DAG Compressions

L. Gordeev
Uni-Tübingen, PUC Rio de Janeiro
Oberwolfach, November, 2011

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

§1. Term compression -1-

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

Definition

§1. Term compression -1-

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The terms:

§1. Term compression -1-

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The terms:
(1) Individual variables and constants are terms of the depth 0 , also called atoms.

§1. Term compression -1-

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The terms:
(1) Individual variables and constants are terms of the depth 0 , also called atoms.
(2) If $\mathfrak{s}, \mathfrak{t}$ are any terms and f any function symbol, then $f(\mathfrak{s}, \mathfrak{t})$ is a term of the depth $1+\max \{\operatorname{depth}(\mathfrak{s}), \operatorname{depth}(\mathfrak{t})\}$;

§1. Term compression -1-

- Dag-complexity (or graph-complexity) of a given algebraic term \mathfrak{t} is the minimal number of vertices in a rooted DAG (not necessarily a tree!) that represents \mathfrak{t}. This definition can be constructively specified, as follows.

Definition

Consider arbitrary algebraic language \mathcal{L} with individual variables, constants and (w.l.o.g.) binary function symbols. The terms:
(1) Individual variables and constants are terms of the depth 0 , also called atoms.
(2) If $\mathfrak{s}, \mathfrak{t}$ are any terms and f any function symbol, then $f(\mathfrak{s}, \mathfrak{t})$ is a term of the depth $1+\max \{\operatorname{depth}(\mathfrak{s}), \operatorname{depth}(\mathfrak{t})\}$; in the Łukasiewicz form we write $f_{\mathfrak{s t}}$ instead of $f(\mathfrak{s}, \mathfrak{t})$.

Term compression -2-

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.
(1) $\delta(\mathfrak{t}):=\delta\{\mathfrak{t}\}$.

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.
(1) $\delta(t):=\delta\{\mathfrak{t}\}$.
(2) $\delta\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=\#\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if $\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{k}$ are atoms.

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.
(1) $\delta(t):=\delta\{\mathfrak{t}\}$.
(2) $\delta\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=\#\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if $\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{k}$ are atoms.
(3) $\delta\left\{f(\mathfrak{s}, \mathfrak{t}), \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=1+\delta\left\{\mathfrak{s}, \mathfrak{t}, \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if the depth of $f(\mathfrak{s}, \mathfrak{t})$ is \geq than maximal depth of $\mathfrak{t}_{i}, 1 \leq i \leq k$.

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.
(1) $\delta(t):=\delta\{\mathfrak{t}\}$.
(2) $\delta\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=\#\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if $\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{k}$ are atoms.
(3) $\delta\left\{f(\mathfrak{s}, \mathfrak{t}), \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=1+\delta\left\{\mathfrak{s}, \mathfrak{t}, \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if the depth of $f(\mathfrak{s}, \mathfrak{t})$ is \geq than maximal depth of $\mathfrak{t}_{i}, 1 \leq i \leq k$.

Term compression -2-

Definition

For any term \mathfrak{t} of \mathcal{L} we define the dag-complexity of $\mathfrak{t}, \delta(\mathfrak{t})$.
(1) $\delta(t):=\delta\{\mathfrak{t}\}$.
(2) $\delta\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=\#\left\{\mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if $\mathfrak{t}_{1}, \ldots, \mathfrak{t}_{k}$ are atoms.
(3) $\delta\left\{f(\mathfrak{s}, \mathfrak{t}), \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}:=1+\delta\left\{\mathfrak{s}, \mathfrak{t}, \mathfrak{t}_{1}, \cdots, \mathfrak{t}_{k}\right\}$, if the depth of $f(\mathfrak{s}, \mathfrak{t})$ is \geq than maximal depth of $\mathfrak{t}_{i}, 1 \leq i \leq k$.

- $\delta(\mathfrak{t})$ is easily computable e. g. in Maple.

Term compression -3-

Term compression -3-

Example

Consider term $\mathfrak{t}=f(g(x, f(y, h(x, y))), h(x, y))$ of the depth 4 in the language with variables x, y and function symbols f, g, h.

Term compression -3-

Example

Consider term $\mathfrak{t}=f(g(x, f(y, h(x, y))), h(x, y))$ of the depth 4 in the language with variables x, y and function symbols f, g, h.
We have

Term compression -3-

Example

Consider term $\mathfrak{t}=f(g(x, f(y, h(x, y))), h(x, y))$ of the depth 4 in the language with variables x, y and function symbols f, g, h.
We have

$$
\begin{aligned}
\delta(\mathfrak{t}) & =\delta\{\mathfrak{t}\}=1+\delta\{g(x, f(y, h(x, y))), h(x, y)\} \\
& =2+\delta\{x, f(y, h(x, y)), h(x, y)\} \\
& =3+\delta\{x, y, h(x, y), h(x, y)\} \\
& =3+\delta\{x, y, h(x, y)\}=4+\delta\{x, y, x, y\} \\
& =4+\delta\{x, y\}=4+\#\{x, y\} \\
& =4+2=6
\end{aligned}
$$

