
Introduction
Several studies over the last 15 years [1–5] have advocated the use of bootstrap methods 
rather than asymptotic-theory methods to compute confi dence intervals for the threshold 
and slope of a psychometric function. The bootstrap comes in many forms, however, and 
one of the aims of the current research was to compare, using Monte Carlo simulation, the 
coverage properties of some of its variations.

A second aim was to test bootstrap methods under conditions in which lapse rate is 
taken into account, as a constrained variable parameter during the fi tting process. The inclu-
sion of this nuisance parameter is necessary in order to avoid biased threshold and slope 
estimates [6–7].

Method
Whereas a single bootstrap obtains a confi dence interval by repeatedly simulating the behav-
iour of an observer, a Monte Carlo coverage test aims to simulate the entire experiment 
repeatedly, including the procedures carried out by the experimenter to estimate parameters 
and obtain confi dence intervals.  This process, described in more detail below, was used to 
investigate the accuracy of the following confi dence interval methods :

Asymptotic methods

• MLE ±2 estimated standard errors from probit analysis,

• Finney’s fi ducial limits on thresholds, based on probit analysis (see ref [9], p.79).

Bootstrap methods

• MLE ±2 bootstrap standard errors,

• basic bootstrap,

• bootstrap percentile,

• parametric BC
a
.

Where bootstrap methods were used, confi dence intervals were based on 1999 parametric 
bootstrap replications, on each the 500 replications of the entire experiment. See Davison 
and Hinkley [8], chapter 5 for descriptions of the different bootstrap methods.

Monte Carlo Procedure for Testing Coverage 

1. Start with a generating psychometric function, which will describe the true behaviour 
of a simulated observer in a 2AFC psychophysical experiment:
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= 0.01 .

2. Choose a sampling scheme. Seven different schemes were tested, shown in fi gure A. 

3. Choose the total number of trials N (to be divided equally between the six points). The 
values 120, 240, 480 and 960 were all tested.

4. Repeat 500 times:

• The simulated observer performs the experiment: the vertical position of each 
red square in fi gure B is drawn from the appropriate binomial distribution.

• The simulated experimenter fi ts a curve to the data, obtaining estimates of l 
and F (red curve in fi gure C).  A maximum-likelihood multi-parameter search 
method was used, as described by Wichmann and Hill [7]. g was assumed to 
be fi xed at 0.5, and l was allowed to vary, but constrained to lie in the range 
[0, 0.05].

• The simulated experimenter computes two-tailed 95.4% confi dence intervals 
for the threshold and for the slope of F (based on its own estimate  of F, because 
it does not know F

gen
). A number of different confi dence interval methods were 

explored (see above).

• Record whether the true threshold or slope value falls within the interval, or 
whether it is falsely rejected in the lower tail, or in the upper tail. In fi gure D, 
the true threshold value has been rejected in the upper tail.

5. Let P
LO

 be the observed rate of rejections in the lower tail, and P
UP

 be the observed rate 
of rejections in the upper tail, in the set of 500 repetitions. Compute estimated cover-
age:
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 and estimated imbalance:
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 If the confi dence interval method is perfect, then the expected values are c = 0.954 and 
a = 0. If a = -1, interval limits are being set too low, to the extent that all rejections occur 
in the upper tail and none in the lower. If a = +1, limits are being set too high, with all 
rejections occurring in the lower tail.

Results
In the results fi gures, symbol shape denotes which of the seven sampling schemes was used, as per fi gure A, and 
symbol size denotes N (the smallest size corresponds to 120, then 240, 480 and 960). Note that the effects of 
increasing N vary according to sampling scheme and confi dence interval method. However, it is not necessary to 
look closely at size and shape differences in order to appreciate the overall differences between confi dence interval 
methods. The standard error of c is roughly 0.01 for most of the points.

Results for threshold confi dence intervals

All methods were prone to variation in both coverage and imbalance, depending on sampling scheme and on N. 
The bootstrap percentile and BC

a
 methods were the least affl icted by such variations. Of the two, the BC

a
 method 

was better balanced, but had a tendency to produce confi dence intervals whose coverage was too low.

The probit standard error method was more variable than the bootstrap percentile and BC
a
 methods, and 

yielded larger imbalance values. It was, however, as good as the two cruder bootstrap methods (bootstrap standard 
deviation and basic bootstrap), if not better, in this regard. Finney’s fi ducial threshold limits should probably be 
ranked worst, being highly imbalanced on the negative side.

Concluding remarks
A good confi dence interval method should be well balanced, and should minimize the differences in coverage and 
imbalance that are associated with variations in sampling scheme and in N. It should also display an accurate level 
of coverage, although inaccurate coverage may not be a fatal fl aw provided the other two requirements are satisfi ed: 
if the method is well balanced, the experimenter could compensate for low coverage simply by increasing the target 
coverage level, or by employing a technique such as Wichmann and Hill’s [10] expanded bootstrap method.

By these criteria, the BC
a
 method emerges as the best of the methods studied, for the calculation of 95% 

confi dence intervals. However, performance on slopes was somewhat unsatisfactory for all methods, and the differ-
ence between the BC

a
 and the much less computationally expensive probit method was not large relative to the dif-

ferences caused by variations in sampling scheme. This poor performance is partly ascribable to the inclusion of l 
as a nuisance parameter: if l

gen
= 0, and l is fi xed at 0 during fi tting, all results improve, with the BC

a
 overcoming 

its low coverage problem and emerging as clearly superior to probit methods on both thresholds and slopes (results 
not shown). Unfortunately, in experiments with real observers, it is necessary to take account of l in order to avoid 
bias.

If slope is an important parameter in one’s analysis, work currently in progress suggests that the use of two-
dimensional bootstrap confi dence regions, rather than separate one-dimensional threshold and slope intervals, greatly 
improves results, in particular reducing the differences between sampling schemes.

Software
Software for fi tting psychometric functions, and for obtaining confi dence intervals for thresholds and slopes, is 
available on the web. The source code can be compiled on MacOS, Windows9x, Linux and most other UNIX sys-
tems, to create either a standalone program, or a MEX fi le that interfaces with MATLAB®.  Supporting MATLAB® 
m-fi les are also supplied, to aid user input and graphical visualization. Precompiled MEX-fi les are available for 
MacOS and Windows, and precompiled executables are available for MacOS, DOS and Digital UNIX.

http://users.ox.ac.uk/~sruoxfor/psychofit/

Results for slope confi dence intervals

All methods performed worse on slopes than on thresholds: they all tended to be imbalanced in one direction or 
the other, and in many cases the imbalance was large (often +1 or -1).

The BC
a
 method is less unbalanced than the others, but suffers slightly from low coverage, as was also the case 

for thresholds. The probit standard error method is almost as good, but it has a higher proportion of large imbalance 
values.
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