DAG Compressions

L. Gordeev

Uni-Tübingen, PUC Rio de Janeiro

Oberwolfach, November, 2011

§1. Term compression -1-

Im ▶ < 10</p>

æ

§1. Term compression -1-

• Dag-complexity (or graph-complexity) of a given algebraic term t is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents t. This definition can be constructively specified, as follows.

§1. Term compression -1-

• Dag-complexity (or graph-complexity) of a given algebraic term t is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents t. This definition can be constructively specified, as follows.

Definition

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The *terms*:

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The *terms*:

 Individual variables and constants are terms of the depth 0, also called *atoms*.

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The *terms*:

- Individual variables and constants are terms of the depth 0, also called *atoms*.
- If \$\varsigma\$, \$\vartheta\$ any terms and \$f\$ any function symbol, then
 f(\$\varsigma\$, \$\vartheta\$) is a term of the depth \$1 + max {depth(\$\varsisma\$), depth(\$\vartheta\$)};

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The *terms*:

- Individual variables and constants are terms of the depth 0, also called *atoms*.
- If \$\vec{s}\$, \$t\$ are any terms and \$f\$ any function symbol, then \$f\$ (\$\vec{s}\$,\$t\$) is a term of the depth \$1 + max {depth (\$\vec{s}\$), depth (\$t\$)}; in the Łukasiewicz form we write \$f\$\$\$t\$ instead of \$f\$ (\$\vec{s}\$,\$t\$).

Term compression -2-

L. Gordeev DAG Compressions

æ

@▶ < ≣

•
$$\delta(\mathfrak{t}) := \delta\{\mathfrak{t}\}.$$

• $\delta\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\} := \#\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\}, \text{ if } \mathfrak{t}_1, \dots, \mathfrak{t}_k \text{ are atoms.}$

1
$$\delta(\mathfrak{t}) := \delta\{\mathfrak{t}\}.$$

2 $\delta\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\} := \#\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\}, \text{ if } \mathfrak{t}_1, \dots, \mathfrak{t}_k \text{ are atoms.}$

- $\delta \{f(\mathfrak{s},\mathfrak{t}),\mathfrak{t}_1,\cdots,\mathfrak{t}_k\} := 1 + \delta \{\mathfrak{s},\mathfrak{t},\mathfrak{t}_1,\cdots,\mathfrak{t}_k\}, \text{ if the depth of } \delta \{f(\mathfrak{s},\mathfrak{t}),\mathfrak{t}_1,\cdots,\mathfrak{t}_k\}$
 - $f(\mathfrak{s},\mathfrak{t})$ is \geq than maximal depth of \mathfrak{t}_i , $1 \leq i \leq k$.

1
$$\delta(\mathfrak{t}) := \delta\{\mathfrak{t}\}.$$

2 $\delta\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\} := \#\{\mathfrak{t}_1, \dots, \mathfrak{t}_k\}, \text{ if } \mathfrak{t}_1, \dots, \mathfrak{t}_k \text{ are atoms.}$

- $\delta \{f(\mathfrak{s},\mathfrak{t}),\mathfrak{t}_1,\cdots,\mathfrak{t}_k\} := 1 + \delta \{\mathfrak{s},\mathfrak{t},\mathfrak{t}_1,\cdots,\mathfrak{t}_k\}, \text{ if the depth of } \delta \{f(\mathfrak{s},\mathfrak{t}),\mathfrak{t}_1,\cdots,\mathfrak{t}_k\}$
 - $f(\mathfrak{s},\mathfrak{t})$ is \geq than maximal depth of \mathfrak{t}_i , $1 \leq i \leq k$.

For any term t of \mathcal{L} we define the *dag-complexity* of t, δ (t).

$$\delta(\mathfrak{t}) := \delta \{\mathfrak{t}\}.$$

- $\ \, {\bf 0} \ \, \delta\left\{\mathfrak{t}_1,\cdots,\mathfrak{t}_k\right\}:=\#\left\{\mathfrak{t}_1,\cdots,\mathfrak{t}_k\right\}, \, \text{if } \mathfrak{t}_1,\,...,\,\mathfrak{t}_k \text{ are atoms}.$
- $\delta \{f(\mathfrak{s},\mathfrak{t}),\mathfrak{t}_1,\cdots,\mathfrak{t}_k\} := 1 + \delta \{\mathfrak{s},\mathfrak{t},\mathfrak{t}_1,\cdots,\mathfrak{t}_k\}, \text{ if the depth of } f(\mathfrak{s},\mathfrak{t}) \text{ is } \geq \text{ than maximal depth of } \mathfrak{t}_i, 1 \leq i \leq k.$

• $\delta(\mathfrak{t})$ is easily computable e. g. in Maple.