Term compression -3-

Example

Consider term $\mathfrak{t}=f(g(x, f(y, h(x, y))), h(x, y))$ of the depth 4 in the language with variables x, y and function symbols f, g, h.
We have

$$
\begin{aligned}
\delta(\mathfrak{t}) & =\delta\{\mathfrak{t}\}=1+\delta\{g(x, f(y, h(x, y))), h(x, y)\} \\
& =2+\delta\{x, f(y, h(x, y)), h(x, y)\} \\
& =3+\delta\{x, y, h(x, y), h(x, y)\} \\
& =3+\delta\{x, y, h(x, y)\}=4+\delta\{x, y, x, y\} \\
& =4+\delta\{x, y\}=4+\#\{x, y\} \\
& =4+2=6
\end{aligned}
$$

Note that the ordinary Łukasiewicz length of \mathfrak{t} is 11 .

Term compression -4-

Term compression -4-

Example

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i>0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ;

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i>0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of Łukasiewicz $+\mathfrak{s t}$).

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i>0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of Łukasiewicz $+\mathfrak{s t}$).

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i>0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of $Ł$ ukasiewicz $+\mathfrak{s t}$).

- $F(0):=0, F(1):=1, F(i+2):=F(i)+F(i+1)$

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i>0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of $Ł$ ukasiewicz $+\mathfrak{s t}$).

- $F(0):=0, F(1):=1, F(i+2):=F(i)+F(i+1)$
- The ordinary length of $F(i)$ slightly exceeds the $i^{\text {th }}$ Fibonacci number, thus being exponential in i.

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i \geq 0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of $Ł$ ukasiewicz $+\mathfrak{s t}$).

- $F(0):=0, F(1):=1, F(i+2):=F(i)+F(i+1)$
- The ordinary length of $F(i)$ slightly exceeds the $i^{\text {th }}$ Fibonacci number, thus being exponential in i.
- But the corresponding dag-complexity is merely linear in i :

Term compression -4-

Example

Define Fibonacci sequence of terms $\{F(i)\}_{i \geq 0}$ in the language \mathcal{L}_{F} with two individual constants 0,1 and one function symbol + ; (use standard infix notation $\mathfrak{s}+\mathfrak{t}$ instead of $Ł$ ukasiewicz $+\mathfrak{s t}$).

- $F(0):=0, F(1):=1, F(i+2):=F(i)+F(i+1)$
- The ordinary length of $F(i)$ slightly exceeds the $i^{\text {th }}$ Fibonacci number, thus being exponential in i.
- But the corresponding dag-complexity is merely linear in i :

$$
\delta(F(0))=\delta(F(1))=1 \text { and } \delta(F(i))=i+1 \text { for all } i>1
$$

§2. Generalizatons

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}$:

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction),

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y),(x \rightarrow y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y),(x \rightarrow y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
- $D^{\prime}:=$ replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y),(x \rightarrow y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
- $D^{\prime}:=$ replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
(3) $D \triangleright_{2} D^{\prime}$ (conglutination):

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y),(x \rightarrow y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
- $D^{\prime}:=$ replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
(3) $D \triangleright_{2} D^{\prime}$ (conglutination):
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y), D_{>y} \neq \emptyset$ is a tree and $x \notin D_{>y}$.

§2. Generalizatons

- Define reductions $\triangleright_{0}, \triangleright_{1}, \triangleright_{2}$ on finite labeled rooted dag's D with reflexive and transitive binary relation R on labels, where $D_{>y}:=$ the sub-dag of $z \neq y$ having a path $z \rightsquigarrow y$.
(1) $D \triangleright_{0} D^{\prime}: D^{\prime}$ arises from D by identifying all leaves having the same labels and all vertices x, y such that $\ell(x)=\ell(y)$ and $(x \rightarrow y) \in D$. If not applicable, let $D^{\prime}:=D$.
(2) $D \triangleright_{1} D^{\prime}$ (contraction), where ℓ is the labeling function:
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y),(x \rightarrow y) \notin D, D_{>y}$ is a tree and $x \in D_{>y}$.
- $D^{\prime}:=$ replace in D whole path $x \rightsquigarrow y$ by new edge $x \rightarrow y$.
(3) $D \triangleright_{2} D^{\prime}$ (conglutination):
- Let x, y be vertices in D closest to the root such that: $\ell(x) R \ell(y), D_{>y} \neq \emptyset$ is a tree and $x \notin D_{>y}$.
- $D^{\prime}:=D$ plus new edge $x \rightarrow y$ minus $z \in D_{>y}$.

Dag-compressions, dag-complexity

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every \triangleright_{i} is size-reducing:

Dag-compressions, dag-complexity

Let \#D be standard size of D. Clearlyly every \triangleright_{i} is size-reducing:

- $D D_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every \triangleright_{i} is size-reducing:

- $D D_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D D_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels.

