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Abstract. To be useful helpers for humans in domestic environments,
robots should be aware of human task execution to anticipate and ad-
equately react to human actions. Hence the field of activity recognition
has become of increasing interest in the robotics community and many
approaches are based on sequences of object detections or human pos-
ture recognition, requiring the environment to be equipped with loads of
sensors or extremely expensive motion tracking systems. In this paper
we investigate the use of inexpensive depth cameras to perform activity
recognition using context dependent spatial regions with two different
approaches for activity recognition: Spatio-Temporal Plan Descriptions
and Hierarchical Hidden Markov Models. We evaluate both approaches
in a simulated and a real-world environment, showing that reliable ac-
tivity recognition is possible using a sensor setting for less than 250 $ in
a spatially limited environment.

1 Introduction

Personal robots that work together with humans in human-centered environ-
ments are seen as a promising future application area for robotic systems. They
are expected to leave closed factory environments and assist us with uncomfort-
able tasks in our homes. Especially elderly people with minor disabilities are
seen as beneficiaries of domestic robot helpers since they could help them to
live independently in their own home as long as possible [19]. Mitzner et al.
[12] asked 21 independent living seniors for which activities they would prefer
assistance rather from a robot than a human and found that this was the case
for 28 out of 48 activities, which mostly involved household duties (e.g. cleaning
and washing) or manual labor (e.g. gardening, mowing the lawn). A robot that
is a useful helper for humans should have certain knowledge about the current
human activity to be able to take into account human behavior and react ade-
quately to it. We think that this capability plays a key role for future robotic
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2 Low Cost Activity Recognition

helpers that are to perform complex tasks in human centered environments and
is essential to enable commercial success of such robots. Imagine a household
robot that is supposed to clean the kitchen after its user had diner. In this case,
the robot should be aware whether the human has already had diner and not
clean the table in a case where the human has not eaten yet. Also for the de-
tection of errors, activity recognition plays an important role. If we imagine a
human sleeping in the morning or late evening, this should be classified as a
normal event, but a sleeping human in the middle of the day or on the ground
could be a sign for the robot that something is not right. Thus, the ability for a
robot to perform activity recognition and distinguish different human behaviors
in different contexts from each other is essential if household assistants should
become useful and comfortable assistants in human environments.

While there already exist a couple of approaches to equip robots with this
capability, mostly the environment has to be equipped with loads of sensors
like RFID tags and readers or extremely expensive motion tracking systems.
In this paper we investigate two different approaches of activity recognition
that use a Kinect for motion tracking to allow reliable activity recognition in
spatially limited environments. Our application domain is a kitchen environment.
We evaluate our approach in a simulated scenario and in a real-world kitchen
environment using only a Kinect sensor.

2 Related Work

Many approaches in the field of activity recognition make use of Hidden Markov
Models (HMMs) to distinguish between various high level tasks. Buettner et al.
[2] equip a large set of everyday objects in an apartment with RFID-based sen-
sors and record sequences of object detections while a person performs typical
everyday activities to train an HMM for activity recognition. Nguyen et al. [13],
in contrast, use manually assigned spatial regions and a multi-camera tracking
system to train a HMM for recognizing high level activities. They use an Ab-
stract Hidden Markov Model and extend it with a memory that allows them to
model a richer class of context-free and state-dependent behaviors. Also other
researchers use different extensions to the Hidden Markov Model to overcome
various limitations. Nguyen et al. [14] and Bui et al. [3] introduce the general con-
cept of hierarchies to HMMs which become Hierarchical Hidden Markov Models
(HHMMs), while Duong et al. [4] propose to use different layers in the HMM
to account for hierarchies and durations. But HMMs are not the only models
used for activity recognition. There are also approaches using Hierarchical Con-
ditional Random Fields (CRFs) [16], Hierarchical Maximum Entropy Markov
Models (MEMM) [18] or Monte-Carlo based methods [15].