/⊒ ▶ < ∃ ▶ <

Term compression -3-

L. Gordeev DAG Compressions

æ

⊡ ► < ≣

Consider term $\mathfrak{t} = f(g(x, f(y, h(x, y))), h(x, y))$ of the depth 4 in the language with variables x, y and function symbols f, g, h.

Consider term t = f(g(x, f(y, h(x, y))), h(x, y)) of the depth 4 in the language with variables x, y and function symbols f, g, h. We have

Consider term t = f(g(x, f(y, h(x, y))), h(x, y)) of the depth 4 in the language with variables x, y and function symbols f, g, h. We have

$$\delta(\mathfrak{t}) = \delta\{\mathfrak{t}\} = 1 + \delta\{g(x, f(y, h(x, y))), h(x, y)\} = 2 + \delta\{x, f(y, h(x, y)), h(x, y)\} = 3 + \delta\{x, y, h(x, y), h(x, y)\} = 3 + \delta\{x, y, h(x, y)\} = 4 + \delta\{x, y, x, y\} = 4 + \delta\{x, y\} = 4 + \#\{x, y\} = 4 + 2 = 6$$

Consider term t = f(g(x, f(y, h(x, y))), h(x, y)) of the depth 4 in the language with variables x, y and function symbols f, g, h. We have

$$\delta(\mathfrak{t}) = \delta\{\mathfrak{t}\} = 1 + \delta\{g(x, f(y, h(x, y))), h(x, y)\}$$

= 2 + \delta\{x, f(y, h(x, y)), h(x, y)\}
= 3 + \delta\{x, y, h(x, y), h(x, y)\}
= 3 + \delta\{x, y, h(x, y)\} = 4 + \delta\{x, y, x, y\}
= 4 + \delta\{x, y\} = 4 + \#\{x, y\}
= 4 + 2 = 6

Note that the ordinary Łukasiewicz length of t is 11.

Term compression -4-

L. Gordeev DAG Compressions

æ

Э

⊡ ► < ≣

æ

@▶ ∢ ≣▶

Define Fibonacci sequence of terms $\{F(i)\}_{i\geq 0}$ in the language \mathcal{L}_{F} with two individual constants 0, 1 and one function symbol +;

•
$$F(0) := 0, F(1) := 1, F(i+2) := F(i) + F(i+1)$$

Define Fibonacci sequence of terms $\{F(i)\}_{i\geq 0}$ in the language \mathcal{L}_{F} with two individual constants 0, 1 and one function symbol +; (use standard infix notation $\mathfrak{s} + \mathfrak{t}$ instead of Łukasiewicz $+\mathfrak{st}$).

•
$$F(0) := 0, F(1) := 1, F(i+2) := F(i) + F(i+1)$$

• The ordinary length of F(i) slightly exceeds the i^{th} Fibonacci number, thus being exponential in i.

•
$$F(0) := 0, F(1) := 1, F(i+2) := F(i) + F(i+1)$$

- The ordinary length of F(i) slightly exceeds the i^{th} Fibonacci number, thus being exponential in i.
- But the corresponding dag-complexity is merely linear in *i* :

•
$$F(0) := 0, F(1) := 1, F(i+2) := F(i) + F(i+1)$$

- The ordinary length of F(i) slightly exceeds the i^{th} Fibonacci number, thus being exponential in i.
- But the corresponding dag-complexity is merely linear in i: $\delta(F(0)) = \delta(F(1)) = 1$ and $\delta(F(i)) = i + 1$ for all i > 1.

æ

⊡ ► < ≣

Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- $D \rhd_0 D' :$

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D' : D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (contraction),

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (*contraction*), where ℓ is the labeling function:

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (contraction), where ℓ is the labeling function:
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), (x \to y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (contraction), where ℓ is the labeling function:
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), (x \to y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
 - D' := replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (contraction), where ℓ is the labeling function:
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), (x \to y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
 - D' := replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
- **3** $D \triangleright_2 D'$ (conglutination):

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (contraction), where ℓ is the labeling function:
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), (x \to y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
 - D' := replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
- **(a)** $D \triangleright_2 D'$ (conglutination):
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), D_{>y} \neq \emptyset$ is a tree and $x \notin D_{>y}$.

