
Vision, Modeling, and Visualization (2011)
Peter Eisert, Konrad Polthier, and Joachim Hornegger (Eds.)

AVDT - Automatic Visualization of Descriptive Texts

Christian Spika, Katharina Schwarz, Holger Dammertz, and Hendrik P. A. Lensch

Institute of Media Informatics, Ulm University, Germany

Abstract

Expressing mental images visually as 3D scenes is a time-consuming challenge. Therefore, we employ natural
language to facilitate the creation of virtual environments. In this paper, we present a framework, which automati-
cally converts an arbitrary descriptive text into a representative 3D scene. Our system parses a user-written input
text, extracts information using techniques from Natural Language Processing (NLP) and identifies relevant units.
Based on derived object-to-object relations, our system associates every object with an appropriate 3D model and
evaluates spatial dependencies of the entities. The resulting locations are combined based on adequate heuristics
in order to create natural looking virtual environments. Finally, a physics engine is used to render a realistic and
interactive 3D scene which enables the user to actively manipulate the stage setup.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—I.2.7 [Artificial Intelligence]: Natural Language Processing—

1. Introduction
Realizing thoughts in a 3D scene is still a very time-
consuming and difficult process. Typical scene modeling
tools tend to be overwhelming at first sight. Before starting
to model the scene, the user has to familiarize himself with
the supporting graphics software, i.e., learning all the menus
and buttons and finding out, how to tweak parameters. After
that, the task of actually creating the visualization still re-
mains. Therefore, a language-based approach, in which vir-
tual environments are described and created directly through
natural language and which does not rely on special graphics
applications, simplifies the process of 3D scene generation.

In this paper, we present a framework called AVDT - Au-
tomatic Visualization of Descriptive Texts, which automati-
cally generates 3D scenes from natural language. More pre-
cisely, an almost arbitrary descriptive text serves as a basis
for creating a specific virtual environment. The description
consists of the objects occurring in the scene, as well as the
spatial relationships between them. Our system concentrates
on creating stage setups and, on this account, focuses on the
key issues of Information Extraction (IE) as part of NLP, se-
mantics, and graphical representation of a given text.

Fig. 1 shows a high level overview of the AVDT pipeline,
based on the two processing elements Automatic Scene
Graph Generation (Sec. 3) and Natural Arrangement of Ob-

Figure 1: System overview. A descriptive text is analyzed, ex-
tracted information refined and transformed into a directed
graph. Then, object-to-object relations are evaluated, com-
bined with positioning heuristics and rendered as 3D scene.

jects (Sec. 4) each containing several components. First,
a descriptive text is parsed and tagged by the IE process
(Sec. 3.1.1). This extracted information is then gathered and
refined (Sec. 3.1.2) which mainly refers to collecting infor-
mation about real world objects in the text as well as spa-

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

tial relations that indicate a connection between those enti-
ties. Furthermore, additional information (e.g., type, quan-
tity, or position) is added creating new data elements, which
we call Part of Spatial Information (POSI). A directed graph
is then built by filtering unnecessary POSIs out of the text,
whereas the remaining ones represent the nodes of the graph
(Sec. 3.2). Every POSI representing an object is associated
with an appropriate 3D model, which is stored in a local
model database. For our processing, we assume that the 3D
models we retrieve from Google 3D warehouse† are mod-
eled correctly and contain a clearly defined front side. The
resulting scene graph builds the basis for the second part of
the systems pipeline. The dependencies in the graph and the
spatial relations are evaluated by first calculating the loca-
tion of every POSI in the graph (Sec. 4.1) and, in a second
step, applying positioning heuristics (Sec. 4.2) for increasing
the “natural” look of the scene. Finally, the resulting virtual
environment is rendered by a physics engine into a realistic
stage setup enabling the user to fly around or move objects.

2. Related Work
Already quite a few projects investigated the field of natural
language input for creating virtual environments. In the fol-
lowing, we present some of the research that is most related
to this paper and motivated the development of our system.

The SHRDLU program [Win71] was one of the earliest
systems that was able to understand and evaluate natural lan-
guage. User interaction was allowed via simple english di-
alogs about a small blocks world shown on an early display
screen. SHRDLU was primarily a language parser with the
ability to use semantic information and context to interpret
natural language input. However, the usable vocabulary for
interaction was rather limited and the amount of referenced
objects was restricted to a pre-existing environment.

