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The performance of an observer on a psychophysical
task is typically summarized by reporting one or more
response thresholds—stimulus intensities required to pro-
duce a given level of performance—and by characteriza-
tion of the rate at which performance improves with in-
creasing stimulus intensity. These measures are derived
from a psychometric function, which describes the depen-
dence of an observer’s performance on some physical as-
pect of the stimulus: One example might be the relation be-
tween the contrast of a visual stimulus and the observer’s
ability to detect it.

Fitting psychometric functions is a variant of the more
general problem of modeling data. Modeling data is a three-
step process. First, a model is chosen, and the parameters
are adjusted to minimize the appropriate error metric or
loss function. Second, error estimates of the parameters
are derived, and third, the goodness of fit between the
model and the data is assessed. This paper is concerned

with the first and the third of these steps, parameter esti-
mation and goodness-of-fit assessment. Our companion
paper (Wichmann & Hill, 2001) deals with the second step
and illustrates how to derive reliable error estimates on
the fitted parameters. Together, the two papers provide
an integrated approach to fitting psychometric functions,
evaluating goodness of fit, and obtaining confidence in-
tervals for parameters, thresholds, and slopes, avoiding
the known sources of potential error.

This paper is divided into two major subsections, fitting
psychometric functions and goodness of fit. Each subsec-
tion itself is again subdivided into two main parts: first, an
introduction to the issue, and second, a set of simulations
addressing the issue raised in the respective introduction.

NOTATION

We adhere mainly to the typographic conventions fre-
quently encountered in statistical texts (Collett, 1991;
Dobson, 1990; Efron & Tibshirani, 1993). Variables are de-
noted by uppercase italic letters, and observed values are
denoted by the corresponding lowercase letters—for ex-
ample, y is a realization of the random variable Y. Greek
letters are used for parameters, and a circumflex for esti-
mates; thus, parameter b is estimated by b̂. Vectors are
denoted by boldface lowercase letters, and matrices by
boldface italic uppercase letters. The ith element of a vec-
tor x is denoted by xi. The probability density function of
the random variable Y (or the probability distribution if Y
is discrete) with q as the vector of parameters of the dis-
tribution is written as p( y;q). Simulated data sets (repli-
cations) are indicated by an asterisk—for example, âi* is
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The psychometric function relates an observer’s performance to an independent variable, usually some
physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper
(Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) as-
sessing the goodness of fit, and (3) providing confidence intervals for the function’s parameters and other
estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first
two topics, describing a constrained maximum-likelihood method of parameter estimation and develop-
ing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that
arise when fitting functions to psychophysical data. First, we note that human observers are prone to
stimulus-independent errors (or lapses). We show that failure to account for this can lead to serious bi-
ases in estimates of the psychometric function’s parameters and illustrate how the problem may be over-
come. Second, we note that psychophysical data sets are usually rather small by the standards required
by most of the commonly applied statistical tests. We demonstrate the potential errors of applying tradi-
tional c 2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that
do not rely on asymptotic theory. We have made available the software to implement our methods.
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the value of â in the ith Monte Carlo simulation. The nth
quantile of a distribution x is denoted by x(n).

FITTING PSYCHOMETRIC FUNCTIONS

Background
To determine a threshold, it is common practice to fit a

two-parameter function to the data and to compute the in-
verse of that function for the desired performance level.
The slope of the fitted function at a given level of perfor-
mance serves as a measure of the change in performance
with changing stimulus intensity. Statistical estimation of
parameters is routine in data modeling (Dobson, 1990;
McCullagh & Nelder, 1989): In the context of fitting psy-
chometric functions, probit analysis (Finney, 1952 , 1971)
and a maximum-likelihood search method described by
Watson (1979) are most commonly employed. Recently,
Treutwein and Strasburger (1999) have described a con-
strained generalized maximum-likelihood procedure that
is similar in some respects to the method we advocate in
this paper.

In the following, we review the application of maximum-
likelihood estimators in fitting psychometric functions
and the use of Bayesian priors in constraining the fit ac-
cording to the assumptions of one’s model. In particular,
we illustrate how an often disregarded feature of psy-
chophysical data—namely, the fact that observers some-
times make stimulus-independent lapses—can introduce
significant biases into the parameter estimates. The ad-
verse effect of nonstationary observer behavior (of which
lapses are an example) on maximum-likelihood parameter
estimates has been noted previously (Harvey, 1986; Swan-
son & Birch, 1992; Treutwein, 1995; cf. Treutwein & Stras-
burger, 1999). We show that the biases depend heavily on
the sampling scheme chosen (by which we mean the pat-
tern of stimulus values at which samples are taken) but that
it can be corrected, at minimal cost in terms of parameter
variability, by the introduction of an additional free but
highly constrained parameter determining, in effect, the
upper bound of the psychometric function.