- Define reductions ▷₀, ▷₁, ▷₂ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where D_{>y} := the sub-dag of z ≠ y having a path z → y.
- D ⊳₀ D': D' arises from D by identifying all leaves having the same labels and all vertices x, y such that l(x) = l(y) and (x → y) ∈ D. If not applicable, let D' := D.
- **2** $D \triangleright_1 D'$ (*contraction*), where ℓ is the labeling function:
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), (x \to y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
 - D' := replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
- **(a)** $D \triangleright_2 D'$ (conglutination):
 - Let x, y be vertices in D closest to the root such that: $\ell(x) R\ell(y), D_{>y} \neq \emptyset$ is a tree and $x \notin D_{>y}$.
 - D' := D plus new edge $x \to y$ minus $z \in D_{>y}$.

留 と く ヨ と く ヨ と

L. Gordeev DAG Compressions

@▶ < ≣

Let #D be standard size of *D*. Clearlyly every \triangleright_i is size-reducing:

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing: • $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

Let #D be standard size of D. Clearlyly every \rhd_i is size-reducing: • $D \rhd_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing: • $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

Definition

• \triangleright_i -irreducible dag's are called *normal*.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \rhd_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- 2 Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- 2 Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T = D_0 \triangleright_{i_1} \cdots \triangleright_{i_k} D_k \triangleright_0 D_{k+1}$ $(k \ge 0, i_j = 1, 2)$ with normal D_{k+1} .

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- Let T be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree T ∈ T there are chains of dag's T = D₀ ▷_{i1} ··· ▷_{ik} D_k ▷₀ D_{k+1} (k ≥ 0, i_j = 1, 2) with normal D_{k+1}. Clearly #D_{k+1} ≤ #T. Call these D_{k+1} normal dag-like compressions of T.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- Let T be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree T ∈ T there are chains of dag's T = D₀ ▷_{i1} ··· ▷_{ik} D_k ▷₀ D_{k+1} (k ≥ 0, i_j = 1, 2) with normal D_{k+1}. Clearly #D_{k+1} ≤ #T. Call these D_{k+1} normal dag-like compressions of T.
- Set δ(T) := min(#D) for D ranging over normal dag-like compressions of T.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- Let T be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree T ∈ T there are chains of dag's T = D₀ ▷_{i1} ··· ▷_{ik} D_k ▷₀ D_{k+1} (k ≥ 0, i_j = 1, 2) with normal D_{k+1}. Clearly #D_{k+1} ≤ #T. Call these D_{k+1} normal dag-like compressions of T.
- Set δ(T) := min(#D) for D ranging over normal dag-like compressions of T. Call δ(T) the dag-complexity of T.

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

- \triangleright_i -irreducible dag's are called *normal*.
- Let T be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree T ∈ T there are chains of dag's T = D₀ ▷_{i1} ··· ▷_{ik} D_k ▷₀ D_{k+1} (k ≥ 0, i_j = 1, 2) with normal D_{k+1}. Clearly #D_{k+1} ≤ #T. Call these D_{k+1} normal dag-like compressions of T.
- Set δ(T) := min(#D) for D ranging over normal dag-like compressions of T. Call δ(T) the dag-complexity of T.
- For any label Γ , let $\delta(\Gamma) := \min(\delta(T))$ for T ranging over $T \in T$ with root-label Γ .

Let #D be standard size of D. Clearlyly every \triangleright_i is size-reducing:

• $D \triangleright_i D' \Rightarrow \#D > \#D'$, except i = 0 and D = D'.

Definition

- \triangleright_i -irreducible dag's are called *normal*.
- Let T be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree T ∈ T there are chains of dag's T = D₀ ▷_{i1} ··· ▷_{ik} D_k ▷₀ D_{k+1} (k ≥ 0, i_j = 1, 2) with normal D_{k+1}. Clearly #D_{k+1} ≤ #T. Call these D_{k+1} normal dag-like compressions of T.
- Set δ(T) := min(#D) for D ranging over normal dag-like compressions of T. Call δ(T) the dag-complexity of T.
- So For any label Γ, let δ(Γ) := min(δ(Τ)) for T ranging over T ∈ T with root-label Γ. Call δ(Γ) the dag-complexity of Γ.

・ 同 ト ・ ヨ ト ・ ヨ ト

L. Gordeev DAG Compressions

æ

@▶ < ≣

Problem

æ

Ξ.

@▶ ∢ ≣▶

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

⊡ ► < ≣ ►

æ

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

@▶ ∢ ≣▶

æ

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- ● ● ●

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1)

/₽ ► < ∃ ►

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra ($\delta(T) \cong \delta(\Gamma)$, see Chapter 1)
 - Problem 1: Easy (see Chapter 1).