Another system was created by Adorni et al. [ADMF83].
Natural Language Input for Image Generation (NALIG)
is able to interpret simple italian phrases of the form
<subject> <preposition> <object> [<reference>]. The
system disambiguates descriptions by defining primitive
relationships between objects, represented as taxonomical
rules, e.g., H_SUPPORT(A,B).

In 1996, Clay et al. [CW96] implemented the Put system
that uses a combination of linguistic commands and direct
manipulation to correctly arrange and constrain rigid objects
within a virtual scene. Although Put shares the intention of
our system to ease the 3D scene creation process, it is lim-
ited to pre-existing objects and their spatial arrangements.
Besides, it allows only a small subset of english expressions
and uses a rigid syntax to formulate placement instructions.

One of the most well-known projects in the field of
language-based 3D scene generation is WordsEye, created
by B. Coyne and R. Sproat [CS01]. It generates static scenes

† http://sketchup.google.com/3dwarehouse/

out of a user-given text. An entered text consists of simple
sentences that describe positions of objects and their orien-
tations, colors, textures, and sizes. Although WordsEye real-
istically visualizes natural language input, the interpretation
of spatial relationships often fails and the structure of the in-
put is rather restricted. In order to generate “natural” looking
scenes, the user is also required to use parameters for arrang-
ing objects, which takes time and effort. Contrary, in our ap-
proach we disregard colors and textures because we want to
focus on correctly interpreting spatial relations without the
need of user interaction, and keep the input more flexible.
As WordsEye is closely related to our work, we discuss dif-
ferences in more detail and show several examples in Sec. 6.

Further, Schwarz et al. [SRC∗10] implemented a system
which automatically illustrates written natural language with
semantically close images they retrieve from online photo
collections. Although not aiming at creating 3D scenes, it
was the basis for our work due to the linguistic analysis
within the visualization process.

3. Automatic Scene Graph Generation
This section describes the first part of the AVDT pipeline on
which our whole system is based. It consists of analyzing an
arbitrary descriptive text and transforming it into a directed
graph representation containing all scene relevant data.

3.1. Text Processing
First, basic information about syntax and structure of the text
is extracted in a pre-processing step. In order to build a data
structure with all relevant information for 3D scene genera-
tion, refining of the extracted textual information follows.

3.1.1. Information Extraction using GATE
Forming an important part of Natural Language Process-
ing [JM08], Information Extraction produces structured out-
put from unseen documents [CL96]. Thus, in order to extract
grammatical information, our system pre-processes an input
text using an open source architecture called GATE (General
Architecture for Text Engineering) [CMBT02]. A visualiza-
tion of the results we use from GATE is shown in Fig. 2.

Figure 2: Visualization of information extracted by GATE.

POS Tags. Consisting of various NLP software components,
GATE includes an IE system annotating each word with its
part-of-speech (POS) tag [Hep00]. From those tokens we

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

mainly use nouns (tagged with NN, NNS, NP, or NPS) and
prepositions (IN). The nouns form the basis for finding ad-
equate 3D models and the prepositions serve for interpret-
ing spatial relations between objects. Furthermore, cardinal
numbers (CD) and coordinating conjunctions (CC) are used.

Lemmas. Additionally, GATE provides a morphological an-
alyzer which adds a token with its lemma form to each
word [MRS08]. We apply the lemmatization to nouns only
in order to find their singular form. This helps us in identi-
fying an accurate 3D model for our object. A search based
on the plural form of a noun would rather result in a whole
set of objects. But, as the quantity of an object is calculated
separately, the plural form does not serve our system.

Dependencies. In order to derive relationships, our system
also uses the Stanford Parser plugin [CMBea10], integrated
in GATE. The Stanford Dependencies [dMMM06] represent
grammatical relations between words in a sentence and are
designed to ease the understanding of those relationships.

3.1.2. Refinement of Textual Information
For the purpose of creating a data structure that stores all
the relevant information needed for creating a 3D scene, the
next step consists in refining the extracted textual informa-
tion. This mainly means structuring the input text into inter-
pretable blocks, adding useful meta-data concerning quan-
tity and spatial dependencies, and filtering out useless infor-
mation without spatial contribution. Especially nouns and
prepositions are collected for further processing because a
preposition can determine a spatial relation between two ob-
jects (nouns). The results of this process are visualized in
Fig. 3. Out of the refinement, new data elements arise and
we call them Parts of Spatial Information (POSI).