Dag-compressions, dag-complexity

Let \# D be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D D_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}. Clearly $\# D_{k+1} \leq \# T$. Call these D_{k+1} normal dag-like compressions of T.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}. Clearly $\# D_{k+1} \leq \# T$. Call these D_{k+1} normal dag-like compressions of T.
(3) Let $\delta(T):=\min (\# D)$ for D ranging over normal dag-like compressions of T.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}. Clearly $\# D_{k+1} \leq \# T$. Call these D_{k+1} normal dag-like compressions of T.
(3) Let $\delta(T):=\min (\# D)$ for D ranging over normal dag-like compressions of T. Call $\delta(T)$ the dag-complexity of T.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}. Clearly $\# D_{k+1} \leq \# T$. Call these D_{k+1} normal dag-like compressions of T.
(3) Let $\delta(T):=\min (\# D)$ for D ranging over normal dag-like compressions of T. Call $\delta(T)$ the dag-complexity of T.
(9) For any label Γ, let $\delta(\Gamma):=\min (\delta(T))$ for T ranging over $T \in \mathcal{T}$ with root-label Γ.

Dag-compressions, dag-complexity

Let $\# D$ be standard size of D. Clearlyly every D_{i} is size-reducing:

- $D \triangleright_{i} D^{\prime} \Rightarrow \# D>\# D^{\prime}$, except $i=0$ and $D=D^{\prime}$.

Definition

(1) \triangleright_{i}-irreducible dag's are called normal.
(2) Let \mathcal{T} be set of finite labeled rooted trees, R reflexive and transitive binary relation on labels. For every tree $T \in \mathcal{T}$ there are chains of dag's $T=D_{0} \triangleright_{i_{1}} \cdots \triangleright_{i_{k}} D_{k} \triangleright_{0} D_{k+1}$ $\left(k \geq 0, i_{j}=1,2\right)$ with normal D_{k+1}. Clearly $\# D_{k+1} \leq \# T$. Call these D_{k+1} normal dag-like compressions of T.
(3) Let $\delta(T):=\min (\# D)$ for D ranging over normal dag-like compressions of T. Call $\delta(T)$ the dag-complexity of T.
(9) For any label Γ, let $\delta(\Gamma):=\min (\delta(T))$ for T ranging over $T \in \mathcal{T}$ with root-label Γ. Call $\delta(\Gamma)$ the dag-complexity of Γ.

Dag-complexity problems

Dag-complexity problems

Problem

Dag-complexity problems

Problem
 1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Dag-complexity problems

Problem
 1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

Dag-complexity problems

Problem
 1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$
- Problem 1: Easy (see Chapter 1).

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$
- Problem 1: Easy (see Chapter 1).
- Problem 2: Roughly $\# T \geq \delta(T) \geq \log \# T$.

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$
- Problem 1: Easy (see Chapter 1).
- Problem 2: Roughly $\# T \geq \delta(T) \geq \log \# T$. In most interesting cases $\# T$ exponential in $\delta(T)$ (see Chapter 1).

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$
- Problem 1: Easy (see Chapter 1).
- Problem 2: Roughly $\# T \geq \delta(T) \geq \log \# T$. In most interesting cases $\# T$ exponential in $\delta(T)$ (see Chapter 1).
- Generalizations: Both problems are hard.

Dag-complexity problems

Problem

1. How to compute $\delta(T)$ and/or $\delta(\Gamma)$?

Problem

2. How to estimate $\delta(T)$ and/or $\delta(\Gamma)$?

- Term algebra $(\delta(T) \cong \delta(\Gamma)$, see Chapter 1$)$
- Problem 1: Easy (see Chapter 1).
- Problem 2: Roughly $\# T \geq \delta(T) \geq \log \# T$. In most interesting cases $\# T$ exponential in $\delta(T)$ (see Chapter 1).
- Generalizations: Both problems are hard.

Proof theory provides most interesting applications.

Proof-theoretic interpretation

Proof-theoretic interpretation

- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let $\Gamma R \Gamma^{\prime}: \Leftrightarrow \Gamma^{\prime}=\theta(\Gamma)$ for $\theta \in \operatorname{Hom}(\operatorname{Seq} \rightarrow$ Seq $)$,
- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let $\Gamma R \Gamma^{\prime}: \Leftrightarrow \Gamma^{\prime}=\theta(\Gamma)$ for $\theta \in \operatorname{Hom}(\operatorname{Seq} \rightarrow \operatorname{Seq})$, provided that sequent-homomorpism θ preserves provability.

Proof-theoretic interpretation

- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let $\Gamma R \Gamma^{\prime}: \Leftrightarrow \Gamma^{\prime}=\theta(\Gamma)$ for $\theta \in \operatorname{Hom}(\operatorname{Seq} \rightarrow \operatorname{Seq})$, provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions $D \in \mathcal{D}$ of $T \in \mathcal{T}$ obtained by the chains of \triangleright_{i}-reductions w.r.t. R.

