direct normalization and subformula proof for standard-level systems
with generalized rules is already contained in [27]. For a discussion of inversion in relation to
Lorenzen’s and Prawitz’s semantical approaches see [16, 34, 35].
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4 P. Schroeder-Heister

(∧E)
A∧B

A

A∧B

B
.

This approach is formalized in a calculus of rules of higher levels: A rule of level
1 is a formula, and a rule of level α + 1 has the form (R1, . . . , Rn) ⇒ A, where
the premisses R1, . . . , Rn are rules of maximum level α and the conclusion A is a
formula. A finite list of rules is denoted by a capital Greek letter, so in general a rule
has the form β ⇒ A.

A rule can be applied and discharged in the following way: A rule of level 1 works
like an axiom, a rule of level 2 generates its conclusion from its premisses:

A1, . . . , An ⇒ B
A1 . . . An

B

and a rule of level ≥3 of the form

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B

generates B from A1, . . . , An , whereby the assumptions β1, . . . ,βn can be dis-
charged at this application:

[β1]
A1 …

[βn]
An

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B
B .

(1)

Applying β ⇒ A means at the same time assuming it, i.e., introducing it as an
assumption except in the case where it is a basic rule (or ‘primitive rule’) such
as (→ I). Therefore, formally, applying (→ I) means the same as applying the rule
(A ⇒ B) ⇒ A → B:

[A]
B

(A ⇒ B) ⇒ A → B
A → B .

(2)

However, as in this case (→ I) is not introduced as an assumption and therefore not
used as an assumption rule, but is basic (or ‘primitive’), we write as usual

[A]
B(→ I)

A → B .

The counting of rule levels is according to the height of the tree it corresponds to. For
example, in (2) the application of the level-3-rule (A ⇒ B) ⇒ A → B corresponds
to a tree

[A]
B

A → B
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Generalized Elimination Inferences 5

of height 3. In this sense, the primitive rules (→ I) and (∨E) are rules of level
3. Obviously, a rule discharging a rule of level 2, i.e., discharging a rule of the
form A1, . . . , An ⇒ B, must be at least of level 4. The primitive rules used in
standard natural deduction are therefore of maximum level 3. A rule of maximum
level 3 is also called a standard-level rule, whereas a rule of level ≥4 is called
a proper higher-level rule. Thus (→EHL)is a proper higher-level (viz., level-4)
rule. Obviously, if α is the level of an introduction rule for a logical constant c
of the form (c I), then α + 1 is the level of the corresponding elimination rule
of the form (c E). This raising of levels made it necessary to introduce the con-
cept of higher-level rules and the idea of assuming and discharging rules. That this
cannot be avoided, i.e. that elimination rules cannot always be ’flattened’ (using
a terminology proposed by Read [26]) has recently been formally established in
[18, 19]. The idea of higher-level elimination rules can be generalized from the
realm of logical constants to arbitrary clausal definitions in logic-programming style
and therefore to inductive definitions, leading to a powerful principle of ‘defin-
itional reflection’ that extends standard ways of dealing with clausal definitions
(see [7, 8, 32]).

That modus ponens (→EMP) and (→EHL)are equivalent can be seen as follows:
Suppose (→EMP) is a primitive rule. Suppose we have derived the premisses of

(→ EH L ), i.e. we have a derivation
D1

A → B
of A → B and a derivation

A ⇒ B
D2

C
of

C from the assumption rule A ⇒ B. If we replace every application of the assumption
rule A ⇒ B in D2 D3

AA ⇒ B B

with an application of (→EMP) using D1 as derivation of its major premiss

D1

A → B
D3

A(→EMP) B ,

then we obtain a derivation of C , i.e., of the conclusion of (→EHL). Note that this
derivation of (→EHL)from (→EMP) works for every single rule instance, i.e., for
A, B, C fixed, so we need not assume that (→EHL)and (→EMP) are rule schemata.

Conversely, suppose (→EHL)is a primitive rule. Suppose we have derived the

premisses of (→EMP), i.e., we have derivations
D1

A → B
and

D2

A
of A → B and

A respectively. From D2, using the assumption rule A ⇒ B, we obtain

D2

AA ⇒ B B ,

from which, together with D1 we obtain by means of (→EHL)
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6 P. Schroeder-Heister

D1

A → B

D2

A1[A ⇒ B] B 1
B ,

which is a derivation of the conclusion B of (→EMP). However, it is important to
note that unlike the other direction, the derivation of (→EMP) from (→EHL)does
not work for every single rule instance, i.e., for A, B, C arbitrarily fixed. Rather,
we must be able to substitute B for C . So what we have essentially proved is that
(→EHL), as a rule schema, implies (→EMP).

This corresponds to the original idea of generalized elimination rules of the form
(cE), where the C is implicitly universally quantified, expressing that every C that
can be derived fromeach defining condition of c(A1, . . . , An) (for fixed A1, . . . , An),
can be derived from c(A1, . . . , An) itself.

We have an entirely similar situation when proving the equivalence of (∧E) and

(∧EGEN). For the direction from left to right, given derivations
D1

A∧B and
A B
D2
C

, we

construct a derivation D1

A∧B
A

D1

A∧B
B

D2

C ,

whereas for the direction from right to left we instantiateC with A and B respectively,
yielding derivations

A∧B 1[A]
A

1 and
A∧B 1[B]

B
1 ,

where [A] represents a derivation of A from A and B, in which A is effectively
discharged and B is vacuously discharged, and analogously with [B].

A detailed proof of normalization and of the subformula property for higher-level
natural deduction, for systems with and without the absurdity rule (the latter corre-
sponding to minimal logic), and for a system with explicit denial can be found in
[27].3 Generalized elimination rules have also found their way into type-theoretical
approaches such as Martin-Löf’s type theory (see [15], p. i–iii), where they are par-
ticularly useful in the treatment of dependent products (see [5]), uniform approaches
to the machine-assisted treatment of logical systems such as the Edinburgh log-
ical framework (see [9]), and proof-editors and theorem provers such as Isabelle
([20]). For applications of this framework to relevance logic, logic programming and
Martin-Löf-style logical systems see [30].