Except for Sung et al. [18], who use RGBD cameras to detect activities from
human body posture, most approaches rely on the use of object detections or
motion tracking systems that produce quite reliable data but are very expensive
and intrusive. Perkowitz et al. [15] equip everyday objects in a human household
with RFID tags to obtain sequences of object detections from human everyday
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activities and Buettner et al. [2] introduce RFID-based sensors, which are less
intrusive, but still the apartment they used for testing had to be equipped with
four antennas, and sensors had to be attached to the 25 objects they used.

Townsend et al. [22] found that humans partition activities of daily living
(ADLs) into sequences of subtasks that they carry out at the same places and
usually even at similar times. Trying to analyze such ADLs, Logan et al. [11]
set up a sensor-equipped apartment, in which a married couple was living for 10
weeks given the simple task to just normally continue with their life. The data
has been made publicly available as the MIT PlaceLab Dataset PLCouple1. One
of their key findings regarding activity recognition, was that for most activities,
motion-based sensors yield better performance than other modalities like reed
switches or RFID sensors. When humans think about spatial regions, they tend
to classify them according to their functional use instead of geometry alone.
Zender et al. [25] propose that a robot working in a human-centered environment
would have advantages if it understood its environment in terms of human spatial
concepts. Also Klenk et al. [9] see the understanding of human spatial concepts
as “essential for cognitive systems performing tasks for humans in everyday
environments”. They use context dependent spatial regions by learning from
qualitative spatial representations and semantic labels. To automatically learn
the context of locations, Stulp et al. [17] represent spatial regions according
to their use to equip a robot with an understanding of action-related places
(ARPlaces) using probability distributions that model the chance for a robot to
successfully grasp an object. Liao et al. [10] analyze patterns of GPS traces to
automatically label significant places that the human visits during his daily life
(like his home or working place) according to their function. In previous work [8]
we learned context dependent spatial regions by analyzing motion tracking data
and defining regions, that a human visits to perform pick- and place actions,
relative to storage places of objects. These spatial regions can then be used
to model human activities in spatio-temporal plan descriptions (STPRs) which
they directly use to distinguish between different human behaviors.

In this paper, we will first use STPRs for activity recognition using string
comparison methods in a spatially challenging environment and then make use
of Hierarchical Hidden Markov Models (HHMMs). HHMMs are also used for
activity recognition based on simulated behavior models by Bui et al. [3] and
Nguyen et al. [14] using manually labeled locations in an office environment. In
contrast to their work, we will use context dependent spatial regions that were
learned from motion tracking data in a real-world setting and perform activity
recognition in a narrow real-world kitchen environment that makes it hard to
distinguish unique locations. We will compare STPRs with HHMMs for activity
recognition and set up a system that performs activity recognition in real-time
using motion tracking data and object detections in simulation and a real-world
scenario.

1 http://architecture.mit.edu/house_n/data/PlaceLab/PLCouple1.htm
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3 Activity Recognition Using Context Dependent Spatial
Regions

For the generation of our model, we assume that we have a semantic map of the
environment that provides us with information about objects and furniture in
the environment. Such semantic maps lately have become increasingly popular
and can be generated widely autonomously as Blodow et al. [1] show. Tenorth et
al. [20] even link such semantic maps with knowledge bases to perform context
dependent reasoning about the environment of a robot like inferring likely storage
locations of objects in a kitchen.

From a dataset of 12 participants performing different pick- and place tasks
— which is different from the dataset we used for evaluation — we learned where
humans generally are located when performing specific actions, such as grasping
objects from a table, relative to reference objects, such as the table. Combining
this information with the semantic map of the environment, we generate a spatial
model ψ that represents locations a human visits during the execution of different
activities in a specific environment. It consists of a set of Gaussians Pi that
represent annotated locations in reference to furniture objects oi:

ψ = {l1, l2, ..., ln} with li = (Pi, oi)

So the spatial model extends a semantic map with general information about
locations where the human is likely to perform actions related to objects in
the semantic map. In our case the locations represent locations where humans
generally picks up objects from different furniture objects. An advantage of such
a representation is that spatial regions can be equipped with a meaning by
linking them to instances in the semantic map. Thus, a robot can be aware that
the location where the human currently standing is not only a set of coordinates,
but a place from which he usually picks up things from a drawer giving us
the possibility to map coordinates in the map to qualitative representations of
locations like “Drawer”. For this work, we will use this information only for the
naming of the locations, but in general one could do more sophisticated reasoning
like inferring the locations from where a human typically picks up cold drinks
or similar.