Figure 3: Collected elements are labelled with their specific
POS tag, their lemma, quantity, block index, and their posi-
tion and role within a block.

Blocks. For enabling the interpretation process, we segment
the text into smaller blocks by splitting sentences at punctua-
tion marks and coordinating conjunctions. Every block con-
sists of a preposition describing a spatial relation and two
nouns that embody objects. Thus, it represents an object-to-

object relationship. The block index as well as the position
of a collected element within the sentence are stored (Fig. 3).

Objects. Real world objects, embodied by nouns, are funda-
mental for creating a virtual environment out of natural lan-
guage input. We use the lemma form instead of the normal
string. In case of plural nouns, refining also includes adding
information about the object quantity. By default, AVDT ini-
tializes every detected object with a quantity of 1. If a quan-
tity occurs in front of a noun, the number is replaced.(Fig. 3).

Relations. In grammar, a preposition is a part-of-speech
indicating a relation between a noun and other words in
a sentence. As we focus on identifying prepositions de-
scribing spatial relations in static scenes, we refer to Lan-
dau et al. [LJ93] who proposed a list of spatial preposi-
tions in English. In order to ease the interpretation process
(Sec. 4.1), we collected the prepositions describing static re-
lations, grouped them according to their semantic meaning,
and chose an arbitrary representative out of each class. Un-
der, underneath, below, beneath, e.g., form a group with
the representative under. Due to very small and insignifi-
cant differences in the meaning of the spatial prepositions
within a group, we interpret them similar to the representa-
tive one. Furthermore, some spatial relations are hidden in
compounds of a preposition and a prepositional phrase, e.g.,
“on the left side”. In general, such a part of a sentence is
used with another prepositional phrase construction like “of
the table”. For achieving a homogeneous spatial-relation-
evaluation system, AVDT identifies spatial components like
“left” and treats them as normal prepositions (Fig. 4).

Input: On the left side
POS Tags: IN DT NN NN

Output: left
Retag: IN

Figure 4: Prepositional phrases are identified and spatial
components, such as “left”, are extracted and refined.

Roles. In order to indicate the purpose of an object within
a block, it gets associated with a specific tag which is de-
fined based on the sentence structure. Therefore, we use the
dependencies extracted from GATE as a basis. Whereas de-
pendency parsers link heads with dependents [Cov01], we
derive a structure where the head object is directly connected
with its dependent object (Fig. 3). From this we retrieve the
two roles of a supporter and a dependent. A supporter is
specified as the noun following a preposition and not being
related to another noun. Subsequently, a dependent refers to
a noun that is grammatically related to a supporter.

Ordering. Saving a position information for the collected
elements within a sentence is important as their chronologi-
cal order within a block is not always the same. In order to
keep our system as flexible as possible concerning the input
technique, a user is allowed to enter his text in various ways.
For example “On the table is a vase.” is accepted as well

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

as “A vase is on the table.”. Because AVDT interprets each
block as a sequence with the following order,

Preposition→ Supporter→ Dependent

the system checks the elements of every incoming block for
their correct arrangement. Therefore, sentences like “A vase
is on the table.” are automatically reordered which leads to
a robust and less sensitive input interpretation.

The resulting meta-data enriched POSIs can now be used
to build a directed graph representation.

3.2. Representing Text as a Directed Graph
The illustration in form of a directed graph eases the process
of calculating spatial relations because it clearly presents the
dependencies between the retrieved POSIs and is simple to
traverse. The noun POSIs, either acting as a supporter or a
dependent in their blocks, are processed into the nodes of a
directed graph. Furthermore, we identify nouns that refer to
the same object and link them to the same 3D model.
Graph Structure. While the root represents the origin of
the scene, i.e., a root element is the only independent POSI
in the graph, the leaf level contains all dependents that do
not support any other object. Consequently, any other POSI
occurring in the graph represents an object that supports an-
other element but is also a dependent at the same time.
Link with 3D Meshes. As nouns within a descriptive text
often refer to the same real world objects, we invented sev-
eral atomic rules (Table 1) in order to ascertain that POSIs
that refer to the same object are linked to the same 3D object.
We also link POSIs that use the same noun but refer to a dif-
ferent object in the real world with a new, separate copy of
the same 3D model. Considering the sample text “On the ta-
ble is a plate. Beside the plate is a spoon.”. Obviously, both
sentence blocks include the noun POSI “plate”. Whereas in
block 1 the plate implies the role of the dependent, it ap-
pears as a supporting POSI in block 2. Our rules for solving
linguistic ambiguities define an incoming POSI, that has to
be processed, as POSIi. Already evaluated supporter or de-
pendent POSIs are marked as either POSISup or POSIDep.
Since the POSI-related block plays an important role, it is il-
lustrated by B(value), where the value is either an incoming,
supporting, or dependent POSI. Furthermore, the word cycle
in rule 6 refers to a linguistic cycle (Fig. 5).