3 Although stated as a result, the proof was omitted from the English journal publication [28], both
for space constraints and because its character is that of an exercise.
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Generalized Elimination Inferences 7

In this chapter, we confine ourselves to minimal logic, or more precisely, to what
corresponds to minimal logic in the higher-level framework, namely nonempty sys-
tems of rules and n-ary operators definable from them. Especially, we do not touch
here the problem of dealing with empty systems of rules (which leads to intuition-
istic absurdity) or the general problem of denial and negation. Also, concerning
substructural issues, we just assume the standard provisions according to which lists
of formulas or rules can be handled as sets, where appropriate. In particular, we do not
discuss the issue of relevance, although the higher-level framework can be adapted
to these fields (see [30, 34]). (Tennant’s [42] approach to generalized elimination
inferences is much inspired by the problems of relevant implication.) The vast area
of using extended structural means of expression to describe or determine the infer-
ential meaning of logical constants, which in particular leads to general frameworks
for describing logics is also omitted from our discussion here. For this point see [44].

2 Generalized Standard-Level Elimination Rules

Dyckhoff [4] (in 1988), Tennant [41] (in 1992), López-Escobar [12] (in 1999), von
Plato [17, 21, 22] (2001-2002) and Tennant [42] (in 2002) have independently
(though, as is clear, with considerable temporal intervals) proposed a generalized
form of the → elimination rule which is related to the left → introduction rule in
sequent calculi. In our terminology it is of level 3 and thus a standard-level rule. We
call it (→ESL)4

A → B A
[B]
C(→ESL) C

.

In these approaches the generalized elimination rule for conjunction is the same as
before: (∧EGEN), which means that it is a level-3-rule and thus one level higher than
the∧ introduction rules. However, (→ESL) stays at the same level as (→ I) (viz. level
3), so that no higher level is needed as far as the standard connectives are concerned.
As these approaches are concerned with generalizing the elimination rules of the

4 From the fact that none of these authors mentions the earlier one, we conclude that none of them
was aware of the fact that (→ESL) had been discussed before. Dyckhoff’s chapter appeared in a
volume of a kind often called a ‘grey’ publication (similar to a technical report), which was difficult
to notice and to get hold of, at least in pre-Internet times. It mentions (→ESL) neither in the title
nor in the abstract nor in the display of the inference rules of natural deduction. The only sentence
mentioning (→ESL) explicitly as a possible primitive rule for implication elimination occurs in
the discussion of proof tactics for implication: ‘this makes it clear that a possible form of the rule
⊃_elim might be that from proofs of A⊃B, of A, and (assuming B) of C one can construct a proof
of C . Such a form fits in better with the pattern for elimination rules now increasingly regarded as
orthodox, and is clearer than the other possibility for ⊃_elim advocated by Schroeder-Heister and
Martin-Löf [. . .]’ ([4], p. 55). Before the appearance of von Plato’s papers, Dyckhoff never referred
to this publication in connection with the particular form of → elimination, in order to make his
idea visible.
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8 P. Schroeder-Heister

standard connectives and not with a general schema for arbitrary n-ary connectives,
they are content with (∧EGEN) and (→ESL). (∧EGEN) and (→ESL) are generalized
elimination rules, as the indirect pattern of elimination found in (∨E) is carried
over to conjunction and implication, in the sense that the right minor premiss C is
repeated in the conclusion, even though, due to the presence of the minor premiss A,
the uniformity inherent in the generalized higher-level rules is lost in (→ESL).

We do not discuss here the somewhat different conceptual intentions the above
authors pursue when introducing (→ESL). We are solely interested in the form
and power of this rule that we shall compare with (→EHL)and with the higher-
level approach in general. Concerning terminology, we use the term ‘generalized
elimination rules’ as a generic term covering both the higher-level and the standard-
level versions. Tennant [42] speaks of the ‘parallel form’ of elimination rules and of
‘parallelized’ natural deductions, von Plato [22] of ‘general elimination rules.’

It can easily be shown that (→EMP) and (→ESL) are equivalent as primitive
rules. Suppose (→EMP) is a primitive rule. Suppose we have derived the premisses

of (→ESL), i.e., we have a derivation
D1

A → B
of A → B, a derivation D2

A
of A and

a derivation
B
D3
C

of C from B. If we replace every occurrence of the assumption B in

D3 with an application of (→EMP) using D1 and D2 as premiss derivations:

D1

A → B
D2

A(→EMP) B ,

we obtain a derivation of C , i.e., the conclusion of (→ESL). This derivation of
(→ESL) from (→EMP) works for every single rule instance, i.e., for A, B, C fixed.

Conversely, suppose (→ESL) is a primitive rule. Suppose we have derived the

premisses of (→EMP), i.e., we have derivations
D1

A → B
and

D2

A
of A → B and A,

respectively. Considering B to be a derivation of itself, by an application of (→ESL)
we obtain D1

A → B
D2

A 1[B]
(→ESL) 1

B ,

which is a derivation of the conclusion B of (→EMP). As before, it is important to
note that unlike the other direction, the derivation of (→EMP) from (→ESL) does
not work for every single rule instance, i.e., for A, B, C arbitrarily fixed. Rather,
we must be able to substitute B for C . So what we have essentially proved is that
(→ESL), as a rule schema, implies (→EMP).

This again corresponds to the idea of generalized elimination as an indirect
schema, in which the C is implicitly quantified.

psh@uni-tuebingen.de



Generalized Elimination Inferences 9

3 Comparison of the Higher Level with the Standard-Level
Generalized → Elimination Rules

As rule schemata, or more precisely, with the letterC understood schematically, both
(→EHL)and (→ESL) are equivalent to (→EMP), which implies that (→EHL)and
(→ESL) are equivalent. If we compare (→EHL)and (→ESL) directly, i.e., not via
(→EMP), then (→EHL)implies (→ESL) as a concrete rule, i.e., as an instance with
A, B, C fixed, which can be seen as follows. Suppose we have derived the premisses

of (→ESL), i.e., we have a derivation
D1

A → B
of A → B, a derivation

D2

A
of A

and a derivation
B
D3

C
of C from B. If we replace every occurrence of the assumption

B in D3 with the following application of the assumption rule A ⇒ B

D2

AA ⇒ B B ,

we obtain a derivation D2

AA ⇒ B B
D3

C

of C from A ⇒ B. By application of (→EHL)we can discharge A ⇒ B:

D1

A → B

D2

A1[A ⇒ B] B
D3

C(→EHL) 1
C

yielding the conclusion C of (→ESL).
For the converse direction, we have to keep C schematic, more precisely, we have

to be able to specify it as B. Suppose we have derived the premisses of (→EHL), i.e.,

we have a derivation
D1

A → B
of A → B and a derivation

A ⇒ B
D2

C
of C from the

assumption rule A ⇒ B. Suppose A ⇒ B is actually used as an assumption in D2
(otherwiseD2 is already the desired derivation of C). If we replace every application
of the assumption rule A ⇒ B in D2

psh@uni-tuebingen.de



10 P. Schroeder-Heister

D3

AA ⇒ B B

with the following application of (→ESL)

D1

A → B
D3

A 1[B]
(→ESL) 1

B ,
(3)

then we obtain a derivation of C , i.e., of the conclusion of (→EHL). The fact that in
the application of (→ESL) in (3), by instantiating C to B we are using a trivialized
version of (→ESL), which essentially is modus ponens (→EMP), cannot be avoided.
It is tempting to consider replacing every application of the assumption rule A ⇒ B
in D2 D3

AA ⇒ B B
D4

C

(4)

with the following application of (→ESL):

D1

A → B
D3

A

1[B]
D4

C(→ESL) 1
C

(5)

which would leave the C uninstantiated. However, this way is not viable as in (4)
there may occur assumptions open in D3 but discharged at a rule application in D4.
Such an assumption would remain open in (5), where the derivation (4) is split into
two independent parts.

Therefore (→EHL)and (→ESL) are equivalent with schematic C , but they are not
equivalent as instances, i.e., for every particular C . In this sense (→EHL)is stronger
than (→ESL). However, one should not overestimate this difference in strength, as
primitive rules of inference are normally understood as rule schemata.5

It is easy to see that the mutual translation between (→EHL)and (→ESL) does not
introduce newmaximum formulas. Therefore from the normalization and subformula
theorems proved in [27] for the generalized higher-level case we immediately obtain
the corresponding theorems for generalized standard-level natural deduction. In fact,
when specialized from the n-ary case to the case of the standard operators, this proof
gives the same reductions as those found in Tennant’s [41, 42], López-Escobar’s
[12], and Negri and von Plato’s [17] work. This means there has been an earlier direct

5 The way in which letters C are schematic, i.e., which propositions may be substituted for them,
becomes important, if one investigates extensions of the language considered, i.e., in connection
with the problem of uniqueness of connectives (see [3]).

psh@uni-tuebingen.de



Generalized Elimination Inferences 11

proof of normalization for generalized natural deduction than the one given in 1992
by Tennant [41] (there for minimal logic and for Tennant’s system of intuitionistic
relevant logic), albeit in a more general setting.6

4 Comparison of the Expressive Power of Higher-Level
with that of Standard-Level Rules

So far we have investigated the relationship between the generalized higher-level
→ elimination rule (→EHL)and the generalized standard-level → elimination rule
(→ESL).We can carry over some of these results to amore general comparisonwhich
relates higher-level and standard-level rules independently of logical connectives.We
may ask: Is it possible to express higher-level rules by means of standard-level rules,
perhaps along the lines of the comparison of generalized → elimination rules in
Sect. 3? Here we must again distinguish whether the rules compared are schematic
with respect to some or all propositional letters or not.

The comparison of (→EHL)and (→ESL) might suggest that the rules

[A ⇒ B]
C
D

and A
[B]
C

D
(6)

are equivalent. Corresponding towhatwas shown above, the left rule implies the right

one for any fixed A, B, C, D: Given derivations
D1

A
and

B
D2

C
of the premisses of

the right rule, we just need to replace each assumption B in D2 with a step

D1

AA ⇒ B B

in order to obtain a derivation of the premiss of the left rule. However, the converse
direction is not valid: Already if in the left rule of (6) C does not depend on any
assumption (i.e., the discharging of A ⇒ B is vacuous), the right rule of (6) cannot
be obtained, as there is no possibility of generating a derivation of A from the premiss
derivations of the left rule. Therefore in (6) the higher-level rule is strictly stronger
than the standard-level rule.

If we change D toC , which is more in the spirit of the generalized → elimination
rule, do we then obtain the equivalence of

[A ⇒ B]
C
C and

A
[B]
C

C ?
(7)

6 López-Escobar [12] proves strong normalization. Other such proofs are given in [10] and [43].

psh@uni-tuebingen.de



12 P. Schroeder-Heister

As before, the left side implies the right one. However, the right side does not imply
the left one, if C is fixed. Only if we allow for C to be substituted with B, which
essentially means considering C to be schematic, it is the case that the right side of
(7) implies the left side. By means of

A 1[B]
B

1,

which is the same as
A

B
,

we can eliminate every application of A ⇒ B in a given derivation ofC from A ⇒ B,
yielding a derivation of C as required. As in the case described in Sect. 3, attempting
to extract, from

D1

AA ⇒ B B
D2

C ,

two independent derivations
D1

A
and

B
D2

C
, is bound to fail, as in D2 assumptions

open in D1 might have been discharged.
Of course, these are just examples showing that a translation of a higher-level rule

into a standard-level rule is not possible according to the idea underlying (→ESL).
However, this is not accidental: A reduction of higher-level to standard-level rules is
not possible in general. For example, a higher-level rule of the form

[A ⇒ B]
C
D

,

which can be linearly written as ((A ⇒ B) ⇒ C) ⇒ D, is never equivalent to a
standard-level rule or to a finite set of standard-level rules. This follows from the
general non-flattening results obtained byOlkhovikov and Schroeder-Heister in [19].

5 The Benefit of Higher-Level Rules: Strong Uniformity
and Closure

In the following, we use this terminology: ‘generalizedSL’ stands for ‘generalized
higher-level’, ‘generalizedHL’ for ‘generalized standard level.’Whenwe speak of the
higher-level’ or the ‘standard-level’ approach, we always mean the approaches with

psh@uni-tuebingen.de



Generalized Elimination Inferences 13

generalized higher-level or standard-level rules, respectively, and similarly when we
speak of ‘higher-level’ or ‘standard-level’ natural deduction.