We use this spatial model to map coordinates in the map to qualitative
representations of locations and based on such a spatial model, we generate two
different representations as a basis for activity recognition:

– Spatio-Temporal Plan Representations as introduced in out previous work
[8]

– Hierarchical Hidden Markov Models as used by Bui et al. [3].

3.1 Spatio-Temporal Plan Representations

Spatio-Temporal Plan Representations (STPRs) as presented in [8] describe an
action by the location the action is performed at and the time it takes to com-
plete the action. It ignores typical action properties that are typically used, for
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example in AI planning, such as preconditions or the goal of the action. We can
describe an activity as a set of n tuples, each consisting of a location li and a
duration ti.

〈(l1, t1), (l2, t2)..., (ln, tn)〉

Such spatio-temporal plan representations can be used to distinguish between
different activities using string comparison methods like the Generalized Lev-
enshtein Similarity (GLS) [24] on a string representation of the sequences of
locations as shown in [8]. GLS is a normalized edit metric for two strings, which
is defined as follows:

GLS =
α ∗ (|X|+ |Y |)−GLD (X,Y )

2
.

Here X and Y represent string-representations of the location sequences that
model our activities and α describes the maximum weight of all of the three
string-edit operations (insert, delete, replace). GLD is the Generalized Lev-
enshtein Distance, which basically measures how many string operations are
necessary to transform string X into string Y . The GLS computed from string-
representations of the locations are used as confidence values for a match between
an observed sequence and a known sequence. In this work, we will only use the
locations of the STPRs for activity recognition.

3.2 Hierarchical Hidden Markov Models

Another way to represent human activities using context dependent spatial re-
gions is to use an HHMM from the sequences of locations from our spatial model.
This representation has the advantage over STPRs that as a probabilistic model
it can account for uncertainties in the observations and variations in the order
of subtasks in an activity. A Hierarchical HMM introduces the concept of hier-
archies to HMMs by allowing each state of the HMM to be an HMM itself as
indicated in Figure 1. This allows us to model multi-level stochastic processes
and makes it necessary to differentiate between two types of states: The internal
states are hidden states that are HMMs themselves and don’t emit single obser-
vation symbols, but rather sequences of observations by recursive activation of
one of its substates. States that actually emit output symbols and are located
at the lowest hierarchical level are called the production states. The activation
of a substate by its internal state is called a vertical transition while a transition
between two production states is referred to as horizontal transition. Every se-
quence of production states has exactly one terminal state, which, when reached,
ends the process of recursive state activation and leads to a vertical transition
upwards in the hierarchy.

In a more formal description, an HHMM can be described as a three-tuple
consisting of a topological structure ζ, an observation model Y and a set of
parameters θ. The topology defines the number of levels D = {d1, ..., dn}, parent-
child relationships between levels and the state space at each level, while the
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Fig. 1. A hierarchical HMM generated from a sequence of observed context dependent
spatial regions. Light gray nodes represent plan-states of the HMM, which are HMMs
themselves. Only the “Drink Water” HMM is shown in detail. White nodes correspond
to locations where the observed human is standing and represent the production states
of the HHMM. The dark gray node is a terminal state leading to a vertical transition
in the HHMM when it is reached. Rectangles are observations that are expected at the
specific locations.

observation model describes the set of possible observations Y = {y1, ..., ym}.
Given ζ and Y , the set of parameters of the HHMM θ is defined by