The psychometric function. Psychophysical data are
taken by sampling an observer’s performance on a psycho-
physical task at a number of different stimulus levels. In
the method of constant stimuli, each sample point is taken
in the form of a block of experimental trials at the same
stimulus level. In this paper, K denotes the number of such
blocks or datapoints. A data set can thus be described by
three vectors, each of length K: x will denote the stimulus
levels or intensities of the blocks, n the number of trials
or observations in each block, and y the observer’s per-
formance, expressed as a proportion of correct responses
(in forced-choice paradigms) or positive responses (in
single-interval or yes/no experiments). We will use N to
refer to the total number of experimental trials, N 5 åni.

To model the process underlying experimental data, it
is common to assume the number of correct responses yini
in a given block i to be the sum of random samples from a

Bernoulli process with a probability of success pi. A model
must then provide a psychometric function y(x), which
specifies the relationship between the underlying proba-
bility of a correct (or positive) response p and the stimulus
intensity x. A frequently used general form is

(1)

The shape of the curve is determined by the parameters {a,
b, g, l}, to which we shall refer collectively by using the
parameter vector qq, and by the choice of a two-parameter
function F, which is typically a sigmoid function, such as
the Weibull, logistic, cumulative Gaussian, or Gumbel dis-
tribution.1

The function F is usually chosen to have range [0, 1], [0,
1), or (0,1). Thus, the parameter g gives the lower bound of
y(x;qq), which can be interpreted as the base rate of per-
formance in the absence of a signal. In forced-choice
paradigms (n-AFC), this will usually be fixed at the rec-
iprocal of the number of alternatives per trial. In yes/no
paradigms, it is often taken as corresponding to the guess
rate, which will depend on the observer and experimental
conditions. In this paper, we will use examples from only
the 2AFC paradigm, and thus assume g to be fixed at .5.
The upper bound of the curve—that is, the performance
level for an arbitrarily large stimulus signal—is given by
1 2 l. For yes/no experiments, l corresponds to the miss
rate, and in n-AFC experiments, it is, similarly, a reflec-
tion of the rate at which observers lapse, responding in-
correctly regardless of stimulus intensity.2 Between the
two bounds, the shape of the curve is determined by a and
b. The exact meaning of a and b depends on the form of
the function chosen for F, but together they will determine
two independent attributes of the psychometric function:
its displacement along the abscissa and its slope.

We shall assume that F describes the performance of
the underlying psychological mechanism of interest. Al-
tough it is important to have correct values for g and l , the
values themselves are of secondary scientific interest,
since they arise from the stimulus-independent mecha-
nisms of guessing and lapsing. Therefore, when we refer
to the threshold and slope of a psychometric function, we
mean the inverse of F at some particular performance
level as a measure of displacement and the gradient of F
at that point as a measure of slope. Where we do not spec-
ify a performance level, the value .5 should be assumed:
Thus threshold refers F -1

0.5 to and slope refers to F¢ eval-
uated at F -1

0.5. In our 2AFC examples, these values will
roughly correspond to the stimulus value and slope at the
75% correct point, although the exact predicted perfor-
mance will be affected slightly by the (small) value of l .

Maximum-likelihood estimation. Likelihood maxi-
mization is a frequently used technique for parameter es-
timation (Collett, 1991; Dobson, 1990; McCullagh & Nel-
der, 1989). For our problem, provided that the values of y
are assumed to have been generated by Bernoulli pro-
cesses, it is straightforward to compute a likelihood value
for a particular set of parameters qq, given the observed

y a b g l g g l a b( ; , , , ) ( ) ( ; , ).x F x= + - -1
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values y. The likelihood function L(qq;y) is the same as the
probability function p(y|qq) (i.e. , the probability of having
obtained data y given hypothetical generating parameters
qq)—note, however, the reversal of order in the notation,
to stress that once the data have been gathered, y is fixed,
and qq  is the variable. The maximum-likelihood estimator
qq̂ of qq  is simply that set of parameters for which the like-
lihood value is largest: L(qq̂;y) $ L(qq;y) for all qq. Since the
logarithm is a monotonic function, the log-likelihood
function l(qq;y) 5 l(qq;y) is also maximized by the same es-
timator qq̂, and this frequently proves to be easier to max-
imize numerically. For our situation, it is given by

(2)

In principle, qq̂ can be found by solving for the points at
which the derivative of l(qq;y) with respect to all the pa-
rameters is zero: This gives a set of local minima and max-
ima, from which the global maximum of l(qq;y) is selected.
For most practical applications, however, qq̂ is determined
by iterative methods, maximizing those terms of Equation 2
that depend on qq. Our implementation of log-likelihood
maximization uses the multidimensional Nelder–Mead
simplex search algorithm,3 a description of which can be
found in chapter 10 of Press, Teukolsky, Vetterling, and
Flannery (1992).