Both the higher-level and the standard-level generalized elimination rules satisfy
the requirement that the elimination inferences for the standard connectives induced
by the generalized form are equivalent to the ‘common’ elimination inferences, at
least as inference schemata. In particular, modus ponens (→EMP) is equivalent to the
generalized forms (→EHL)and (→ESL). A second requirement one should impose
on a generalized form is its uniformity: The elimination inferences covered by it
should follow a uniform pattern—achieving this is the main purpose of the general-
ization. The generalizedSL rules obviously satisfy this criterion. The generalizedHL
rules satisfy it to the extent that they give an ‘indirect’ reading to the elimination
inferences expressed by the schematic minor premiss and conclusion C . However,
the standard-level implication rule (→ESL) is hybrid in so far as it has both the
‘indirect’ character expressed by the schematic C and the ‘direct’ character ex-
pressed by the minor premiss A which makes it a variant of modus ponens, if the
derivation of C is trivialized to the derivation of B from B:

A → B A [B]
(→ESL) B .

This hybrid character is the price one pays for avoiding higher levels, which would
be inevitable otherwise. Therefore, the generalizedSL eliminations are uniform in a
stronger sense than the standard-level rules. There is a third criterion which only
the generalizedSL rules satisfy and which is a closure property: Unlike the standard-
level approach, the higher-level approach allows us to formulate a general schema for
elimination rules forall introduction rules that are possible on the basis ofall available
means of expression. In particular, the means of expression used to formulate a given
elimination rule must be admitted to formulate a new introduction rule. Putting it
negatively: An elimination rule must not be of a form that is not suitable in principle
as an introduction rule. In other words, for every list of introduction rules that can
be formulated at all, a corresponding elimination rule is available.

Of course, by extending the means of expression, for example, by considering
quantifiers or modal operators, one would be led to elimination rules of a different
kind. However, every rule pattern used in the given framework should qualify to
formulate introduction rules. That this is not the case with generalizedHL elimination
rules in the manner of (→ESL) is seen by the following example. Consider, for
example, the rule

A
[B]
C

D

which is a pattern used to formulate generalizedHL eliminations. Using this pattern
as an introduction rule

(c1 I)
A1

[A2]
A3

c1(A1, A2, A3)
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14 P. Schroeder-Heister

gives us a ternary operator c1, for which there is a generalizedSL elimination rule

(c1 E)
c1(A1, A2, A3)

[A1 A2 ⇒ A3]
C

C ,

but no generalized elimination rule according to the standard-level pattern. This
situation might be remedied by using two separate generalizedHL elimination rules
according to the standard-level pattern:

(c1 E)′
c1(A1, A2, A3)

[A1]
C

C
c1(A1, A2, A3) A2

[A3]
C

C .

However, this way out is not available if we consider the 4-ary connective c2 with
the introduction rules

(c2 I)

[A1]
A2

c2(A1, A2, A3, A4)

[A3]
A4

c2(A1, A2, A3, A4)
.

The corresponding higher-level elimination rule is

(c2 E)
c2(A1, A2, A3, An)

[A1 ⇒ A2]
C

[A3 ⇒ A4]
C

C .

This rule cannot be expressed along the lines of the standard-level rule (→ESL).
The natural way of attempting such a solution would be to propose the following
elimination rule:

(c2 E)′ c2(A1, A2, A3, A4) A1

[A2]
C A3

[A4]
C

C
.

However, though it can be easily shown that (c2 E) implies (c2 E)′ (the proof is
similar to the demonstration that (→EHL)implies (→ESL) in Sect. 3), the converse
does not hold. Even if in a given application of (c2 E) there is no vacuous discharge of
A1 ⇒ A2 or A3 ⇒ A4 (in which case theminor premiss A1 or A3 of (c2 E)′ cannot be
generated), it may happen that in the derivation of the minor premisses C of (c2 E) an
assumption above A1 ⇒ A2 or A3 ⇒ A4 is discharged at a rule application below
A1 ⇒ A2 or A3 ⇒ A4, respectively, such as the B in the following example of a
derivation of (B → A2)∨(B → A4) from c2(A1, A2, A3, A4), B → A1 and B → A3:
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Generalized Elimination Inferences 15

c2(A1, A2, A3, A4)

B → A1
1[B]

(→EMP)
A13[A1 ⇒ A2] A2(→ I) 1

B → A2(∨ I)
(B → A2)∨(B → A4)

B → A3
2[B]

(→EMP)
A33[A3 ⇒ A4] A4(→ I) 2

B → A4(∨ I)
(B → A2)∨(B → A4)

(c2 E) 3
(B → A2)∨(B → A4)

.

Since (c2 E) is a generalizedSL rule, whereas (c2 E)′ is considered to be a
generalizedHL rule, we have used applications of (→EMP) (rather than applications
of assumption rules), as they can easily be translated into either of these systems. The
formula B occurs in both subderivations of the minor premisses in top position and
thus above the assumptions A1 ⇒ A2 and A3 ⇒ A4, but is discharged at applications
of (→ I) below A1 ⇒ A2 and A3 ⇒ A4, so that we cannot split the subderivations
of the minor premisses into two upper parts

B → A1 B
(→EMP) A1

B → A3 B
(→EMP) A3

and two lower parts

A2(→ I)
B → A2(∨ I)

(B → A2)∨(B → A4)

A4(→ I)
B → A4(∨ I)

(B → A2)∨(B → A4)

in order to obtain derivations of all four minor premisses of (c2 E)′.
This shows that the generalizedHL elimination rules do not cover the elimina-

tion rule necessary for such a simple connective as c2, which has the meaning of
(A1 → A2)∨(A3 → A2), although we can formulate its introduction rules in the
standard-level framework. In this sense the generalized higher-level elimination rules
are far more general than the standard-level ones7. A rigorous formal proof that a
connective like c2 (we used the ternary connectivewith themeaning A1∨(A2 → A3))

has no standard-level elimination rule, is given in [18].
As indicated above, even higher-level rules do not suffice to capture every propo-

sitional connective. As an example we need not consider modal connectives and the
like, but the ternary connective c3 with the meaning A1 → (A2∨A3) suffices. How-
ever, the situation is entirely different from that of c1 and c2, as for c3 we cannot even
give introduction rules of the form (c I) using the means of expression available. (In
this sense c3 resembles, e.g., amodal operator.) As soon aswe have introduction rules
according to the schema (c I), we do have a corresponding generalizedSL elimination
rule (cE). This is not the case with generalizedHL rules.8