θ = {By|p, π
d,p∗

, Ad,p∗

i,j , Ad,p∗

i,end | ∀ (y, p, d, p∗, i, j)}

where By|p describes the probability of an observation y ∈ Y while being in

production state p and πd,p∗
represents the initial distribution over all chil-

dren of the internal state p∗. The transition probabilities between child nodes

i, j ∈ child (p∗) are described by Ad,p∗

i,j and the probability of an internal state

terminating given its child is the production state i is Ad,p∗

i,end. In our application
of HHMMs for activity recognition, we are interested in the posterior marginals
P (p∗i | y1:t) of the internal states at every point in time, which, in our case,
represent the probabilities of the human performing specific activities given a
sequence of location observations. One should note that any HHMM can be de-
composed into a standard HMM using the “flattening” method [23] which makes
algorithms that work on HMM applicable to HHMMs. We use a variant of the
Forward Backward Algorithm on the flattened HHMM, thus obtaining the pos-
terior marginals for all states. For a more detailed formal description of HHMMs,
which lies beyond the scope of this paper, we refer to the work of Fine et al .[6]
and Bui et al. [3].
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4 A Morning Routine Dataset

To obtain a realistic experimental setting for a domestic robot helper, we decided
to use a typical morning routine of a human in a kitchen since we think that
this is one of the main future operation areas of domestic robot helpers. We
investigated morning routines of the MIT PlaceLab PLCouple dataset [7] and
found that the number of different activities that a human commonly performs
during his morning routine is rather limited. During 10 weeks, the participants
of the study performed only 23 different activities between 6 and 12 am of which
only 11 were performed in the kitchen. Although annotations of the PLCouple
dataset are publicly available, sensor data has only been recorded for one of the
two participants since, due to financial restrictions, there was only one RFID
reader available for the experiment. As many tasks in the morning routine were
performed cooperatively and full audio and video data is not available because
of privacy issues, we decided to record a new dataset that realistically captures
the human morning routine of a person.

We asked one male participant, who had no knowledge about our system, to
note all activities that he performed on a weekday in the time between getting up
and going to work for three weeks. He furthermore was instructed to write down
the approximate durations of the activities as well as the locations at which he
stood still while performing those tasks. In compliance with the data from the
MIT PlaceLab PLCouple dataset, in our data the number of activities that the
participant performed in the kitchen between 6 and 12 am was limited to 10:
prepare a drink, drink a glass of water, prepare cereals, eat cereals, prepare curd-
cheese, eat curd-cheese, prepare bread, eat bread, clean the table and prepare
for work.

To obtain motion tracking data and object detections, we equipped an ex-
perimental kitchen with two Kinect sensors, one for motion tracking using the
Openni tracker3 and one for object detections based on visual markers using the
ROS AR Kinect toolbox4. The visual markers were used to limit the effort of our
experiments and could be replaced with more elaborate object detection systems
e.g. based on cameras. Motion tracking worked quite well, but especially when
dealing with partial occlusions, the tracker sometimes lost track of the person or
produced inaccurate measurements resulting in a “jumping” of several joints of
the tracked person. The object detections using the visual markers unfortunately
performed poorly in our setting and were not used for this work.

In previous work, we made good experiences with the testing of algorithms
in simulation, so we also set up a simulated environment of the same kitchen
using the MORSE simulator5 [5] which includes a human avatar that can be
controlled by a human and used to perform pick- and place tasks in the simulated
environment like in 3D computer games. The experimental kitchen is shown
in Figure 2 in its simulated version as well as the real kitchen environment.

3 http://ros.org/wiki/openni_tracker
4 http://www.ros.org/wiki/ar_kinect
5 http://morse.openrobots.org
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Furthermore, the picture shows a visualization of the motion tracking data and
object detections that are obtained by the two Kinect sensors.

Fig. 2. Upper left: The simulated environment in the MORSE simulator. Upper right:
The real experimental kitchen environment. Lower picture: Sensor input of the real
scenario. The motion tracker returns coordinate transformations for each joint of the
human while the visual marker detection provides us with the approximate position of
the markers.

