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Multi-dimensional fields

 extension to multi-dimensional feature spaces mathematically straightforward

 requires interaction kernel of the same dimensionality
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Multi-dimensional feature spaces

position x

 some feature spaces are inherently multi-dimensional, e.g. visual space (2D)

 neural representations e.g. in superior colliculus (saccade planning)
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visual scene

neural activity in superior colliculus
[Marino, Trappenberg, Dorris, Munoz 2012]



Multi-dimensional feature spaces

 multi-dimensional feature spaces can also combine qualitatively different features

 example: early visual cortex, neurons with localized spatial receptive fields and 
sensitivity to surface features (orientation, spatial frequency, color, …)

orientation map in tree shrew visual cortex [Alexander et al. 1999]



Combining features in multi-dimensional fields

position

 neural field defined over 
combination of feature spaces 
(space × color)

 not aimed to capture spatial 
arrangement of neurons in the 
cortex

 visual stimuli provide localized 
inputs

visual scene

0° 10° 20°10°20°

co
lo

r



visual scene

Reading out from 2D fields

 2D fields can interact with 
1D fields

 first operation: read out 
of one feature dimension, 
integrate over discarded 
dimensions, e.g. 

𝐼𝑠 𝑥 =  𝑓 𝑢𝑣 𝑥, 𝑦 𝑑𝑦

 often additional Gaussian 
convolution in projection 
for smoothness
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Projections to 2D fields

 projection from 1D to 2D: 
ridge input

 does not specify a 
location in the 2nd 
dimension, does not 
typically induce a peak
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Projections to 2D fields

 intersections of ridges 
can induce a peak and 
produce a combined 
representation of 
multiple features
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Combined vs. separate representations

separate low-dimensional representations

 are much more compact (computationally less 
expensive / fewer neurons) – at sampling rate of 
100 neurons per dimension, 200 neurons for two 
1D fields, 10000 neurons for one 2D field) 

 can represent individual feature values with the 
same precision/reliability as a 2D field

So why use 2D fields at all?



Feature conjunctions

 low-dimensional 
representations do not 
capture feature 
conjunctions (binding 
problem)

 multiple ridge inputs can 
produce spurious peaks

 need combinations of 
low- and high-
dimensional field for 
efficient architectures
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visual scene

Visual search

 if localized peaks are 
present in the 2D field, 
ridge input can be used 
to select one of them 

 read-out along the 2nd 
dimension then allows to 
determine the associated 
feature
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visual scene

Joint selection with bidirectional projections
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 bidirectional projections 
allow coupled selection 
in 1D fields

 can be biased by input to 
either 1D field
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visual scene

 once a single item is 
selected jointly in both 
1D fields, ambiguity in 
feature conjunctions is 
resolved

 object features can then 
be processed in separate 
pathways

 sequential processing for 
multiple items
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Case Study: VWM Biases Saccade Behavior
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Case Study: VWM Biases Saccade Behavior

horizontal position
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Case Study: VWM Biases Saccade Behavior

Video



Case Study: VWM Biases Saccade Behavior

[Schneegans, Spencer, Schöner, Hwang, Hollingworth, 2014]
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Operations in higher-dimensional fields

 projections between fields can implement simple mappings if 
they meet certain conditions (e.g. continuity)

 what about operations that combine two different inputs? 

?



Operations in higher-dimensional fields

 combining/expanding representations into a single high-
dimensional field allows arbitrary mappings to an output field 
(as long as mapping is continuous)



Retinocentric vs. allocentric positions



Spatial transformations
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 for transformation of 1D location information: 2D field over retinal space and 
gaze direction



Spatial transformations
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Spatial transformations

 in angular coordinates for pure rotations: retinocentric stimulus position shifts 
by inverse of gaze change

 → points corresponding to the same location lie on a diagonal in the combined 
representation
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Spatial transformations

 can be mapped onto gaze-invariant 
(body-centered) representation: diagonal 
read-out
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Spatial transformations

 reverse projection can be used to predict 
retinocentric location (e.g. to orientate 
to memorized location), or estimate gaze 
direction by matching retinal and body-
centered representations (e.g. Denève, 
Latham, Pouget 2001)
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Case Study: Saccadic Remapping Model

Video



Case Study: Saccadic Remapping Model
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Experimental results (average spike rate of single-cell recording in LIP)

Simulation results (field output at one retinocentric position)

Stimulus in RF turned on 
and off

Saccade moves stimulus out 
of RF

Saccade brings former 
stimulus position into RF

[Schneegans, Schöner 2012; experimental results by Duhamel et al. 1992]



Conclusions

 higher-dimensional fields can represent multiple feature 
dimensions in a combined fashion

 more costly than low-dimensional fields, but needed to 
represent feature conjunctions rather than separate feature 
values

 can provide associations between feature dimensions, e.g. for 
visual search

 can implement complex mappings between feature dimensions, 
e.g. for spatial transformations



Resources

cosivina

 http://bitbucket.org/sschneegans/cosivina

 object-oriented toolbox for Matlab, allows easy composition 
and visualization of DNF models

cedar

 http://bitbucket.org/cedar

 C++ framework for DNF models and robotics, with graphical 
user interface for composing architectures