Proof-theoretic interpretation

- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let $\Gamma R \Gamma^{\prime}: \Leftrightarrow \Gamma^{\prime}=\theta(\Gamma)$ for $\theta \in \operatorname{Hom}(\operatorname{Seq} \rightarrow \operatorname{Seq})$, provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions $D \in \mathcal{D}$ of $T \in \mathcal{T}$ obtained by the chains of \triangleright_{i}-reductions w.r.t. R.
- These normal dag-like compressions are the desired smallest dag-like deductions, while

Proof-theoretic interpretation

- Let \mathcal{S} be given finite collection of axioms and inference rules, as usual in proof theory.
- Let \mathcal{T} and \mathcal{D} contain resp. tree-like and dag-like proofs (or deductions) as \mathcal{S}-generated trees, resp. dag's, labeled by, say, sequents (Γ, Γ^{\prime}, etc.).
- Let $\Gamma R \Gamma^{\prime}: \Leftrightarrow \Gamma^{\prime}=\theta(\Gamma)$ for $\theta \in \operatorname{Hom}(\operatorname{Seq} \rightarrow \operatorname{Seq})$, provided that sequent-homomorpism θ preserves provability.
- Define as above normal dag-like compressions $D \in \mathcal{D}$ of $T \in \mathcal{T}$ obtained by the chains of \triangleright_{i}-reductions w.r.t. R.
- These normal dag-like compressions are the desired smallest dag-like deductions, while
- $\delta(T)$ is "true" dag-complexity of given tree-like deduction T.

Proof search connections

Proof search connections

Most interesting case: cutfree proof systems.

Proof search connections

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.
- By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.
- By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
- However there are significant proof complexity implications (re: "speed-up", to be discussed later).

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.
- By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
- However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style subformula property).

Proof search connections

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.
- By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
- However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style subformula property).
- Our dag-like compressions D preserve this advantage, provided that R is sufficiently constructive.

Proof search connections

Most interesting case: cutfree proof systems.

- Let \mathcal{T} contain cutfree tree-like deductions.
- By Gentzen-style cut elimination results this is not really a restriction (in pure logic, at least).
- However there are significant proof complexity implications (re: "speed-up", to be discussed later).
- Important advantage: cutfree tree-like proof systems admit reasonable (semi-)automated semi-analytic proof search (re: Gentzen-style subformula property).
- Our dag-like compressions D preserve this advantage, provided that R is sufficiently constructive.
- However D may depend on the choice of \triangleright_{2} involved; thus the sources T can have different normal forms.

Propositional logic

Propositional logic

Further specifications:

Propositional logic

Further specifications:
(1) Classical propositional logic.

Propositional logic

Further specifications:
(1) Classical propositional logic.
(2) DNF logic.

Propositional logic

Further specifications:
(1) Classical propositional logic.
(2) DNF logic.
(3) Relation R as homomorphism generated by variables \rightarrow literals substitutions and suitable weakenings.

Propositional logic

Further specifications:
(1) Classical propositional logic.
(2) DNF logic.
(3) Relation R as homomorphism generated by variables \rightarrow literals substitutions and suitable weakenings.

- (1) is polynomially reducible to (2), so consider (2) \& (3).

Propositional logic

Further specifications:
(1) Classical propositional logic.
(2) DNF logic.
(3) Relation R as homomorphism generated by variables \rightarrow literals substitutions and suitable weakenings.

- (1) is polynomially reducible to (2), so consider (2) \& (3).
- Example: Very efficient sequent calculus for DNF tautologies, called $S E Q_{\text {TAU }}$.

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$
- Axiom
$\left(A_{1}\right):\{1\},\{-1\}$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$
- Axiom $\left(A_{1}\right):\{1\},\{-1\}$
- Weakening rules

$$
\left(\mathrm{W}_{1}\right): \frac{\Gamma}{M, \Gamma} \quad, \quad\left(\mathrm{~W}_{2}\right): \frac{M \cup M^{\prime}, \Gamma}{M, \Gamma}
$$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$
- Axiom $\quad\left(\mathrm{A}_{1}\right):\{1\},\{-1\}$
- Weakening rules

$$
\left(\mathrm{W}_{1}\right): \frac{\Gamma}{M, \Gamma} \quad, \quad\left(\mathrm{~W}_{2}\right): \frac{M \cup M^{\prime}, \Gamma}{M, \Gamma}
$$

- Substitution rule

$$
(\mathrm{S}): \frac{\Gamma}{\theta(\Gamma)}, \text { where } \theta \in \operatorname{Hom}(\text { Seq } \rightarrow \text { Seq })
$$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$
- Axiom $\left(A_{1}\right):\{1\},\{-1\}$
- Weakening rules

$$
\left(\mathrm{W}_{1}\right): \frac{\Gamma}{M, \Gamma} \quad, \quad\left(\mathrm{~W}_{2}\right): \frac{M \cup M^{\prime}, \Gamma}{M, \Gamma}
$$