We asked the participant to reenact his common morning routine for each
day of the three weeks according to his notes in the experimental kitchen in the
real world as well as in simulation. Since in the simulated scenario there is no
possibility to simulate a human eating or drinking, the participant waited for a
realistic amount of time at e.g. the table when at this point of time he would be
eating or drinking. Furthermore, the data was manually annotated with ground
truth labels and made available to the public for download6.

5 Approach and Evaluation

We create a spatial model of our experimental kitchen environment using a se-
mantically annotated map of the environment and the learned relative locations

6 (URL omitted due to double blind review)
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as explained in section 3. To keep the effort limited, we manually generate STPRs
and the state transitions of the HHMMs of the activities using sequences of con-
text dependent spatial regions based on the spatial model. However, there are
also approaches to learn such models from observations [8,?] or even infer ac-
tions and likely places from instructions from the web [21]. One disadvantage of
the straightly linear nature of STPRs is the missing possibility of accounting for
uncertainties in the order in which sub-actions of the activity were performed.
For example while setting the table, the participant sometimes brought the plate
first, while at another time, the first object that he picked up, were the cereals.
We decided to generate one STPR for each such variation, but treating all of
the variations as the same activity when calculating probabilities.

To extract locations in the data, we had to take into account that humans
never stand completely still. A location is detected when the person is not mov-
ing more than 25 cm within 0.5 seconds (0.5 m/s) and a simple motion pattern
of moving towards an object, staying there, and moving away again, is detected.
When we detect such an event, the spatial model is queried using the current co-
ordinates of the human, which furniture object the human is most likely pick up
something from and a location observation is added to our observation sequence.

5.1 Single Activity Recognition

We calculate normalized confidence values using Generalized Levenshtein Sim-
ilarity (GLS) as soon as an activity is finished. Activity recognition using the
GLS approach has quite a hard time distinguishing between different plans. Ta-
ble 1 shows the probabilities assigned to each known activity when the “Prepare
Cereals” activity is observed. The values are averaged over the 8 days in the
dataset when the participant had cereals for breakfast (for better comparabil-
ity with the data of the HHMMs, probabilities were calculated form the GLS
values). P (a)sim is the probability of activity a being observed in the simulated
dataset and P (a)real corresponds to the same probability for the real dataset.

Even though the maximum of the average values correctly classifies “Prepare
Cereals” as the most likely activity, variance of the mean values of all plans
is small and in some cases, activity recognition is undecided or wrong. In the
simulated data, still 7 of the 8 “Prepare Cereals” instances are classified correctly,
but with the difference to the probabilities of the other activities being rather
small. In one out of the 8 cases, “Prepare Cereals” has been classified wrongly
as one of “Prepare curd cheese” or “Clean table after cereals” (with the same
probability). For the real data, only 2 of the activities were correctly classified,
in 4 cases, classification was wrong and in the remaining 2 cases, probabilities
for two plans were the same (including the correct one).

In contrast to [8], activity recognition performs significantly worse, which we
found to be caused by observations of spatial regions that were labeled wrongly
when querying the spatial model. In [8], there were only few spatial regions which
also were quite unique. Our setting contained far more spatial regions that were
located close to each other, resulting in many overlappings of the corresponding
gaussians. This is caused due to the fact that in a some kitchens (like ours from
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a) STPRs and GLS:
Activity s P (a)sim (%) P (a)real(%)

Drink water 11.24 11.87
Prepare cereals 23.40 19.94
Prepare curd cheese 21.40 19.49
Clean table cereals 18.34 18.11
Clean table curd cheese 16.61 17.66
Prepare work 9.00 12.93
b) HHMMs:
Activity s P (a)sim (%) P (a)real(%)

Drink water 2.30 1.78
Prepare cereals 55.56 41.98
Prepare curd cheese 26.68 34.08
Clean table cereals 9.84 5.57
Clean table curd cheese 3.44 14.20
Prepare work 2.18 2.42

Table 1. Probabilities for activities when “Prepare cereals” is performed using STPRs
and GLS (a) and HHMMs (b).

figure 2), cupboards are for example located above drawers or other cupboards,
which leads to the human standing at the almost same location when picking
up an object from a drawer or a cupboard that is directly above the drawer. A
comparison of both spatial models can be seen in figure 3.