All rules compare the lemma form of an incoming POSI
with the lemma form of the existing POSI. Therefore, the
“IF” clauses are true only if the lemmas of the two POSIs are
the same. Rule 1 links a new incoming and not yet existing
POSI with a new mesh. Rules 2 and 3 consider repeated sup-
porters or dependents. We thereby assume that a supporter
may serve for various dependents (2), whereas various de-
pendents may depend from different supporters (3). Rules 4
and 5 resolve textual dependencies. This considers the fact
that a POSI may act as a supporter as well as a dependent
at the same time. Although such POSIs, containing different
roles (as a supporter and a dependent POSI), have to point

1) IF !(POSIi.exists)
LINK POSIi WITH new mesh

2) IF (POSIiSup.lemma == POSISup.lemma)
LINK POSIiSup WITH POSISup.mesh

3) IF (!(B(POSIiDep) == B(POSIDep))
&& (POSIiDep.lemma == POSIDep.lemma))
LINK POSIiDep WITH new mesh

ELSE ABORT BECAUSE Repetition

4) IF (POSIiSup.lemma == POSIDep.lemma)
LINK POSIiSup WITH POSIDep.mesh

5) IF ((B(POSIiDep) FOLLOWS B(POSISup))
&& (POSIiDep.lemma == POSISup.lemma))
LINK POSIiDep WITH POSISup.mesh
LINK POSISup WITH

(POSISup FROM POSIiDep)
ELSE LINK POSIiDep WITH new mesh

6) IF (cycle)
LINK POSIiDep WITH new mesh

Table 1: Atomic rules link incoming POSIi either with mesh
of an existing POSI (same lemma) or with a new 3D model.

to the same mesh, it is important that they keep their infor-
mation about the spatial relation (the supporting POSI of the
former dependent is saved). As can be seen in rule 4, POSIs
that act as supporter and dependent at the same time are cre-
ated by linking the dependent POSI to the 3D model of the
supporter POSI. Furthermore, the supporter POSI receives
information about the supporter of the dependent POSI. This
way, both POSIs are clustered under the same mesh by keep-
ing all relevant dependency information at the same time.

On the table is
a plate. An ap-
ple is lying on
the plate and un-
der the table is
another apple.

(a) Cycle (b) Second dependent (c) Input

Figure 5: By creating an additional dependency, the linguis-
tic cycle is dissolved and a directed graph is achieved.

Finally, rule 6 is responsible for linguistic cycles which
may be used in order to create a stack of different objects.
In this case, we want all those objects to obtain their own
3D model. The example in Fig. 5 shows that a cycle is dis-
solved by creating an additional dependency for achieving a
directed graph structure. We create a second dependent POSI
for the “apple” and link it to the table. This results in a clean
hierarchical structure that is easy to be evaluated afterwards.

Clean Representation. By deleting remaining duplicates,
we achieve a clean hierarchical representation of the ana-
lyzed text that can be seen as a directed graph with one root.
An example is visualized in Fig. 6, where the AVDT system
determines that the POSI, representing the table, is the root

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

of the graph, since it is the only POSI that does not depend
on another one. Consequently, the vase and plate POSIs rep-
resent dependents that also function as supporters. The re-
maining leafs of the graph illustrate dependents.

On the table is a plate. An
apple is lying on the plate.
Furthermore, a vase is stand-
ing on the table. Beside the
plate is a knife.

(a) Clean representation (b) Input

Figure 6: After duplicates are deleted, a clean directed
graph representation is achieved.

Unconnected Text. Another aspect refers to the problem of
unconnected text descriptions. In case of incoherent textual
information, our system is able to generate multiple digraphs
that represent such texts. Multiple graphs are dissolved by
placing an evaluated graph at a prior one (Fig. 7).

On the table is a plate. The man is standing behind the chair. On the rack is a bowl.

(a) Multiple graphs (b) Resulting scene

Figure 7: Unconnected text descriptions (input on top) cre-
ate multiple independent graphs. Every graph is evaluated
separately and situated at a prior calculated graph.