7 In his discussion of generalized left inferences in his higher-level sequent framework, von
Kutschera ([11], p. 15) gives an example similar to c2 (namely the ternary connective with the
meaning (A1 → A2)∨(A3 → A2)) to show that the higher-level left rules cannot be expressed by
lower-level left rules along the lines of the standard implication-left rule (→L) in the sequent
calculus (which corresponds to (→ESL), see Sect. 6)
8 If we also consider operators definable in terms of others, i.e., if the premisses βi of introduc-
tion rules (c I) are allowed to contain operators c′ which have already been given introduction
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16 P. Schroeder-Heister

For this greater uniformity we pay the price of introducing higher levels. On the
other hand, higher levels lead to considerable simplifications in other areas, notably
in type theory (see [5]).

6 Generalized Elimination Rules, Sequent Calculus,
and the Proudness Property

The motivations for using generalizedHL elimination rules vary between the
authors mentioned in Sect. 2. From the standpoint of proof-theoretic semantics, we
[33, 36] proposed to use them in in a system called ‘bidirectional natural deduction’
that gives assumptions a proper standing. Another meaning-theoretical discussion of
generalizedHL elimination rules can be found in [16]. In what follows we are only
concerned with the formal relationship of generalizedHL elimination rules to left
introduction rules in the sequent calculus along the lines advanced by von Plato and
Tennant.

GeneralizedSL elimination rules give natural deduction elimination rules a form
which is familiar from left introductions in sequent calculi.9 Whereas the right
introduction rules directly correspond to the introduction rules in natural deduc-
tion, this is not so in the case of the usual eliminations rules. The rule of ∨
elimination can be read as corresponding to the left introduction rule of ∨ in the
sequent calculus

A ∨B
[A]
C

[B]
C

C

ε, A ∇ C ε, B ∇ C

ε, A∨B ∇ C
,

but the standard ∧ and → eliminations cannot. However, for the generalizedHL
versions of these rules (for conjunction identical with the generalizedSL version),
this is indeed the case:

(Footnote 8 continued)
and elimination rules, then c3 is, of course, trivially definable, with

A1 → (A2∨A3)

c3(A1, A2, A3)

being its introduction rule. This may be considered a rationale to confine oneself, as in the standard-
level approach, to the standard operators. Such an approach fails, of course, to tell anything about the
distinguished character of the standard operators as being capable to express all possible operators
based on rules of a certain form. This is a point in which the goals of the generalizedSL and the
generalizedHL approaches fundamentally differ from one another. (In [27–29] operators definable
from other operators in the higher-level framework are considered, in addition to those definable
without reference to others.)
9 For the symmetry in Gentzen’s sequent calculus and its description in terms of definitional reflec-
tion see [2, 39].
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Generalized Elimination Inferences 17

A ∧ B
[A B]

C
C

ε, A, B ∇ C
ε, A∧B ∇ C

A → B A
[B]
C

C

ε ∇ A ε, B ∇ C
ε, A → B ∇ C .

In this way a parallel between natural deduction and the sequent calculus is estab-
lished.

The parallel between the sequent calculus and natural deduction goes even further
in the standard-level approach. It can be shown that every normal derivation based
on generalizedHL elimination rules can be transformed into one, in which major
premisses only occur in top position. To see this, we have to observe that every
formula C , which is a conclusion of a (generalizedHL) elimination inference and
at the same time major premiss of a (generalizedHL) elimination inference can be
eliminated, as the following example demonstrates, which shows that corresponding
segments10 of formulas of this kind are shortened:

D1

D → E
D2

D

1[E]
D3

A → B(→ESL) 1
A → B

D4

A

2[B]
D5

C(→ESL) 2
C

reduces to

D1

D → E
D2

D

1[E]
D3

A → B
D4

A

2[B]
D5

C(→ESL) 2
C(→ESL) 1

C

.

Here it is assumed that below A → B there is no formula of the incriminated kind
(in particular, C is not of that kind). Since maximum formulas (conclusions of in-
troduction inferences being at the same time major premisses of (generalizedHL)
elimination inferences) are eliminated anyway, we can obtain a derivation of the
required form.11 This gives us a normal form theorem according to which every
derivation based on generalizedHL elimination inferences can be transformed into
a derivation with major premisses of elimination inferences standing always in top
position. Following Tennant ([41], p.41), who speaks of a major premiss of an elimi-

10 Following [23], a segment is a succession of formula occurrences of the same form C such that
immediately succeeding occurrences are minor premiss C and conclusion C of a generalizedHL
elimination step.
11 What one essentially does here, is carrying out permutative reductions as known from [23]. Their
general treatment, without assuming that segments are maximal (and thus start with the conclusion
of an introduction inference), but only that they end with an elimination inference, was proposed
by Martin-Löf (see [24], p. 253f.) For the higher-level case, these reductions are used in [27].
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18 P. Schroeder-Heister

nation rules in top (i.e., assumption) position, as standing proud, we call this property
the proudness property.

Proudness property of generalizedSL natural deduction:
Every derivation in generalizedSL natural deduction can be transformed into a
derivation, in which every major premiss of an (generalizedSL) elimination rule
is an assumption.

Anatural deduction derivation having the proudness property corresponds isomor-
phically (i.e., stepwise) to a cut-free derivation in the sequent calculus. Introduction
of formulas in the sequent calculus on the left side of the sequent sign corresponds
in generalizedHL natural deduction to introducing an assumption, which is the major
premiss of an elimination rule.

The proudness property is not available without restriction in higher-level natural
deduction. This is due to the fact that in the higher-level case we not only have
assumption formulas but can also have assumption rules. Consider the following
example of a derivation of B from A → B∧C and A:

A → B∧C

A1[A ⇒ B∧C] B ∧C 2[B]
(∧EGEN) 2

B(→EHL) 1
B

. (8)

Another example is the following derivation of C from A → (B → C), A and B:

A → (B → C)

A1[A ⇒ (B → C)] B → C
B2[B ⇒ C] C(→EHL) 2

C
(→EHL) 1

C
.