Fig. 3. Left picture: A spatial model with only a four context dependent spatial regions.
In this case, it is easy to distinguish between different locations. Right picture: A spatial
model of a more realistic kitchen environment where some furniture objects are close
to each other. Most of the gaussians are located very close together and thus make it
hard to reliably detect unique locations due to overlapping.

The overlapping of the spatial regions partially resulted in wrong observations
that were added to our observation sequence in cases when two spatial areas and
their corresponding gaussians were close to each other. Since STPRs do not use
any observation model, in cases of heavy overlapping one could see the labeling
of those spatial regions as almost random.
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HHMMs should overcome these limitations. The transitions of the HHMM
were manually set according to the notes of our dataset. To calculate the ob-
servation probabilities, we used the ground truth labeling of the dataset and
calculated observation probabilities in an initial training phase also using Max-
imum Likelihood estimation. This part is the most time consuming part in the
initialization, but we also conducted first experiments on estimating observa-
tion probabilities directly from the spatial model of the environment. Further
investigations towards this direction are part of future work.

The HHMM we generated this way comes with the advantages of account-
ing for uncertainties in the order in which the locations were visited, as well as
uncertainties in the observations of the locations. Furthermore, it can directly
be used to estimate probabilities for all of its internal states, the activities, at
every time step using the Forward-Backward Algorithm, giving the posterior
marginals over all activities. Table 1 shows probabilities for the activities when
the human performs the “Prepare Cereals” averaged over the 8 days when the
human had cereals, this time using the HHMM for recognition. Compared to the
probabilities when using GLS as in table 1, we see that HHMM-based recogni-
tion clearly outperforms the GLS approach. The probabilities indicate that the
observations fit well to one of the “Prepare Food” tasks. However, the distinction
between “Prepare Cereals” and “Prepare curd cheese” is rather difficult, since
the difference between both plans is rather small. When preparing cereals, the
human goes to the ceramic glass cooktop (location of the cereals) first, whereas
when preparing curd-cheese, he first visits the fridge. The location of the ceramic
glass cooktop and the refrigerator are very close to each other (as can be seen
in picture 2), so especially when using the noisy Kinect tracking, we can hardly
distinguish between those places. Overall, the HHMM approach classified all 8
of the prepare cereals activities and 2 of the 4 prepare curd-cheese activities
correctly in the simulated data. For the real data, 7 of the 8 “prepare cereals”
activities were classified correctly and 1 of the 4 “prepare curd-cheese” activities.
In all false positive cases, the most likely activity was the other food-preparing
activity.

5.2 Live Activity Recognition Using HHMMs

The experiments illustrated above show that the HHMM based approach is able
to detect single plans although some spatial regions are close to each other and
thus overlapping. The more interesting, although more difficult use case of our
activity recognition is when the human performs several plans after another.
We set up our HHMM based approach to perform live activity recognition in a
kitchen environment and in the following experiments, we will measure how well
this approach is able to detect different activities over time, including transitions
between activities. We calculated precision and recall values for each activity a
in the following way:

precision =
|ta ∩ t∗a|
|t∗a|

.
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Where ta represents the time when activity a has been executed by the par-
ticipant according to the ground truth labels of the dataset and t∗a stands for
the time where the detection estimates activity a to be the most likely one.
Accordingly recall was calculated in the following way:

recall =
|ta ∩ t∗a|
|ta|

.