- Substitution rule

$$
(\mathrm{S}): \frac{\Gamma}{\theta(\Gamma)}, \text { where } \theta \in \operatorname{Hom}(\mathrm{Seq} \rightarrow \mathrm{Seq})
$$

- Main rule, where $\pm k \notin M_{i}, M_{j}^{\prime}$, Γ

$$
(Q): \frac{M_{1}, \cdots, M_{r}, \Gamma}{\{k\} \cup M_{1}, \cdots,\{k\} \cup M_{r},\{-k\} \cup M_{1}^{\prime}, \cdots,\{-k\} \cup M_{r^{\prime}}^{\prime}, \Gamma}
$$

§3. Example: $\mathrm{SEQ}_{\text {TAU }}$

- Sequents: $\Gamma=M_{1}, \cdots, M_{s}$ where
$M_{i} \subset_{\text {fin }} \mathbb{Z}_{0}:=\mathbb{Z}-\{0\}$ such that $\left(\forall a, b \in M_{i}\right)(a+b \neq 0)$
- Axiom $\left(A_{1}\right):\{1\},\{-1\}$
- Weakening rules

$$
\left(\mathrm{W}_{1}\right): \frac{\Gamma}{M, \Gamma} \quad, \quad\left(\mathrm{~W}_{2}\right): \frac{M \cup M^{\prime}, \Gamma}{M, \Gamma}
$$

- Substitution rule

$$
(\mathrm{S}): \frac{\Gamma}{\theta(\Gamma)}, \text { where } \theta \in \operatorname{Hom}(\mathrm{Seq} \rightarrow \mathrm{Seq})
$$

- Main rule, where $\pm k \notin M_{i}, M_{j}^{\prime}$, Γ

$$
(Q): \frac{M_{1}, \cdots, M_{r}, \Gamma}{\{k\} \cup M_{1}, \cdots,\{k\} \cup M_{r},\{-k\} \cup M_{1}^{\prime}, \cdots,\{-k\} \cup M_{r^{\prime}}^{\prime}, \Gamma}
$$

- Relation $R:=\left\{W_{1}, W_{2}, S\right\}^{*}$ (transitive closure)

$S^{S E} Q_{\text {TAU }}:$ Some special cases

$S^{S E} Q_{\text {TAU }}:$ Some special cases

- "Perfect" special case of weakening $\left(\mathrm{W}_{0}\right)$:

$$
\frac{\Gamma}{\{k\} \cup M_{1}, \cdots,\{k\} \cup M_{r}, \Gamma}
$$

where $\pm k \notin M_{i}, \Gamma$

$S E Q_{\text {TAU }}$: Some special cases

- "Perfect" special case of weakening $\left(\mathrm{W}_{0}\right)$:

$$
\frac{\Gamma}{\{k\} \cup M_{1}, \cdots,\{k\} \cup M_{r}, \Gamma}
$$

where $\pm k \notin M_{i}, \Gamma$

- "Perfect" special case of Q whose side sequent (Γ) is empty, i.e. the following rule Q_{0} :

$$
\begin{aligned}
& \frac{M_{1}, \cdots, M_{r} \quad}{\{k\} \cup M_{1}, \cdots,\{k\} \cup M_{r},\{-k\} \cup M_{1}^{\prime}, \cdots,\{-k\} \cup M_{r^{\prime}}^{\prime}} \\
& \text { where }\left(\forall 1 \leq i \leq r, 1 \leq j \leq r^{\prime}\right)\left(\pm k \notin M_{i}, M_{j}^{\prime}\right)
\end{aligned}
$$

SEQ $_{\text {TAU }}:$ Examples

SEQ $_{\text {TAU }}:$ Examples

Example

$$
\begin{align*}
& \text { (S) } \frac{\{1\},\{-1\}}{\{2\},\{-2\}} \stackrel{(\mathrm{A})}{\rightarrow} \stackrel{\left(\mathrm{A}_{1}\right)}{(3\},\{-3,4\},\{-3,-4\}} \\
& \hline\{1,2\},\{1,-2\},\{-1,3\},\{-1,-3,4\},\{-1,-3,-4\} \tag{Q}
\end{align*}
$$

SEQ $_{\text {TAU }}:$ Examples

Example

$$
\begin{align*}
& (\mathrm{S}) \frac{\stackrel{\{1\}}{\left(\mathrm{A}_{1}\right)}\{-1\}}{\{2\},\{-2\}} \stackrel{(\mathrm{S})}{\rightarrow} \stackrel{\{4\},\{-4\}}{\{1,2\},\{1,-2\},\{-1,3\},\{-1,-3,4\},\{-1,-3,-4\}}
\end{align*}
$$

Example

Semantics of $\mathrm{SEQ}_{\text {TAU }}$

Semantics of $\mathrm{SEQ}_{\text {TAU }}$

Definition

Semantics of $S^{\text {SEAU }}$

Definition

$$
\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F
$$

Semantics of $S^{\text {SEAU }}$

> Definition
> $\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F$, where
> $\ell_{j}:=\left\{\begin{array}{lll}x_{j} & \text { if } & j>0 \\ \neg x_{-j} & \text { if } & j<0 .\end{array}\right.$