Representing a given arbitrary text as a directed graph sig-
nificantly eases the process of calculating spatial relations
between two related POSIs. For instance, in order to calcu-
late the final position of the apple in the example mentioned
above (Fig. 6), one must only regard the position of the sup-
porting plate POSI. Due to the hierarchical structure of the
graph, the plate already contains its final position and, there-
fore, the location of the apple can easily be computed as de-
scribed in the following section.

4. Natural Arrangement of Objects
As we focus on analyzing grammatical syntax and depen-
dencies in natural language and correctly mapping the re-
sults to objects and their relations within static scenes, any
further parameters associated with noun POSIs, except in-
formation about quantity, are ignored. Aiming at enabling
the user to easily depict a scene while receiving a basic nice
looking result, the interpretation of spatial relations should
not only be correct and accurate. Rather, it should also be
capable of delivering a virtual scene with “natural” arranged
objects, i.e., like one would expect it in the real world.

4.1. Spatial Dependencies Interpretation

As already mentioned in Sec. 3.1.2, we group prepositions
concerning static spatial relations and chose a representa-
tive for each class. The representatives are all interpreted
uniquely. Our system creates an axis-aligned bounding box
(BB) for each object endorsed in the graph. Next, AVDT cal-
culates the position of a bounding box, depending on the
saved spatial relation and the final position of the supporter
saved within the currently viewed POSI. The final location
is then stored in a transformation matrix, which is combined
with a rigid body later on. Finally, all rigid bodies are pro-
cessed by a physics engine and the final scene is rendered.

The pseudo-code shown in Table 2 illustrates how the spa-
tial relation beside is calculated. Every dependent is placed
randomly at one of the four sides of the bounding box
of its supporter. Some more examples of relations we im-

FOR (random side of supporters BB)
CALCULATE height position for dependent
IF (random side not yet used)

PLACE dependent
ELSE IF (other side free)

PLACE dependent
ELSE

PREVENT collision PLACE dependent

Table 2: Pseudo-code of preposition “beside”

plemented and their resulting renderings are visualized in
Fig. 8. The spatial relation in, for example, is evaluated
by placing the dependent on the bottom of the supporters
model. Because an object does not stand exactly on the cen-
ter within another entity, random coordinates are used in or-
der to vary the position of the dependent. If our system de-
tects the spatial dependency on, the dependent is placed on
top of the supporters bounding box. The position on the sur-
face is not fixed and the system calculates random coordi-
nates over the top surface of the supporter. However, in or-
der to prevent a dependent from floating in the air or falling
down when physics are activated, the computed coordinates
do not cover the entire surface of the bounding box. Further,
the spatial relations left, right, behind, and front are inter-
preted as fixed on a specific side of the bounding box. Our
system evaluates the relationship above by applying no con-
tact between the dependent and the supporter. Therefore, the
depending object is placed in the “air” above the center of
the supporter. Subsequently, the spatial preposition under is
processed by situating the dependent below the supporter.
This also requires changing the position of the supporting
object as well as altering the locations of other possibly par-
ticipating entities. However, the correlation around differs
as being interpreted as a uniform distribution of one or more
dependents around their supporter, placed on a circular orbit.
This example especially illustrates that AVDT easily can be
extended in order to increase the positioning possibilities.

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

(a) In (b) Left (c) Right

(d) On (e) Front (f) Behind

(g) Around (h) Above (i) Under

Figure 8: Renderings for some object-to-object relations.

4.2. Positioning Heuristics for Natural Appearance
For improving the “natural” look of a 3D virtual environ-
ment, heuristics are applied within AVDT. These rough rules
are used while a spatial relation is evaluated and calculated.
Distance Heuristic. The first heuristic refers to the distance
of dependents to their supporter and calculates the distance
ratio based on:

Hdist
dimDep>dimSup

=
(dimDep−dimSup)

cd

This means that in case the dependent has a bigger dimen-
sion (dimDep) than its supporting object (dimSup), the dis-
tance is evaluated from the difference of both dimensions.
The result is divided by a constant cd for normalizing the
calculated distance to a realistic one. The larger the constant
is chosen, the smaller the space between a dependent and its
supporter gets. Whereas the maximum distance is achieved
for cd = 1, a value of cd = 1.7 seems to create realistic stage
setups. Based on this heuristic, a bed which is placed near a
table is likely to be further away than a chair (Fig. 9).