(9)
In (8) the formula B∧C is the conclusion of an assumption rule and at the same
time the major premiss of an elimination rule, a situation which cannot be further
reduced. Similarly, in (9) the formula B → C is the conclusion of an assumption
rule and at the same time the major premiss of an elimination rule. However, if
we weaken the notion of proudness to include this situation, then derivations in the
higher-level approach satisfy it. We call a formula occurrence, which is a conclusion
of the application of an assumption rule and at the same time major premiss of
an elimination rule weakly proud. Then the following weak proudness property of
higher-level natural deduction holds.
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Weak proudness property of generalizedHL natural deduction:
Every derivation in generalizedHL natural deduction can be transformed into
a derivation, in which every major premiss of an elimination rule is either an
assumption or a conclusion of an assumption rule.12

For example, the following derivation, in which B∧C occurs both as a conclusion
of an elimination inference and as themajor premiss of another elimination inference,
can be reduced to (8):

A → B∧C
A1[A ⇒ B∧C] B ∧C(→EHL) 1

B∧C 2[B]
(∧EGEN) 2

B .

Similarly, the following derivation, in which B → C occurs both as a conclusion
of an elimination inference and as themajor premiss of another elimination inference,
can be reduced to (9):

A → (B → C)
A1[A ⇒ (B → C)] B → C

(→EHL) 1
B → C

B2[B ⇒ C] C(→EHL) 2
C .

Weak proudness implies the subformula property. This is due to the fact that every
formula C standing weakly proud is the subformula of an assumption rule. If this
assumption rule is undischarged, thenC is a subformula of an open assumption. Oth-
erwise, this assumption rule is discharged at a higher-level introduction or elimination
rule, in which case it is a subformula of the formula introduced or eliminated.13 If one
considers the subformula principle to be the fundamental corollary of normalization,
the fact that for higher-level natural deduction we only have the weak but not the
full proudness property, is no real disadvantage as compared to the standard-level
(generalized) alternative.

7 A Sequent Calculus Variant of the Higher-Level Approach

Although intended for the purpose of uniform elimination rules in natural deduc-
tion, one might investigate how the generalizedSL approach fits into a sequent-style
framework and which form the weak proudness property then takes, in compari-
son to the proudness property of the standard-level approach, which immediately

12 As an assumption formula can be viewed as the conclusion of a first-level assumption rule, the
second alternative actually includes the first one.
13 For a detailed proof of normalization and subformula property for higher-level natural deduction
see [27].
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corresponds to cut-free derivations. Some of the ideas and results presented here
have been established in [1], others can be found in [30] and [7].14

We only consider the single-succedent (intuitionistic) variant. The generalized
conjunction rule (∧EGEN) simply translates into the ∧ left rule

(∧L)
ε, A, B ∇ C

ε, A∧B ∇ C
,

the only difference being that ε may now stand for a set of higher-level rules rather
than only for a set of formulas.15 In order to frame the idea of assumption rules, we
have to introduce a schema for the left introduction of a rule R as an assumption. We
assume that R has the following general form:

(β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B

which covers the limiting case n = 0 in which R is just the formula (= level-0-rule)
B, and the cases in which some or all βi , which are lists of rules, are empty, i.e.,
in which βi ⇒ Ai is the same as Ai . Then the left introduction of a rule, which
corresponds to using a rule as an assumption in generalizedSL natural deduction (1),
proceeds as follows:

(⇒L)
ε,β1 ∇ A1 . . . ε,βn ∇ An

ε, ((β1 ⇒ A1, . . . ,βn ⇒ An) ⇒ B)∇ B
,

which covers as a limiting case:

(⇒L)◦ ε ∇ A

ε, (A ⇒ B)∇ B
.

The right and left rules for implication are then the following:

(→R)
ε, A ∇ B

ε ∇ A → B
(→LHL)

ε

,
A ⇒ B ∇ Cε, A → B ∇ C .

The sequent calculus with higher-level rules, which results from the ordinary sequent
calculus with cut by adding (⇒L), and by using (→R) and (→LHL) as rules for
implication, will be called the higher-level sequent calculus. Sowe disregard here the
feature that in addition to → , ∧ and ∨ we have right and left introduction rules for
n-ary connectives and consider just the standard connectives, as this is the concern
of the standard-level approach.

14 Von Kutschera’s [11] approach using an iteration of the sequent arrow should be mentioned as
well, although it needs some reconstruction to fit into our framework.
15 We can here neglect the difference between lists, multisets, and sets, as for simplicity we always
assume that the usual structural rules of the intuitionistic sequent calculus (permutation, contraction,
and thinning) are available—with the exception of cut, whose availability or non-availability as a
primitive or admissible rule will always be explicitly stated.
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Obviously, every derivation in the higher-level sequent calculus (with cut) can
be translated into higher-level natural deduction, as the left-introduction rules are
available as generalizedSL inferences, and (⇒L) is available as the introduction of
an assumption rule. Conversely, every derivation in higher-level natural deduction
can be translated into the higher-level sequent calculus (with cut) along the lines
described by Gentzen ([6], p. 422–424): Applications of introduction rules, of as-
sumption rules, and of elimination rules with major premisses standing proud are
homophonically translated into applications of right introduction rules, of (⇒L),
and of left introduction rules, respectively. Only in the situation in which the major
premiss of an elimination inference is not standing proud:

D
A

D1 Dn

C … C
E inference

C ,

we must apply cut, yielding

D’
ε ∇ A

D′
1 . . . D′

m
L inference

β, A ∇ C
Cut

ε,β∇ C ,

whereD′,D′
1, . . . ,D′

m are the sequent calculus translations ofD,D1, . . . ,Dm . (This
procedure also works for arbitrary n-ary connectives.)

The weak proudness property of higher-level natural deduction gives us immedi-
ately a weak cut elimination theorem.

Weak cut elimination for the higher- level sequent calculus:
Every derivation in the higher-level sequent calculus (with cut) can be transformed
into a derivation, in which cut occurs only in the situation, where its left premiss is
the conclusion of an application of an assumption rule, and the right premiss the
conclusion of a left introduction rule for the cut formula, i.e., only in the following
situation:

...(⇒L)
ε ∇ A

...(L inference for A)
β, A ∇ C

(Cut)
ε,βsseqC

.