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra ($\delta(T) \cong \delta(\Gamma)$, see Chapter 1)
 - Problem 1: Easy (see Chapter 1).
 - **Problem 2**: Roughly $\#T \ge \delta(T) \ge \log \#T$.

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra ($\delta(T) \cong \delta(\Gamma)$, see Chapter 1)
 - Problem 1: Easy (see Chapter 1).
 - Problem 2: Roughly #T ≥ δ(T) ≥ log #T. In most interesting cases #T exponential in δ(T) (see Chapter 1).

/₽ ► < ∃ ►

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra ($\delta(T) \cong \delta(\Gamma)$, see Chapter 1)
 - Problem 1: Easy (see Chapter 1).
 - Problem 2: Roughly #T ≥ δ(T) ≥ log #T. In most interesting cases #T exponential in δ(T) (see Chapter 1).
 - Generalizations: Both problems are hard.

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

- 2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?
 - Term algebra ($\delta(T) \cong \delta(\Gamma)$, see Chapter 1)
 - Problem 1: Easy (see Chapter 1).
 - Problem 2: Roughly #T ≥ δ(T) ≥ log #T. In most interesting cases #T exponential in δ(T) (see Chapter 1).
 - **Generalizations**: Both problems are hard. Proof theory provides most interesting applications.

Proof-theoretic interpretation

L. Gordeev DAG Compressions

• Let S be given finite collection of axioms and inference rules, as usual in proof theory.

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let *T* and *D* contain resp. *tree-like* and *dag-like proofs* (or *deductions*) as *S*-generated trees, resp. dag's, labeled by, say, *sequents* (Γ, Γ', etc.).

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let *T* and *D* contain resp. *tree-like* and *dag-like proofs* (or *deductions*) as *S*-generated trees, resp. dag's, labeled by, say, *sequents* (Γ, Γ', etc.).
- Let $\Gamma R\Gamma' :\Leftrightarrow \Gamma' = \theta(\Gamma)$ for $\theta \in Hom(Seq \rightarrow Seq)$,

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let T and D contain resp. tree-like and dag-like proofs (or deductions) as S-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ', etc.).
- Let ΓRΓ' :⇔ Γ' = θ (Γ) for θ ∈ Hom(Seq → Seq), provided that sequent-homomorpism θ preserves provability.

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let T and D contain resp. tree-like and dag-like proofs (or deductions) as S-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ', etc.).
- Let ΓRΓ' :⇔ Γ' = θ (Γ) for θ ∈ Hom(Seq → Seq), provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions D ∈ D of T ∈ T obtained by the chains of ▷_i-reductions w.r.t. R.

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let T and D contain resp. tree-like and dag-like proofs (or deductions) as S-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ', etc.).
- Let ΓRΓ' :⇔ Γ' = θ (Γ) for θ ∈ Hom(Seq → Seq), provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions D ∈ D of T ∈ T obtained by the chains of ▷_i-reductions w.r.t. R.
- These normal dag-like compressions are the desired smallest dag-like deductions, while

- Let S be given finite collection of axioms and inference rules, as usual in proof theory.
- Let T and D contain resp. tree-like and dag-like proofs (or deductions) as S-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ', etc.).
- Let ΓRΓ' :⇔ Γ' = θ (Γ) for θ ∈ Hom(Seq → Seq), provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions D ∈ D of T ∈ T obtained by the chains of ▷_i-reductions w.r.t. R.
- These normal dag-like compressions are the desired smallest dag-like deductions, while
- $\delta(T)$ is "true" dag-complexity of given tree-like deduction T.

Proof search connections

L. Gordeev DAG Compressions

æ

• Let ${\mathcal T}$ contain ${\it cutfree}$ tree-like deductions.

- Let \mathcal{T} contain *cutfree* tree-like deductions.
 - By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).

- Let \mathcal{T} contain *cutfree* tree-like deductions.
 - By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
 - However there are significant proof complexity implications (re: "speed-up", to be discussed later).

- Let \mathcal{T} contain *cutfree* tree-like deductions.
 - By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
 - However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style *subformula property*).

- Let \mathcal{T} contain *cutfree* tree-like deductions.
 - By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
 - However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style *subformula property*).
- Our dag-like compressions *D* preserve this advantage, provided that *R* is sufficiently constructive.

- Let ${\mathcal T}$ contain *cutfree* tree-like deductions.
 - By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
 - However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style *subformula property*).
- Our dag-like compressions *D* preserve this advantage, provided that *R* is sufficiently constructive.
 - However D may depend on the choice of ▷₂ involved; thus the sources T can have different normal forms.

Propositional logic

L. Gordeev DAG Compressions

æ

___ ▶ <

Classical propositional logic.