Disabled heuristics cd = 1.7; cr = 0; cd = 1.7; cr = 15;

Figure 9: Visualizations for varied positioning heuristic pa-
rameters show different looks above same stage setup.

Rotation Heuristic. For further increasing the realism of a
3D scenario, we use a second positioning heuristic, which is
used to ensure that every dependent is facing its supporter
in the scene. For example, an armchair that is standing on
the left side of a table should face the supporting table that

is located on its right side. Moreover, this heuristic applies a
little random rotation to all of the occurring objects within a
scene in order to achieve an “untidy” appearance. The rota-
tion heuristic is defined as:

Hrot = cos(α+(ξ∗ cr))+ sin(α+(ξ∗ cr))∗~Vr

AVDT uses rotation quaternions, which are applied to the
transforms of the axis-aligned bounding boxes. By passing
an appropriate angle α as well as a vector describing the ro-
tation axis, AVDT adjusts a dependent on its supporter. Fur-
ther, a random number ξ ∈ [−1,1] combined with a rotation
constant cr ∈ [0,360] is used to destroy the perfect alignment
of a dependent to its supporter and results in an untidy scene.
In general, one would never arrange one’s furniture such that
it is perfectly aligned in the room (cr = 0). The same prin-
ciple applies in AVDT. Every object is randomly rotated in
2D space (3D for preposition in) in order to increase the nat-
uralness within a virtual environment (Fig. 9).

By applying positioning heuristics on the results of the po-
sition calculation, our system is able to further increase the
naturalness within a created virtual environment, without us-
ing any extra parameters, e.g., size or distance specifications.
Also, by varying the different parameters of the heuristics,
one can achieve very different results for the same input text.

5. Results
In the following, we present some results for different in-
put texts. As previously described, every POSI has been as-
signed with an adequate 3D model and rigid body. Also, ev-
ery spatial relation has been evaluated and combined with
positioning heuristics. Finally, the resulting virtual environ-
ment is rendered interactively, offering the user the opportu-
nity to fly around and manipulate objects within the scene.

A table is standing on the carpet. On the
left side of the carpet is a sofa. A couch
is in front of the carpet and behind the
carpet is a shelving. The TV is placed
on the shelving. On the left side of the
shelving is a loudspeaker. A subwoofer
is on the left side of the loudspeaker.
Another loudspeaker is on the right side
of the shelving. On the left side of the
TV is a statue. On the table stands a
bowl and in the bowl lie 2 apples.

Figure 10: Top: Input text (left) describing common living
room photo (right). Bottom: Resulting indoor visualizations
by AVDT using different models.

We compare an example of indoor scene visualizations
(Fig. 10) of AVDT to an outdoor scene result (Fig. 11). The
indoor examples show the same scene with different models

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

and are based on a simple text describing a photo of a com-
mon living room. As can be seen, the various objects are
nicely placed in the space and are correctly arranged accord-
ing their spatial dependencies. Besides, the adapted models
(bottom right) result in a quite satisfying interpretation of
the real world picture (top right). As the capabilities of the

In front of a cottage is a tree. On the left side of the cottage are 2 trees and 3 trees are
growing on the right side of the cottage. Behind the cottage is another tree. A bench
is standing on the left side of the first tree and in front of the bench is a man. In front
of the first tree is a fence. An oldtimer waits in front of the fence. On the left side of
the oldtimer is a lantern and another lantern is on the right side of the oldtimer.

Figure 11: AVDT illustration of an outdoor scenario (bot-
tom) based on an descriptive input text (top).

AVDT system are not limited to the generation of indoor
scenes, the proposed algorithms and mechanisms are also
able to create natural looking landscape scenarios. The visu-
alization shown in Fig. 11 gives a nice example of an outdoor
scene rendering in which the arrangement of the several ob-
jects leads to a realistic impression.

6. Discussion and Future Work
After the comparision to WordsEye, some further limitations
are discussed serving as a basis for future work at the same
time. Although our work already creates nicely looking 3D
scenes from natural language, several research areas could
increase the capabilities as well as the usability of AVDT.