Semantics of SEQ $_{\text {TAU }}$

Definition

$$
\begin{aligned}
& \Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F, \text { where } \\
& \ell_{j}:=\left\{\begin{array}{lll}
x_{j} & \text { if } & j>0 \\
\neg x_{-j} & \text { if } & j<0
\end{array}\right.
\end{aligned}
$$

Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Semantics of $S^{\text {SEAU }}$

Definition

$\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F$, where
$\ell_{j}:=\left\{\begin{array}{lll}x_{j} & \text { if } & j>0 \\ \neg x_{-j} & \text { if } & j<0\end{array}\right.$.
Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

Semantics of $\mathrm{SEQ}_{\text {TAU }}$

Definition

$\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F$, where
$\ell_{j}:=\left\{\begin{array}{lll}x_{j} & \text { if } & j>0 \\ \neg x_{-j} & \text { if } & j<0\end{array}\right.$.
Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

(1) 「 is tree-like provable in $S E Q_{\text {TAU }}$ iff Γ is dag-like provable in $S E Q_{\text {TAU }}$.

Semantics of SEQ $_{\text {TAU }}$

Definition

$\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F$, where
$\ell_{j}:=\left\{\begin{array}{lll}x_{j} & \text { if } & j>0 \\ \neg x_{-j} & \text { if } & j<0\end{array}\right.$.
Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

(1) 「 is tree-like provable in $S E Q_{\text {TAU }}$ iff Γ is dag-like provable in $S E Q_{\text {TAU }}$.
(2) Γ is tree-like provable in $S E Q_{\text {TAU }}$ iff $\Gamma \in T A U$.

Semantics of $S E Q_{\text {TAU }}$

Definition

$\Gamma=M_{1}, \cdots, M_{s} \hookrightarrow \varphi(\Gamma):=\bigvee_{i=1}^{s}\left(\bigwedge_{j \in M_{i}} \ell_{j}\right) \in D N F$, where
$\ell_{j}:=\left\{\begin{array}{lll}x_{j} & \text { if } & j>0 \\ \neg x_{-j} & \text { if } & j<0\end{array}\right.$.
Denote by TAU the set of Γ such that $\varphi(\Gamma)$ is valid (as DNF).

Theorem

(1) 「 is tree-like provable in $S E Q_{\text {TAU }}$ iff Γ is dag-like provable in $S E Q_{\text {TAU }}$.
(2) Γ is tree-like provable in $S E Q_{\text {TAU }}$ iff $\Gamma \in T A U$.

Proof.
Easy.

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.
(3) Pigeonhole principle.

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.
(3) Pigeonhole principle.
(9) Clique coloring principle (k-clique tautology).

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.
(3) Pigeonhole principle.
(4) Clique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate $S E Q_{T A U}$.

More on $\mathrm{SEQ}_{\text {TAU }}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.
(3) Pigeonhole principle.
(4) Clique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate $S E Q_{\text {TAU }}$.
Theorem

More on $\mathrm{SEQ}_{\mathrm{TAU}}$

- Well-known "hard" tautologies have polynomial size dag-like proofs in $S E Q_{\text {TAU }}$ obtained by basic proof search (see below).

These examples include e.g.:
(1) Doubling names tautologies by Takeuti and Statman.
(2) Fibonacci-style tautology by Haeusler and Pereira.
(3) Pigeonhole principle.
(1) Clique coloring principle (k-clique tautology).

Hence neither resolution nor cutting planes p-simulate $S E Q_{\text {TAU }}$.

Theorem

There are $\Gamma \in T A U$ such that for all tree-like deductions T of Γ, $\# T$ is exponential in $\# \Gamma$, whereas $\delta(\Gamma)$ is polynomial in $\# \Gamma$.

Reminder: Clique coloring principle

Reminder: Clique coloring principle

Theorem

Reminder: Clique coloring principle

Theorem

Clique coloring principle:
No n-element graph $G,|G|=n$, has a $(k-1)$-colored k-element clique $K \subseteq G$ such that $2 \leq k=|K| \leq n$ and there is no edge (in G) between any pair of vertices (in K) having the same color.

Basic dag-like proof search in $S^{2} Q_{T A U}$

Basic dag-like proof search in $S^{5 E} Q_{\text {TAU }}$

Consider any given sequent Γ_{0}. Starting with Γ_{0} reduce sequents by inverting the rules $\left(\mathrm{W}_{0}\right)$ and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_{i}, Γ_{j} thus obtained which are not axioms and occur in different branches:

Basic dag-like proof search in $S^{2} Q_{T A U}$

Consider any given sequent Γ_{0}. Starting with Γ_{0} reduce sequents by inverting the rules $\left(\mathrm{W}_{0}\right)$ and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_{i}, Γ_{j} thus obtained which are not axioms and occur in different branches:
(1) If $\{1\},\{-1\} R \Gamma_{i}\left(\right.$ resp. $\left.\{1\},\{-1\} R \Gamma_{j}\right)$, then add arrow $\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{i}$ (resp. $\left.\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{j}\right)$ and close the corresponding branch.