- Classical propositional logic.
- ONF logic.

- Classical propositional logic.
- ONF logic.
- Selation R as homomorphism generated by variables → literals substitutions and suitable weakenings.

- Classical propositional logic.
- ONF logic.
- Selation R as homomorphism generated by variables → literals substitutions and suitable weakenings.
 - (1) is polynomially reducible to (2), so consider (2) & (3).

- Classical propositional logic.
- ONF logic.
- Selation R as homomorphism generated by variables → literals substitutions and suitable weakenings.
 - (1) is polynomially reducible to (2), so consider (2) & (3).
 - **Example**: Very efficient sequent calculus for DNF tautologies, called SEQ $_{\rm TAU}$.

L. Gordeev DAG Compressions

æ

@▶ ∢ ≣▶

• Sequents: $\Gamma = M_1, \cdots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$

< 🗇 🕨 < 🖹 🕨 <

• Sequents: $\Gamma = M_1, \dots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$ • Axiom (A₁): $\{1\}, \{-1\}$

э

▲□ ▶ ▲ 三 ▶ ▲

- Sequents: $\Gamma = M_1, \dots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$ • Axiom (A₁): $\{1\}, \{-1\}$
- Weakening rules

$$(\mathsf{W}_1): \ \frac{\Gamma}{M,\Gamma} \qquad , \qquad (\mathsf{W}_2): \ \frac{M\cup M',\Gamma}{M,\Gamma}$$

/₽ ► < ∃ ►

- Sequents: $\Gamma = M_1, \dots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$ • Axiom (A₁): $\{1\}, \{-1\}$
- Weakening rules

$$(\mathsf{W}_1): \ \frac{\Gamma}{M,\Gamma} \qquad , \qquad (\mathsf{W}_2): \ \frac{M\cup M',\Gamma}{M,\Gamma}$$

• Substitution rule

$$(\mathsf{S}): \ \frac{\mathsf{\Gamma}}{\theta(\mathsf{\Gamma})}, \ \textit{where} \ \theta \in \textit{Hom}\,(\mathsf{Seq} \to \mathsf{Seq})$$

- Sequents: $\Gamma = M_1, \dots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$ • Axiom (A₁): $\{1\}, \{-1\}$
- Weakening rules

$$(\mathsf{W}_1): \ \frac{\Gamma}{M,\Gamma} \qquad , \qquad (\mathsf{W}_2): \ \frac{M\cup M',\Gamma}{M,\Gamma}$$

• Substitution rule

$$(\mathsf{S}): \ rac{\mathsf{\Gamma}}{ heta(\mathsf{\Gamma})}, \ \textit{where} \ heta \in \textit{Hom}\,(\mathsf{Seq} o \mathsf{Seq})$$

• *Main rule*, where $\pm k \notin M_i, M'_j, \Gamma$

$$(\mathsf{Q}): \frac{M_1, \cdots, M_r, \mathsf{\Gamma}}{\{k\} \cup M_1, \cdots, \{k\} \cup M_r, \{-k\} \cup M_1', \cdots, \{-k\} \cup M_{r'}', \mathsf{\Gamma}}$$

- Sequents: $\Gamma = M_1, \dots, M_s$ where $M_i \subset_{\text{fin}} \mathbb{Z}_0 := \mathbb{Z} - \{0\}$ such that $(\forall a, b \in M_i) (a + b \neq 0)$ • Axiom (A₁): $\{1\}, \{-1\}$
- Weakening rules

$$(\mathsf{W}_1): \ rac{\Gamma}{M,\Gamma} \qquad,\qquad (\mathsf{W}_2): \ rac{M\cup M',\Gamma}{M,\Gamma}$$

• Substitution rule

$$(\mathsf{S}): \ rac{\mathsf{\Gamma}}{\theta(\mathsf{\Gamma})}, \ \textit{where} \ \theta \in \textit{Hom}\,(\mathsf{Seq} o \mathsf{Seq})$$

• *Main rule*, where $\pm k \notin M_i, M'_j, \Gamma$

$$(\mathsf{Q}): \frac{M_1, \cdots, M_r, \Gamma}{\{k\} \cup M_1, \cdots, \{k\} \cup M_r, \{-k\} \cup M_1', \cdots, \{-k\} \cup M_{r'}', \Gamma}$$

• Relation $R := \{W_1, W_2, S\}^*$ (transitive closure)