Comparision to WordsEye. As already mentioned is
WordsEye [CS01] one of the most well-known projects in
the field of language-based 3D scene generation. Natural
language is visualized in a nice and realistic way. Thus,
we want to compare some main differences concerning our
work. In order to ease the modeling process, we mainly fo-

Left Above Around

Figure 12: Failing spatial interpretations in WordsEye.

cus on an automatic realistic placement of objects. Thus, we
treat every class of object-to-object relations differently and

interpret spatial relations correctly, whereas WordsEye of-
ten needs additional user interaction and parameter tuning
for realistic spatial arrangements. Some examples for fail-
ing placements in WordsEye are shown in Fig. 12 whereas
our correct ones were already mentioned in Fig. 8. Besides,
contrary to WordsEye, AVDT is capable of dealing with lin-
guistic cycles. Furthermore, whereas WordsEye requires a
defined pattern for user input, our system allows more com-
fortable input because of syntax reordering. An example is
given in Fig. 13. Although our system allows for more flex-

WordsEye WordsEye AVDT

Figure 13: Comparison to WordsEye concerning syntax sta-
bility. Input (a): “The vase is on the table.” Input (b): “On
the table is a vase.” Both input texts result in (c) by AVDT.

ible linguistic input, WordsEye, on the other hand, provides
colors, textures, etc. As those attributes add a more realistic
appearance to a scene, a further step in AVDT will consist in
interpreting and including more context such as adjectives,
and adverbs.

Positioning. Although the positioning system is stable, mis-
placements of objects may still occur (Fig. 14). This can be
solved by developing a method that automatically adjusts
the position of each object by traversing the graph back-
wards. At this point, a user can solve this problem by iter-

A vase is stand-
ing on the ta-
ble. Beside the
vase is a plate.
A spoon is left to
the plate.

(a) Wrong placement (b) Result (c) Input

Figure 14: Lack of collision tests may lead to wrongly
placed objects (a). At this stage, the misplaced objects fall
to the ground due to the underlying physics engine (b).

ating the scene once again or by manually repositioning the
objects. Further, wrong placements appearing due to limi-
tations of a bounding box can be avoided by implementing
object-tight bounding boxes or switching to triangle-based
collision detection. Unfortunately, this would increase com-
putation time. Besides, as described in Sec. 4.2, AVDT does
not evaluate any extra parameters for the purpose of creating
natural looking virtual environments. Therefore, the AVDT
system cannot evaluate spatial relations like “On the second
plate is a spoon.” Furthermore, although our system already
improves the appearance of a created 3D scene by apply-
ing positioning heuristics, it has no knowledge about how
objects are used in real life, which complicates the determi-
nation of the orientation of objects and might also lead to

c© The Eurographics Association 2011.

C. Spika, K. Schwarz, H. Dammertz, & H. P. A. Lensch / AVDT - Automatic Visualization of Descriptive Texts

wrongly interpreted locations. By combining the used NLP
techniques with common-sense knowledge, as introduced in
ConceptNet [Hav07], the positioning of objects could be sig-
nificantly eased and enhanced.
Text Processing. Concerning text, several passages are fil-
tered out intentionally. For example, our system does not al-
low repetitions since they are generally not used to describe
a scene, at least in the normal linguistic usage. Moreover,
AVDT evaluates cyclic expressions like “On the table is a
vase. A flower is in the vase. The flower is under the ta-
ble.” by generating a second dependent object for the flower.
Both cases, repetitions and cyclic text segments, are recog-
nized and filtered out or corrected by the rules described in
Sec. 3.2. Anyway, due to the very complex nature of natural
language, our system is not capable of handling all kinds of
different text. Further enhancements in the amount of natu-
ral language processing could be achieved by extending the
information extraction process. Using linguistic databases
like WordNet [Mil95] for enlarging the semantic analysis of
a text, or WordNet-Affect [Val04] for filtering unnecessary
nouns like feelings or emotions, could improve the natural
language understanding of AVDT.
Natural Appearance. Finally, for further raising the natu-
ralness of a scene, the interpretation of adverbs or adjectives
that indicate attributes of objects could be added. Besides, it
is not only important to position and orient objects realisti-
cally, but also to visualize their “behaviour”. This includes
depicting poses for (humanoid) objects by evaluating verbs
and/or common-sense knowledge, or using the incorporated
physics engine for physical simulations, e.g., skeletal dy-
namics, fluids, or surfaces.

7. Conclusion
The work we presented in this paper further extends the bor-
der of language-based 3D scene generation. Our AVDT sys-
tem enables a user to quickly generate virtual environments
by using natural language as input. Starting from a descrip-
tive text, relevant information about objects and spatial rela-
tions are gathered and refined. The findings are used to link
retrieved entities to appropriate 3D models as well as deriv-
ing a directed graph representation of the text. With the aid
of that digraph, spatial relations between objects are evalu-
ated. The resulting locations and models are finally assem-
bled in an interactive virtual environment.