Bayesian priors. It is sometimes possible that the
maximum-likelihood estimate qq̂ contains parameter val-
ues that are either nonsensical or inappropriate. For exam-
ple, it can happen that the best fit to a particular data set
has a negative value for l , which is uninterpretable as a
lapse rate and implies that an observer’s performance can
exceed 100% correct—clearly nonsensical psychologically,
even though l(qq; y) may be a real value for the particular
stimulus values in the data set.

It may also happen that the data are best fit by a pa-
rameter set containing a large l (greater than .06, for ex-
ample). A large l is interpreted to mean that the observer
makes a large proportion of incorrect responses no matter
how great the stimulus intensity—in most normal psycho-
physical situations, this means that the experiment was
not performed properly and that the data are invalid. If the
observer genuinely has a lapse rate greater than .06, he or
she requires extra encouragement or, possibly, replace-
ment. However, misleadingly large l values may also be
fitted when the observer performs well, but there are no
samples at high performance values.

In both cases, it would be better for the fitting algorithm
to return parameter vectors that may have a lower log-
likelihood than the global maximum but that contain more
realistic values. Bayesian priors provide a mechanism for
constraining parameters within realistic ranges, based on
the experimenter’s prior beliefs about the likelihood of
particular values. A prior is simply a relative probability

distribution W(qq), specified in advance, which weights the
likelihood calculation during fitting: The fitting process
therefore maximizes W(qq)L(qq;y) or log W(qq) 1 l(qq;y),
instead of the unweighted metrics.

The exact form of W(qq) is to be chosen by the experi-
menter, given the experimental context. The ideal choice
for W(l) would be the distribution of rates of stimulus-
independent error for the current observer on the current
task. Generally, however, one has not enough data to esti-
mate this distribution. For the simulations reported in this
paper, we chose W(l) 5 1 for 0 # l # .06; otherwise,
W(l) 5 04—that is, we set a limit of .06 on l , and weight
smaller values equally with a flat prior.5,6 For data analy-
sis, we generally do not constrain the other parameters,
except to limit them to values for which y(x;qq) is real.

Avoiding bias caused by observers’ lapses. In stud-
ies in which sigmoid functions are fitted to psychophys-
ical data, particularly where the data come from forced-
choice paradigms, it is common for experimenters to fix
l 5 0, so that the upper bound of y(x;qq) is always 1.0.
Thus, it is assumed that observers make no stimulus-
independent errors. Unfortunately, maximum-likelihood
parameter estimation as described above is extremely sen-
sitive to such stimulus-independent errors, with a conse-
quent bias in threshold and slope estimates (Harvey, 1986;
Swanson & Birch, 1992).

Figure 1 illustrates the problem. The dark circles indi-
cate the proportion of correct responses made by an ob-
server in six blocks of trials in a 2AFC visual detection
task. Each datapoint represents 50 trials, except for the last
one, at stimulus value 3.5, which represents 49 trials: The
observer still has one trial to perform to complete the
block. If we were to stop here and fit a Weibull function
to the data, we would obtain the curve plotted as a dark
solid line. Whether or not l is fixed at 0 during the fit, the
maximum-likelihood parameter estimates are the same:
{â5 1.573, b̂ 5 4.360, l̂ 5 0}. Now suppose that, on the
50th trial of the last block, the observer blinks and misses
the stimulus, is consequently forced to guess, and happens
to guess wrongly. The new position of the datapoint at
stimulus value 3.5 is shown by the light triangle: It has
dropped from 1.00 to .98 proportion correct.

The solid light curve shows the results of fitting a two-
parameter psychometric function (i.e. , allowing a and b
to vary, but keeping l fixed at 0). The new fitted param-
eters are {â 5 2.604, b̂ 5 2.191}. Note that the slope of
the fitted function has dropped dramatically in the space
of one trial—in fact, from a value of 1.045 to 0.560. If we
allow l to vary in our new fit, however, the effect on pa-
rameters is slight—{â 5 1.543, b̂ 5 4.347, l̂ 5 .014}—
and thus, there is little change in slope: dF̂/dx evaluated at
x 5 F -1