SEQ_{TAU} : Some special cases

æ

-2

SEQ_{TAU} : Some special cases

æ

-2

SEQ_{TAU} : Some special cases

• "Perfect" special case of weakening (W_0) :

$$\frac{\mathsf{\Gamma}}{\{k\}\cup M_1,\cdots,\{k\}\cup M_r,\mathsf{\Gamma}}$$

where $\pm k \notin M_i$, Γ

/₽ ► < ∃ ►

• "Perfect" special case of weakening (W_0) :

$$\frac{\mathsf{\Gamma}}{\{k\}\cup M_1,\cdots,\{k\}\cup M_r,\mathsf{\Gamma}}$$

where $\pm k \notin M_i, \Gamma$

• "Perfect" special case of Q whose side sequent (Γ) is empty, i.e. the following rule Q_0 :

$$\begin{array}{ll} \underline{M_1, \cdots, M_r} & \underline{M'_1, \cdots, M'_{r'}} \\ \overline{\{k\} \cup M_1, \cdots, \{k\} \cup M_r, \{-k\} \cup M'_1, \cdots, \{-k\} \cup M'_{r'}} \\ \text{where } \left(\forall 1 \le i \le r, 1 \le j \le r' \right) \left(\pm k \notin M_i, M'_j \right) \end{array}$$

SEQ_{TAU}: Examples

æ

Э

▲□ ▶ ▲ 目

$\mathsf{SEQ}_{\mathrm{TAU}}: \ \mathsf{Examples}$

Example

$$\frac{(S)\frac{\{1\},\{-1\}}{\{2\},\{-2\}} \xrightarrow{(S)} \{4\},\{-4\}}{\{3\},\{-3,4\},\{-3,-4\}}(Q)}{\{1,2\},\{1,-2\},\{-1,3\},\{-1,-3,4\},\{-1,-3,-4\}}(Q)$$

æ

≣ ।•

▲圖 ▶ ▲ 圖 ▶

$\mathsf{SEQ}_{\mathrm{TAU}}: \ \mathsf{Examples}$

Example

$$\frac{(\mathsf{S}) \xrightarrow{\{1\}, \{-1\}} \xrightarrow{(\mathsf{S})} \{4\}, \{-4\}}{\{2\}, \{-2\}} (\mathsf{Q})}{\{1, 2\}, \{1, -2\}, \{-1, 3\}, \{-1, -3, 4\}, \{-1, -3, -4\}} (\mathsf{Q})}$$

Example

- 4 同 2 4 日 2 4 H

3

L. Gordeev DAG Compressions

æ

=

P.

Definition

L. Gordeev DAG Compressions

æ

- ● ● ●

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF,$$

æ

- ● ● ●

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j\right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0\\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

æ

⊡ ► < ≣

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0 \\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

- **→** → **→**

э

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0\\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

(4日) * * * * * *

э

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0\\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

 Γ is tree-like provable in SEQ_{TAU} iff Γ is dag-like provable in SEQ_{TAU}.

- **→** → **→**

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0\\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

- Γ is tree-like provable in SEQ_{TAU} iff Γ is dag-like provable in SEQ_{TAU}.
- **2** Γ is tree-like provable in SEQ_{TAU} iff $\Gamma \in TAU$.

Semantics of SEQ_{TAIL}

Definition

$$\Gamma = M_1, \cdots, M_s \hookrightarrow \varphi(\Gamma) := \bigvee_{i=1}^s \left(\bigwedge_{j \in M_i} \ell_j \right) \in DNF, \text{ where}$$
$$\ell_j := \begin{cases} x_j & \text{if } j > 0\\ \neg x_{-j} & \text{if } j < 0 \end{cases}.$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

- Γ is tree-like provable in SEQ_{TAU} iff Γ is dag-like provable in SEQ_{TAU}.
- **2** Γ is tree-like provable in SEQ_{TAU} iff $\Gamma \in TAU$.

Proof.				
Easy.				
		《曰》《卽》《臣》《臣》	- 2	うく
	L. Gordeev	DAG Compressions		

More on $\mathsf{SEQ}_{\mathrm{TAU}}$

L. Gordeev DAG Compressions

æ

@▶ < ≣

More on $\mathsf{SEQ}_{\text{TAU}}$

• Well-known "hard" tautologies have polynomial size dag-like proofs in SEQ_{TAU} obtained by basic proof search (see below).

These examples include e.g.:

Doubling names tautologies by Takeuti and Statman.

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.
- Igeonhole principle.

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.
- Igeonhole principle.
- Olique coloring principle (k-clique tautology).

These examples include e.g.:

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.
- Igeonhole principle.
- Olique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate SEQ_{TAU} .

These examples include e.g.:

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.
- Igeonhole principle.
- Glique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate SEQ_{TAU} .