Basic dag-like proof search in SEQ TAU

Consider any given sequent Γ_{0}. Starting with Γ_{0} reduce sequents by inverting the rules $\left(\mathrm{W}_{0}\right)$ and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_{i}, Γ_{j} thus obtained which are not axioms and occur in different branches:
(1) If $\{1\},\{-1\} R \Gamma_{i}$ (resp. $\{1\},\{-1\} R \Gamma_{j}$), then add arrow $\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{i}$ (resp. $\left.\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{j}\right)$ and close the corresponding branch.
(2) If $\Gamma_{i} R \Gamma_{j}\left(\right.$ resp. $\left.\Gamma_{j} R \Gamma_{i}\right)$, then add arrow $\Gamma_{i} \rightarrow \Gamma_{j}$ (resp.
$\Gamma_{j} \rightarrow \Gamma_{i}$) and don't reduce $\Gamma_{j}\left(\right.$ resp. $\left.\Gamma_{i}\right)$ anymore.

Basic dag-like proof search in $S^{2} Q_{T A U}$

Consider any given sequent Γ_{0}. Starting with Γ_{0} reduce sequents by inverting the rules (W_{0}) and (Q) repeatedly, while simultaneously analyzing pairs of new sequents Γ_{i}, Γ_{j} thus obtained which are not axioms and occur in different branches:
(1) If $\{1\},\{-1\} R \Gamma_{i}\left(\right.$ resp. $\left.\{1\},\{-1\} R \Gamma_{j}\right)$, then add arrow $\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{i}$ (resp. $\left.\left(\mathrm{A}_{1}\right) \rightarrow \Gamma_{j}\right)$ and close the corresponding branch.
(2) If $\Gamma_{i} R \Gamma_{j}\left(\right.$ resp. $\left.\Gamma_{j} R \Gamma_{i}\right)$, then add arrow $\Gamma_{i} \rightarrow \Gamma_{j}$ (resp. $\Gamma_{j} \rightarrow \Gamma_{i}$) and don't reduce Γ_{j} (resp. Γ_{i}) anymore.
This reduction procedure terminates. Consider the resulting sequent dag D and let $D \triangleright_{0} D^{\prime}$.
If all leaves of D are axioms, then D^{\prime} is a desired dag-like deduction of Γ. Otherwise Γ is invalid.

Dag-compression vs CUT

Dag-compression vs CUT

- It is well-known that adding cut rule to cutfree proof systems can exponentially accelerate propositional provability (re: propositional speed-up). However proof systems with (CUT) or modus ponens or similar non-analytic inferences, known as general Frege systems, don't admit reasonable poor search.

Dag-compression vs CUT

- It is well-known that adding cut rule to cutfree proof systems can exponentially accelerate propositional provability (re: propositional speed-up). However proof systems with (CUT) or modus ponens or similar non-analytic inferences, known as general Frege systems, don't admit reasonable poor search.
- Dag-like cutfree calculus $\mathrm{SEQ}_{\text {TAU }}$ shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search) - in all most familiar cases of cut-like speed-up. But SEQ $_{\text {TAU }}$ preserves good proof search options.

Dag-compression vs CUT

- It is well-known that adding cut rule to cutfree proof systems can exponentially accelerate propositional provability (re: propositional speed-up). However proof systems with (CUT) or modus ponens or similar non-analytic inferences, known as general Frege systems, don't admit reasonable poor search.
- Dag-like cutfree calculus $\mathrm{SEQ}_{\text {TAU }}$ shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search) - in all most familiar cases of cut-like speed-up. But SEQ $_{\text {tau }}$ preserves good proof search options.
- By familiar cut-elimination arguments, any Frege system is reducible to tree-like, and hence also dag-like version of $S E Q_{\text {TAU }}$ without substitution.

Dag-compression vs CUT

- It is well-known that adding cut rule to cutfree proof systems can exponentially accelerate propositional provability (re: propositional speed-up). However proof systems with (CUT) or modus ponens or similar non-analytic inferences, known as general Frege systems, don't admit reasonable poor search.
- Dag-like cutfree calculus $\mathrm{SEQ}_{\text {TAU }}$ shows that adding dag-like substitution rules provides analogous acceleration of provability (either by dag-compression or direct proof search) - in all most familiar cases of cut-like speed-up. But $\mathrm{SEQ}_{\mathrm{TAU}}$ preserves good proof search options.
- By familiar cut-elimination arguments, any Frege system is reducible to tree-like, and hence also dag-like version of $\mathrm{SEQ}_{\mathrm{TAU}}$ without substitution. Can analogous cut elimination with substitution be done with sub-exponential growth of the resulting dag-like deductions in $\mathrm{SEQ}_{\mathrm{TAU}}$?