Furthermore, we calculate the accuracy which is the proportion of true classifi-
cation results (true positives and true negatives) during the whole observation
period tobs:

accuracy =
|ta ∩ t∗a|+ |t̄a ∩ t̄∗a|

|tobs|
.

t̄a corresponds to the time when activity a has not been performed and t̄∗a rep-
resents time periods when activity a has not been classified as the most likely
activity. We did the experiment using data from simulation as well as the real
data of our dataset and the resulting precision, recall and accuracy values for
each activity can be found in Table 2 a) for the simulated data and Table 2 b)
for the real data. Although the precision and recall rates might suggest other-
wise, the “Prepare Work” activity is recognized very well in most cases as can
also be seen in figure 4. The reason for having lower precision and recall rates in
our experimental setting, is that we unluckily chose the position we used for the
initialization of the skeleton tracker (and the starting position of the human in
simulation) close to a region that is (uniquely) assigned to the “Prepare Work”
activity, thus creating a strong bias towards this activity in the beginning re-
sulting in lower precision rates of the “Prepare work” activity and lower recall
rates of the “Drink water” activity.

The values indicate that our system can distinguish between different plans,
although the recognition between some activities does not perform really well.
Again, if it comes to the recognition of the different food preparing and cleaning
activities, distinction between them is rather hard due to their similarity which
seems to be a bigger problem in the noisy real-data than in simulation. To get
an impression whether the approach is able to reliably recognize the different
categories of activities, we performed another experiment using the real data
where we merged the “prepare cereals” and “prepare curd cheese” plans into one
“prepare food” activity as well as both clean table plans into one. We repeated
the experiment and calculated precision, recall and accuracy, which resulted in
the values shown in Table 3.

A plot of plan probabilities over time for the simulated data, real data and
real data with merged “prepare food” and “clean table” plans are shown in Fig-
ure 4. We can mostly draw conclusions about different human activities using
only context dependent spatial regions. Only the recognition of the “Drink wa-
ter” activity is not recognized at all in some cases. We think is due to being the
first activity, only few observations being given to the HHMM. Since we initialize
the probabilities of all of our states of the HHMM uniformly, it has a hard time
finding the correct activity at the beginning when only one or two observations



Low Cost Activity Recognition 13

a) Simulated data
Activity Prec. (%) Recall (%) Acc. (%)

Drink water 66.3 62.5 86.8
Prepare cereals 95.1 96.6 94.4
Prepare curd cheese 63.8 46.5 62.8
Clean table cereals 87.9 64.7 94.0
Clean table curd cheese 45.2 44.7 89.5
Prepare work 44.6 68.0 92.6

b) Real world data
Activity Prec. (%) Recall (%) Acc. (%)

Drink water 35.9 37.0 76.4
Prepare cereals 51.9 67.5 62.9
Prepare curd cheese 34.8 25.0 63.0
Clean table cereals 68.4 23.2 82.3
Clean table curd cheese 85.8 34.1 84.9
Prepare work 63.4 91.3 92.6

Table 2. Average precision, recall and accuracy for 12 experiments of the simulated
and real data using only locations with HHMMs.

Activity Precision (%) Recall (%) Accuracy (%)

Drink water 64.0 61.6 87.0
Prepare food 69.4 68.7 73.8
Clean table 49.2 79.5 79.9
Prepare work 90.6 48.5 94.4

Table 3. Average precision, recall and accuracy for 12 experiments of the real data
using only locations with HHMMs and combined plans.

are available. To improve recognition rates at the beginning, one could think of
biasing probabilities for some activities at the initialization of our system since
e.g a human will most likely have breakfast and afterwards clean the table.

Another way to increase recognition rates is the inclusion of object detections.
Since one of our goals is to avoid equipping the environment extensively with
sensors, RFID tags, etc., we investigated the use of only few object detections
as a proof-of-concept showing that a combination of activity recognition solely
based on locations in combination with few object detections can produce a very
reliable activity recognition. We therefore bias the probabilities of the activity
recognition by just observing which objects appear in an activity at all and
which don’t, i.e. if an object is detected to be used by the human, probabilities
for activities the include the object are rewarded, while activities that do not
include the object are penalized. We use this rather simple approach as a proof-
of-concept, but there are also more elaborate systems based on sequences of
object detections, for example by Buettner et al. [2]. We classified a detected
object as “used by the human” when it was in reach of the human and changed its
position since its last detection. Precision, recall and accuracy for the simulated
dataset with partial object detections are shown in Table 4. Out of the 25 object
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interactions of the user, on average 15 were detected. These detections already
allow us to bias the activity recognition and increase the system performance
(on average: Accuracy of 94.1 %).