These examples include e.g.:

- Doubling names tautologies by Takeuti and Statman.
- Pibonacci-style tautology by Haeusler and Pereira.
- Igeonhole principle.
- Glique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate SEQ_{TAU} .

Theorem

There are $\Gamma \in TAU$ such that for all tree-like deductions T of Γ , #T is exponential in $\#\Gamma$, whereas $\delta(\Gamma)$ is polynomial in $\#\Gamma$.

Reminder: Clique coloring principle

Reminder: Clique coloring principle

Theorem

Clique coloring principle:

No n-element graph G, |G| = n, has a (k - 1)-colored k-element clique $K \subseteq G$ such that $2 \le k = |K| \le n$ and there is no edge (in G) between any pair of vertices (in K) having the same color.

Basic dag-like proof search in SEQ_{TAU}

L. Gordeev DAG Compressions

Basic dag-like proof search in $\mathsf{SEQ}_{\text{TAU}}$

Consider any given sequent Γ_0 . Starting with Γ_0 reduce sequents by inverting the rules (W₀) and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_i , Γ_j thus obtained which are not axioms and occur in different branches:

Basic dag-like proof search in $\mathsf{SEQ}_{\text{TAU}}$

Consider any given sequent Γ_0 . Starting with Γ_0 reduce sequents by inverting the rules (W₀) and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_i , Γ_j thus obtained which are not axioms and occur in different branches:

• If $\{1\}, \{-1\} R\Gamma_i$ (resp. $\{1\}, \{-1\} R\Gamma_j$), then add arrow $(A_1) \rightarrow \Gamma_i$ (resp. $(A_1) \rightarrow \Gamma_j$) and close the corresponding branch.

Basic dag-like proof search in $\mathsf{SEQ}_{\text{TAU}}$

Consider any given sequent Γ_0 . Starting with Γ_0 reduce sequents by inverting the rules (W₀) and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_i, Γ_j thus obtained which are not axioms and occur in different branches:

- If $\{1\}, \{-1\} R\Gamma_i$ (resp. $\{1\}, \{-1\} R\Gamma_j$), then add arrow $(A_1) \rightarrow \Gamma_i$ (resp. $(A_1) \rightarrow \Gamma_j$) and close the corresponding branch.
- ② If $\Gamma_i R \Gamma_j$ (resp. $\Gamma_j R \Gamma_i$), then add arrow $\Gamma_i \rightarrow \Gamma_j$ (resp. $\Gamma_j \rightarrow \Gamma_i$) and don't reduce Γ_j (resp. Γ_i) anymore.

Consider any given sequent Γ_0 . Starting with Γ_0 reduce sequents by inverting the rules (W₀) and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_i , Γ_j thus obtained which are not axioms and occur in different branches:

- If $\{1\}, \{-1\} R\Gamma_i$ (resp. $\{1\}, \{-1\} R\Gamma_j$), then add arrow $(A_1) \rightarrow \Gamma_i$ (resp. $(A_1) \rightarrow \Gamma_j$) and close the corresponding branch.
- ② If $\Gamma_i R \Gamma_j$ (resp. $\Gamma_j R \Gamma_i$), then add arrow $\Gamma_i \rightarrow \Gamma_j$ (resp. $\Gamma_j \rightarrow \Gamma_i$) and don't reduce Γ_j (resp. Γ_i) anymore.

This reduction procedure terminates. Consider the resulting sequent dag D and let $D \succ_0 D'$.

If all leaves of D are axioms, then D' is a desired dag-like deduction of Γ . Otherwise Γ is invalid.

L. Gordeev DAG Compressions

æ

Э

Im ▶ < 10</p>

• It is well-known that adding *cut rule* to cutfree proof systems can exponentially accelerate propositional provability (re: propositional *speed-up*). However proof systems with (CUT) or *modus ponens* or similar non-analytic inferences, known as general *Frege systems*, don't admit reasonable poor search.

- It is well-known that adding *cut rule* to cutfree proof systems can exponentially accelerate propositional provability (re: propositional *speed-up*). However proof systems with (CUT) or *modus ponens* or similar non-analytic inferences, known as general *Frege systems*, don't admit reasonable poor search.
- Dag-like cutfree calculus SEQ_{TAU} shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search)

 in all most familiar cases of cut-like speed-up.
 But SEQ_{TAU} preserves good proof search options.

- It is well-known that adding *cut rule* to cutfree proof systems can exponentially accelerate propositional provability (re: propositional *speed-up*). However proof systems with (CUT) or *modus ponens* or similar non-analytic inferences, known as general *Frege systems*, don't admit reasonable poor search.
- Dag-like cutfree calculus SEQ_{TAU} shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search)

 in all most familiar cases of cut-like speed-up.
 But SEQ_{TAU} preserves good proof search options.
- By familiar cut-elimination arguments, any Frege system is reducible to tree-like, and hence also dag-like version of SEQ_{TAU} without substitution.