"Academic" Conjectures C1, C2

"Academic" Conjectures C1, C2

Definition

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C 1 : For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C1: For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.
(2) "Academic" Conjecture C2: Every $\Gamma \in T A U$ has dag-like $S^{S E} Q_{\text {TAU }}$-deduction D such that $\# D$ is polynomial in $\# \Gamma$.

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C1: For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.
(2) "Academic" Conjecture C2: Every $\Gamma \in T A U$ has dag-like $S \mathrm{SQ}_{\text {TAU }}$-deduction D such that $\# D$ is polynomial in $\# \Gamma$.

Theorem

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C 1 : For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.
(2) "Academic" Conjecture C2: Every $\Gamma \in T A U$ has dag-like $S^{2} Q_{\text {TAU }}$-deduction D such that $\# D$ is polynomial in $\# \Gamma$.

Theorem

(1) C1 implies C2.

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C 1 : For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.
(2) "Academic" Conjecture C2: Every $\Gamma \in T A U$ has dag-like $S \mathrm{SQ}_{\text {TAU }}$-deduction D such that $\# D$ is polynomial in $\# \Gamma$.

Theorem

(1) C1 implies C2.
(2) C2 implies NP $=$ coNP.

"Academic" Conjectures C1, C2

Definition

(1) "Academic" Conjecture C 1 : For every $\Gamma \in \mathrm{TAU}, \delta(\Gamma)$ is polynomial in \#Г.
(2) "Academic" Conjecture C2: Every $\Gamma \in T A U$ has dag-like $\mathrm{SEQ}_{\mathrm{TAU}}$-deduction D such that $\# D$ is polynomial in $\# \Gamma$.

Theorem

(1) C1 implies C2.
(2) C2 implies $\mathrm{NP}=\mathrm{coNP}$.

Proof.

Clear.

Appendix: P-NP connections

Appendix: P-NP connections

Definition

Let $S E Q_{\text {TAU }}^{0}$ be subsystem of $S E Q_{\text {TAU }}$ that includes only special case $\left(Q_{0}\right)$ of the main rule in which side sequent $\Gamma=\emptyset$.

Appendix: P-NP connections

Definition

Let $S E Q_{\text {TAU }}^{0}$ be subsystem of $S E Q_{\text {TAU }}$ that includes only special case $\left(Q_{0}\right)$ of the main rule in which side sequent $\Gamma=\emptyset$.
Let $\mathrm{TAU}_{0}^{(n)}$ be the set of sequents with at most $n+1$ clauses with at most n literals in each clause, which are derivable in $\mathrm{SEQ}_{\mathrm{TAU}}^{0}$.

Appendix: P-NP connections

Definition

Let $S E Q_{\text {TAU }}^{0}$ be subsystem of $S E Q_{\text {TAU }}$ that includes only special case $\left(Q_{0}\right)$ of the main rule in which side sequent $\Gamma=\emptyset$.
Let $\mathrm{TAU}_{0}^{(n)}$ be the set of sequents with at most $n+1$ clauses with at most n literals in each clause, which are derivable in $S E Q_{\text {TAU }}^{0}$.

Lemma

$T A U_{0}^{(n)} \in N P$.

Definition

Appendix: P-NP connections

Definition

Let $S E Q_{\text {TAU }}^{0}$ be subsystem of $S E Q_{\text {TAU }}$ that includes only special case $\left(Q_{0}\right)$ of the main rule in which side sequent $\Gamma=\emptyset$.
Let $\operatorname{TAU}_{0}^{(n)}$ be the set of sequents with at most $n+1$ clauses with at most n literals in each clause, which are derivable in $\mathrm{SEQ}_{\mathrm{TAU}}^{0}$.

Lemma

$T A U_{0}^{(n)} \in \mathrm{NP}$.

Definition

Plausible Conjecture C3:
$\mathrm{TAU}_{0}^{(n)}$ is not representable in a certain concrete (simple) algebra \mathfrak{A}_{n} by a term whose length is polynomial in n.

Appendix: P-NP connections

Definition

Let $S E Q_{\text {TAU }}^{0}$ be subsystem of $S E Q_{\text {TAU }}$ that includes only special case $\left(Q_{0}\right)$ of the main rule in which side sequent $\Gamma=\emptyset$.
Let $\mathrm{TAU}_{0}^{(n)}$ be the set of sequents with at most $n+1$ clauses with at most n literals in each clause, which are derivable in $\mathrm{SEQ}_{\mathrm{TAU}}^{0}$.

Lemma

$T A U_{0}^{(n)} \in N P$.

Definition

Plausible Conjecture C3:
$\mathrm{TAU}_{0}^{(n)}$ is not representable in a certain concrete (simple) algebra \mathfrak{A}_{n} by a term whose length is polynomial in n.

Theorem

C3 implies $\mathrm{P}<\mathrm{NP}$.