Activity Prec. (%) Recall (%) Acc. (%)

Drink water 90.2 73.5 94.2
Prepare cereals 96.9 98.1 96.4
Prepare curd cheese 97.9 88.4 91.0
Clean table cereals 84.1 73.4 96.2
Clean table curd cheese 61.7 48.2 91.3
Prepare work 68.8 86.5 95.7

Table 4. Average precision, recall and accuracy for 12 experiments of the simulated
data with partial object detections using HHMMs.

6 Discussion

When modeling linear activities using unique locations, STPRs offer a cheap and
easy way to model activities and perform activity recognition while providing a
decent model to merge information about patterns of actions and their corre-
sponding durations. Another advantage of STPRs is the possibility to explicitly
model temporal sequences which is only partially possible using HMMs due to
the Markov Assumtion which they are based on. This property makes STPRs
also applicable in other applications like montoring, e.g. in applications when
it also has to be accounted for how often specific subtasks have already been
executed.

However, when it comes to non-linear sequences of tasks (caused by vari-
ations of sub-tasks) and locations that cannot be uniquely identified (e.g. due
to overlapping gaussians in our spatial model), performance decreases and the
use of HHMMs can significantly improve results. Activity recognition based on
HHMMs performs slightly worse than other ones based on sequences of object
detections in a heavily sensor equipped environment (which often have precision
and recall-rates around 90 % [2] or average accuracy rates around 97 % [4]), but
given the unintrusive and cheap sensor setting, our approach works remarkably
well as long as good models of the activities are provided to generate the HHMM.
One shortcoming of our current experiments is the manual generation of models
for the HHMMs and STPRs based on ground truth data due to a lack of train-
ing data. To prove the generality of the approach, a cross validation would be
necessary but due to the lacking availability of datasets and the already heavily
time-consuming task of generating new datasets, sufficient training data has not
been available at the time of the experiments.

Using only sequences of spatial regions as features introduces the limitation
that activities that consist of similar patterns of locations, which potentially
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Fig. 4. Upper picture: Plan-probabilities over time of one morning routine of the sim-
ulated dataset using the online activity recognition without object detections. Middle
picture: Plan probabilities for the real data. Here, the activity recognition has a hard
time distinguishing between the different food preparing and cleaning activities due
to their similarity. Lower picture: Plan probabilities of the same morning-routine as
the middle picture, but in this case,the two food-preparing and the two clean-table
activities are merged into a single one.
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are close to each other, are hard to distinguish as we saw in the example of
the different prepare-food and clean-table plans. The performance of our system
may be improved to some extent with more features like object detections or by
including prior information like the time and rough order in which activities are
usually performed. One drawback of the use of HHMMs is the need for emission
probabilities, which we currently learn in a training phase. We were able to
estimate emission probabilities directly from the spatial model with comparable,
but slightly less accurate results. Further investigations to estimate emission
probabilities from the spatial model are part of our future work. We also intend
to include non-activities into our HHMM by introducing an additional internal
state that models non-labeled activities. Nevertheless, we were so far able to set
up a live system for activity recognition using only data from one Kinect sensor
(or two if object detections are used), thus offering a relatively cheap and non-
intrusive way of performing activity recognition for mobile robots in spatially
limited environments.

7 Conclusion

We presented an approach that performs activity recognition based on context
dependent spatial regions in a kitchen environment using inexpensive depth cam-
eras. We compared two different modeling and inference techniques and found
that STPRs do not perform well in settings with different context dependent
spatial regions that are located very close to each other due to a missing sensor
model. To overcome this limitation and also account for variations in the partial
order of activities, we set up a HHMM-based live system for activity recognition
using a spatial model and evaluated it in a simulated and a real-world setting.
The evaluations show that HHMM-based activity recognition with a Kinect us-
ing context dependent spatial regions outperforms STPRs and offers a decent
approach for human activity recognition.
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