- It is well-known that adding *cut rule* to cutfree proof systems can exponentially accelerate propositional provability (re: propositional *speed-up*). However proof systems with (CUT) or *modus ponens* or similar non-analytic inferences, known as general *Frege systems*, don't admit reasonable poor search.
- Dag-like cutfree calculus SEQ_{TAU} shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search)

 in all most familiar cases of cut-like speed-up.
 But SEQ_{TAU} preserves good proof search options.
- By familiar cut-elimination arguments, any Frege system is reducible to tree-like, and hence also dag-like version of SEQ_{TAU} without substitution. Can analogous cut elimination with substitution be done with sub-exponential growth of the resulting dag-like deductions in SEQ_{TAU}?

"Academic" Conjectures C1, C2

L. Gordeev DAG Compressions

"Academic" Conjectures C1, C2

Definition

L. Gordeev DAG Compressions

æ

 "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.

- "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.
- Participation Conjecture C2: Every Γ ∈ TAU has dag-like SEQ_{TAU}-deduction D such that #D is polynomial in #Γ.

- "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.
- Participation Conjecture C2: Every Γ ∈ TAU has dag-like SEQ_{TAU}-deduction D such that #D is polynomial in #Γ.

- "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.
- ② "Academic" Conjecture C2: Every Γ ∈ TAU has dag-like SEQ_{TAU}-deduction D such that #D is polynomial in #Γ.

- "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.
- ② "Academic" Conjecture C2: Every Γ ∈ TAU has dag-like SEQ_{TAU}-deduction D such that #D is polynomial in #Γ.

- C1 implies C2.
- 2 *C2 implies* NP = coNP.

- "Academic" Conjecture C1: For every Γ ∈ TAU, δ (Γ) is polynomial in #Γ.
- ② "Academic" Conjecture C2: Every Γ ∈ TAU has dag-like SEQ_{TAU}-deduction D such that #D is polynomial in #Γ.

Theorem

C1 implies C2.

2 *C2 implies* NP = coNP.

Proof.

Clear.

L. Gordeev DAG Compressions

æ

₽ > < €

Definition

Let SEQ_{TAU}^0 be subsystem of SEQ_{TAU} that includes only special case (Q₀) of the main rule in which side sequent $\Gamma = \emptyset$.

Definition

Let SEQ⁰_{TAU} be subsystem of SEQ_{TAU} that includes only special case (Q₀) of the main rule in which side sequent $\Gamma = \emptyset$. Let TAU⁽ⁿ⁾₀ be the set of sequents with at most n + 1 clauses with at most n literals in each clause, which are derivable in SEQ⁰_{TAU}.

Definition

Let SEQ⁰_{TAU} be subsystem of SEQ_{TAU} that includes only special case (Q₀) of the main rule in which side sequent $\Gamma = \emptyset$. Let TAU⁽ⁿ⁾₀ be the set of sequents with at most n + 1 clauses with at most n literals in each clause, which are derivable in SEQ⁰_{TAU}.

Lemma

$$TAU_0^{(n)} \in NP.$$

Definition

Definition

Let SEQ⁰_{TAU} be subsystem of SEQ_{TAU} that includes only special case (Q₀) of the main rule in which side sequent $\Gamma = \emptyset$. Let TAU⁽ⁿ⁾₀ be the set of sequents with at most n + 1 clauses with at most n literals in each clause, which are derivable in SEQ⁰_{TAU}.

Lemma

$$TAU_0^{(n)} \in NP.$$

Definition

Plausible Conjecture C3:

 $TAU_0^{(n)}$ is not representable in a certain concrete (simple) algebra \mathfrak{A}_n by a term whose length is polynomial in *n*.

Definition

Let SEQ⁰_{TAU} be subsystem of SEQ_{TAU} that includes only special case (Q₀) of the main rule in which side sequent $\Gamma = \emptyset$. Let TAU⁽ⁿ⁾₀ be the set of sequents with at most n + 1 clauses with at most n literals in each clause, which are derivable in SEQ⁰_{TAU}.

Lemma

$$TAU_0^{(n)} \in NP.$$

Definition

Plausible Conjecture C3:

 $TAU_0^{(n)}$ is not representable in a certain concrete (simple) algebra

 \mathfrak{A}_n by a term whose length is polynomial in n.

Theorem

C3 implies P < NP.