As we have the subformula principle for higher-level natural deduction, it holds
for the higher-level sequent calculus as well, if we only allow for cuts of the form
described in the weak cut elimination theorem. Therefore cuts of this special form
are harmless, although perhaps not most elegant.

That we do not have full cut elimination is demonstrated by the sequent-calculus
translation of our example (8):
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A ∇ A(⇒L)
A, (A ⇒ B ∧C) ∇ B ∧C

B ∇ B(∧L)
B ∧C ∇ B

(Cut)
A, (A ⇒ B ∧C) ∇ B

(→LHL) A, (A → B ∧C) ∇ B

. (10)

As there is no inference rule (apart from cut) which can generate A, (A ⇒ B∧C)

∇ B (at least if A, B, and C are atomic and different from one another), cut is not
eliminable. However, this application of cut is of the form permitted by the weak cut
elimination theorem.

It might appear asymmetric at first glance that there is a left introduction rule
(⇒L), but no right introduction rule for the rule arrow ⇒ . Why do we not have a
right introduction rule for ⇒ of the form

(⇒R)
ε, A ∇ B

ε ∇ A ⇒ B

and then introduce implication → on the right directly in terms of ⇒ , as it is done
on the left:

(→R)′ ε ∇ A ⇒ B

ε ∇ A → B ?

This asymmetry: only a left rule for ⇒ , is due to the fact that the rule arrow is not a
logical constant in the genuine sense but a sign belonging to the structural apparatus,
comparable to the comma. If we look at the comma and the rules for conjunction,
we observe a similar phenomenon:

(∧R)
ε ∇ A ε ∇ B

ε ∇ A∧B
(∧L)

ε, A, B ∇ C

ε, A∧B ∇ C
.

When applying (∧R), we do not first introduce a comma on the right-hand side,
which is conjunctively understood, in a way like

ε ∇ A ε ∇ B

ε ∇ A, B
,

and then introduce ∧ in terms of the comma in a manner such as

ε ∇ A, B

ε ∇ A∧B
.

Rather, we have a direct right-introduction rule (∧R) for conjunction, whereas on the
left side, by means of (∧L), conjunction is reduced to the comma. This asymmetry
is somewhat concealed by the fact that there is no formal left introduction rule for
the comma in the sense in which there is a formal left introduction rule for the rule
arrow ⇒ , as the comma is already there as a means to separate antecedent formulas
(or antecedent rules). It nevertheless is a structural entity governed by rules which
do not fit into the symmetric right-left-introduction schema. Analogously, the rule
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arrowmust be looked upon as an enrichment of structural reasoningwhich essentially
affects only the left side of the turnstile (in the intuitionistic framework).

The idea of higher-level rules, i.e., of rules as assumptions, is that we enrich our
possibilities of formulating assumptions, in order to characterize logical operators
as having the same consequences as certain assumption structures. Here A∧B has
the same consequences as the assumption structure (A, B), and A → B has the same
consequences as the assumption structure A ⇒ B.

Although against the spirit of using rules as assumptions (or members of the
antecedent), it is possible to express rules in terms of the standard operators. In fact,
such a translation is used if we want to show that the standard operators suffice to
express everything that can be expressed by means of higher-level rules, i.e., if we
establish the completeness16 of the standard operators (see [11, 27–30]).We translate
the rule arrow ⇒ by means of implication → and the comma by conjunction ∧,
so that, for example, a rule

(A, B ⇒ C), (E ⇒ F) ⇒ G

becomes the implication

((A∧B → C)∧(E → F)) → G .

If we use this translation, then (→LHL) becomes superfluous as premiss and con-
clusion are identical, and rule (⇒L) becomes

ε,β1 ∇ A1, . . . ε,βn ∇ An

ε, ((β1 → A1) ∧ . . . ∧ (βn → An) → B)∇ B
. (11)

This rule can be replaced with the simpler rule

(→L)◦ ε ∇ A

ε, (A → B)∇ B

which corresponds to (⇒L)◦. Given the premiss of (11), we simply need to use
(→R) and (∧R) to obtain

ε ∇ (β1 → A1) ∧ . . . ∧ (βn → An)

from which by means of (→L)◦ we obtain the conclusion of (11).
The result is a sequent calculus, in which the common (→L) rule

(→L)
ε ∇ A ε, B ∇ C

ε, A → B ∇ C

16 This corresponds to functional completeness in the case of truth functions. In a further generalized
setting this way of establishing completeness of systems of constants by translating structural
operations into logical ones is used in [44] for many substructural logics.
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is replaced with (→L)◦. (→L)◦ introduces the spirit of rules into a sequent calculus
of the usual kind (i.e., without higher-level rules): From A we may pass over to B
by using (= assuming) A → B understood as a rule which licenses this transition.

It is obvious that (→L)◦ and (→L) are interderivable, if the letterC is understood
schematically and, thus, can be replaced with B. We call the sequent calculus with
(→L)◦ as the left introduction rule for implication the sequent calculus based on the
implications-as-rules interpretation, in short rule-style sequent calculus as opposed
to the standard sequent calculuswhich has (→L) as left introduction rule.As it results
by translation from the higher-level sequent calculus, we do not have cut elimination
for this system. As a translation of (10), the following is a counterexample:

A ∇ A(→L)◦
A, (A → B ∧C) ∇ B ∧C

B ∇ B(∧ L)
B ∧C ∇ B

(Cut)
A, (A → B ∧C) ∇ B

. (12)

However, corresponding to the weak proudness property of higher-level natural
deduction and the weak cut elimination theorem in the higher-level sequent calculus,
we have a weak cut elimination theorem for the rule-style sequent calculus, which
says that a situation such as (12) is essentially the only one where cuts must be
admitted.