Especially the development of a rule-based text interpre-
tation module, as well as the clear and easy to traverse hi-
erarchical graph representation and, also, the accurate inter-
pretation of spatial relations in combination with position-
ing heuristics improved the success of creating virtual en-
vironments close to a user-given input text. Several results
illustrated how often the intention of an underlying descrip-
tive text is already properly visualized by the AVDT system.
This work can be further extended and one can imagine nu-
merous applications in which there is need for transferring
spatial ideas in visual communication.

References
[ADMF83] ADORNI G., DI MANZO M., FERRARI G.: Natural

language input for scene generation. In Proceedings of the first
conference on European chapter of the Association for Compu-
tational Linguistics (1983), Association for Computational Lin-
guistics, pp. 175–182. 2

[CL96] COWIE J., LEHNERT W.: Information Extraction. Com-
munications of the ACM 39 (1996), 80–91. 2

[CMBea10] CUNNINGHAM H., MAYNARD D., BONTCHEVA
K., ET AL.: Delevoping Language Processing Components with
GATE Version 6 (a User Guide), version 6 ed. The University of
Sheffield, November 2010. 3

[CMBT02] CUNNINGHAM H., MAYNARD D., BONTCHEVA K.,
TABLAN V.: A framework and graphical development environ-
ment for robust NLP tools and applications. In ACL - The Asso-
ciation for Computational Linguistics (2002), pp. 168–175. 2

[Cov01] COVINGTON M. A.: A fundamental algorithm for de-
pendency parsing. In Proceedings of the 39th Annual ACM
Southeast Conference (2001), pp. 95–102. 3

[CS01] COYNE B., SPROAT R.: WordsEye: An Automatic Text-
to-Scene Conversion System. In SIGGRAPH 2001, Computer
Graphics Proceedings (2001), Annual Conference Series, ACM
Press / ACM SIGGRAPH, pp. 487–496. 2, 7

[CW96] CLAY S. R., WILHELMS J.: Put: Language-Based Inter-
active Manipulation of Objects. IEEE Computer Graphics and
Applications 16, 2 (Mar. 1996), 31–39. 2

[dMMM06] DE MARNEFFE M.-C., MACCARTNEY B., MAN-
NING C. D.: Generating typed dependency parses from phrase
structure parses. In LREC (2006). 3

[Hav07] HAVASI C.: ConceptNet 3: a flexible, multilingual se-
mantic network for common sense knowledge. In the 22nd Con-
ference on Artificial Intelligence (2007). 8

[Hep00] HEPPLE M.: Independence and commitment: assump-
tions for rapid training and execution of rule-based POS taggers.
In Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics (Morristown, NJ, USA, 2000), ACL
’00, Association for Computational Linguistics, pp. 278–277. 2

[JM08] JURAFSKY D., MARTIN J. H.: Speech and language pro-
cessing: an introduction to natural language processing, com-
putational linguistics, and speech recognition (Second Edition).
Prentice Hall, 2008. 2

[LJ93] LANDAU B., JACKENDOFF R.: “What” and “where” in
spatial language and spatial cognition. Behavioral and Brain Sci-
ences 16(2) (1993), 217–238. 3

[Mil95] MILLER G. A.: Wordnet: A lexical database for english.
Commun. ACM 38 (November 1995), 39–41. 8

[MRS08] MANNING C. D., RAGHAVAN P., SCHÜTZE H.: Intro-
duction to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008. 3

[SRC∗10] SCHWARZ K., ROJTBERG P., CASPAR J.,
GUREVYCH I., GOESELE M., LENSCH H. P. A.: Text-
to-Video: Story Illustration from Online Photo Collections. In
Knowledge-Based and Intelligent Information and Engineering
Systems (2010), vol. 6279 of Lecture Notes in Computer Science,
Springer, pp. 402–409. 2

[Val04] VALITUTTI R.: WordNet-Affect: an Affective Extension
of WordNet. In In Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation (2004), pp. 1083–
1086. 8

[Win71] WINOGRAD T.: Procedures as representation for data in
a computer program for understanding natural language. Tech.
Rep. MAC AI-TR-84, MIT, Cambridge, 1971. 2

c© The Eurographics Association 2011.