Weak cut elimination for the rule- style sequent calculus:
Every derivation in the rule-style sequent calculus (with cut) can be transformed into
a derivation, in which cut occurs only in the situation where its left premiss is the
conclusion of (→L)◦, and where its right premiss results from introducing the cut
formula in the last step, i.e., in the following situation:

...(→L)◦
ε ∇ A

...(L inference for A)
β, A ∇ C

(Cut)
ε,β∇ C

.
(13)

In fact, if we consider a purely implicational system with (→L)◦ of the multi-ary
form

ε ∇ A1 . . . ε ∇ An

ε, A1 → (. . . (An → B) . . .) ∇ B

then we have full cut elimination, as remarked by Avron [1].17 Analogously, the
purely implicational natural deduction systemwith the following rule for implication

17 Avron also remarks that the standard (→L) rule is away of avoiding themulti-ary character of this
rule, which cannot be effected by means of (→L)◦ alone (if conjunction is not available). Negri and
von Plato [17] (p. 184) mention the rule (→L)◦ as a sequent calculus rule corresponding to modus
ponens, followed by a counterexample to cut analogous to (12), which is based on implication only.
This counterexample shows again that for cut elimination in the implicational system the multi-ary
form of (→L)◦ considered in [1] and the corresponding forms of rule introduction in the antecedent
considered in [30] and [7] are really needed.
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A1 → (. . . (An → B) . . .)→ B A1 . . . An

B

enjoys the full proudness property.
The rule-style sequent calculus satisfies the subformula principle, in spite of the

weak form of cut which cannot be eliminated. This result is also carried over from
the consideration of explicit higher-level rules. It is immediately plausible, too, as
the cut formula A in (13) is contained in an implication B → A which is introduced
by means of (→L)◦ and therefore belongs to ε.

8 Implications-as-Rules Versus Implications-as-Links18

We have seen that, when formalized as a sequent calculus, the interpretation of
implications as rules yields a system with (→L)◦ as the left introduction rule for
implication. This system enjoys the subformula property, but only a weak form
of cut elimination. Although the implications-as-rules view is very natural in the
natural deduction framework, the corresponding rule-style sequent calculus might
look strange at first glance, as one has become used to Gentzen’s rule (→L) and to
full cut elimination as a fundamental principle.

However, the alleged simplicity of (→L) is essentially a feature of technical
elegance. If we want to have full cut elimination at any price in order to derive
its corollaries such as the subformula property and other features with ease, then
(→L) is the rule of choice. In fact, it were these technical considerations that led
Gentzen to consider his sequent calculus. Unlike the calculus of natural deduction,
for which Gentzen coined the term ‘natural,’ and for whose rules he gave a detailed
philosophical motivation, the sequent calculus was not chosen by Gentzen for its
philosophical plausibility, but merely for its suitability for the proof of the Hauptsatz
(see [6], p. 191).

If we look at Gentzen’s rule (→L) from a philosophical or conceptual point
of view and compare it to the implications-as-rules view, then it loses some of its
plausibility. Whereas the implications-as-rules interpretation gives a direct meaning
to implication, as the notion of a rule is a very basic notion used to describe reasoning,
and acts in general, from an elementary perspective, this does not hold for Gentzen’s
notion of implication as formalized in the sequent calculus. One can even argue
that the feature of full cut elimination, which is distinctive of Gentzen’s sequent
calculus, is enforced by or at least embodied in his particular formulation of (→L), in
contradistinction to (→L)◦. Translated into natural deduction, an application (→L)◦
can be displayed as follows:

D1

A
A → B

B .
(14)

18 A more detailed exposition of the points made in this section can be found in [37].

psh@uni-tuebingen.de



26 P. Schroeder-Heister

As it represents the implications-as-rules interpretation, we write A → B as
labelling the transition from A to B. The interpretation of implication underlying
(→L) would then be displayed as

D1

A
A → B

B
D2

C .

(15)

Whereas in the first case, A → B just licenses to continue from A to B by extending
D1, in the second case it links two derivations, namely the derivation D1 of A and
the derivation D2 from B. In this sense we can speak of the implications-as-links
interpretation as opposed to the implications-as-rules interpretation. Obviously, the
implications-as-links interpretation adds to the implications-as-rules interpretation
something that is expressed by the rule of cut, viz., the cutwith cut formula B. Passing
from (14) to (15) can be seen as requiring an implicit step which is expressed by
the cut rule. So the fact that the implications-as-links interpretation leads to full cut
elimination, is due to the fact that it embodies already some limited form of cut which
in the implications-as-rules interpretation would have to be added separately.

That an implications-as-links view underlies Gentzen’s sequent calculus is sup-
ported by the fact that even in systems, in which cut elimination fails, for example in
systems with additional axioms or rules, a cut with the formula A can be enforced by
adjoining A → A to the antecedent, as cut then then becomes an instance of (→L):

(→L)
ε ∇ A ε, A ∇ B

ε, A → A ∇ B
.

From the standpoint of the implications-as-rules interpretation this effect is quite
unplausible, as assuming the rule that allows one to pass over from A to A should
be vacuous and have no effect whatsoever. The fact that adding A → A immediately
enables cut with A shows that implication has received an interpretationwhich relates
it to cut.

This argument not only shows that the implications-as-rules interpretation is
more plausible than the implications-as-links interpretation, but also more ele-
mentary. As the implications-as-links interpretation adds certain features of cut to
the implications-as-rules interpretation, it is, from the philosophical point of view,
advisable to separate these two features, i.e., to use (→L)◦ as the more elementary
rule for implication, together with cut in a weakened form.

We should emphasize that these results apply to the intuitionistic case only. As
soon as we consider the linear or classical case with more than one formula permit-
ted in the succedent, different considerations apply which do not necessarily favor
the implications-as-rules view, but might speak for the implications-as links view,
due to the symmetry inherent in the multiple-succedent sequent calculus (see [39]).
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However, in such systems implication has a differentmeaning, and, froma conceptual
point, it can even be questioned if they contain a genuine notion of implication at all.

Concluding, the implications-as-links interpretation has substantial support from
the simplicity of the underlying sequent calculus and its cut elimination feature, so for
many technical considerations the implications-as-links interpretation is preferable.
However, the implications-as-rules interpretation has the conceptualmerit of carrying
over the naturalness of natural deduction and the naturalness of the concept of a rule
to the sequent calculus, including its natural extension with higher-level rules which
allows for a very general treatment of logical constants. Itmotivates a sequent calculus
which is not cut free, but needs a weak version of cut which does not obstruct the
subformula principle.
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