0.5 is 1.062.
The misestimation of parameters shown in Figure 1 is

a direct consequence of the binomial log-likelihood error
metric because of its sensitivity to errors at high levels of
predicted performance:7 since y(x;qq) ® 1, so, in the third
term of Equation 2, (1 2 yi)ni log[1 2 y(xi;qq)] ® 2¥ un-
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less the coefficient (1 2 yi)ni is 0. Since yi represents ob-
served proportion correct, the coefficient is 0 as long as
performance is perfect. However, as soon as the observer
lapses, the coefficient becomes nonzero and allows the
large negative log term to influence the log-likelihood sum,
reflecting the fact that observed proportions less than 1
are extremely unlikely to have been generated from an
expected value that is very close to 1. Log-likelihood can
be raised by lowering the predicted value at the last stim-
ulus value, y(3.5,qq). Given that l is fixed at 0, the upper
asymptote is fixed at 1.0; hence, the best the fitting algo-
rithm can do in our example to lower y(3.5,qq) is to make
the psychometric function shallower.

Judging the fit by eye, it does not appear to capture
accurately the rate at which performance improves with
stimulus intensity. (Proper Monte Carlo assessments of
goodness of fit are described later in this paper.)

The problem can be cured by allowing l to take a non-
zero value, which can be interpreted to reflect our belief
as experimenters that observers can lapse and that, there-
fore, in some cases, their performance might fall below
100% despite arbitrarily large stimulus values. To obtain
the optimum value of l and, hence, the most accurate es-
timates for the other parameters, we allow l to vary in the
maximum-likelihood search. However, it is constrained
within the narrow range [0,.06], reflecting our beliefs con-
cerning its likely values8 (see the previous section, on Baye-
sian priors).

The example of Figure 1 might appear exaggerated; the
distortion in slope was obtained by placing the last sam-

ple point (at which the lapse occurred) at a comparatively
high stimulus value relative to the rest of the data set. The
question remains: How serious are the consequences of as-
suming a fixed l for sampling schemes one might readily
employ in psychophysical research?

Simulations
To test this, we conducted Monte Carlo simulations; six-

point data sets were generated binomially assuming a
2AFC design and using a standard underlying performance
function F(x;{agen, bgen}), which was a Weibull function
with parameters agen 5 10 and bgen 5 3. Seven different
sampling schemes were used, each dictating a different
distribution of datapoints along the stimulus axis. They
are shown in Figure 2: Each horizontal chain of symbols
represents one of the schemes, marking the stimulus val-
ues at which the six sample points are placed. The differ-
ent symbol shapes will be used to identify the sampling
schemes in our results plots. To provide a frame of ref-
erence, the solid curve shows 0.5 1 0.5(F(x;{agen, bgen}),
with the 55%, 75%, and 95% performance levels marked
by dotted lines.

Our seven schemes were designed to represent a range
of different sampling distributions that could arise during
“everyday” psychophysical laboratory practice, including
those skewed toward low performance values (s4) or high
performance values (s3 and s7), those that are clustered
around threshold (s1), those that are spread out away from
the threshold (s5), and those that span the range from 55%
to 95% correct (s2). As we shall see, even for a fixed num-
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Figure 1. Dark circles show data from a hypothetical observer prior to lapsing. The solid dark line
is a maximum-likelihood Weibull fit to the data set. The triangle shows a datapoint after the ob-
server lapsed once during a 50-trial block. The solid light line shows the (poor) traditional two-pa-
rameter Weibull fit with ll fixed; the broken light line shows the suggested three-parameter Weibull
fit with ll free to vary.
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ber of sample points and a f ixed number of trials per
point, biases in parameter estimation and goodness-of-fit
assessment (this paper) as well as the width of confidence
intervals (companion paper, Wichmann & Hill, 2001), all
depend heavily on the distribution of stimulus values x.

The number of datapoints was always 6, but the num-
ber of observations per point was 20, 40, 80, or 160. This
meant that the total number of observations N could be
120, 240, 480, or 960.

We also varied the rate at which our simulated observer
lapsed. Our model for the processes involved in a single
trial was as follows: For every trial at stimulus value xi, the
observer’s probability of correct response ygen(xi) is given
by 0.5 1 0.5F(xi;{agen, bgen}), except that there is a cer-
tain small probability that something goes wrong, in which
case ygen(xi) is instead set at a constant value k. The value
of k would depend on exactly what goes wrong. Perhaps
the observer suffers a loss of attention, misses the stimu-
lus, and is forced to guess; then, k would be .5, reflecting
the probability of the guess’ being correct. Alternatively,
lapses might occur because the observer fails to respond
within a specified response interval, which the experi-
menter interprets as an incorrect response, in which case
k 5 0. Or perhaps k has an intermediate value that re-
flects a probabilistic combination of these two events and/
or other potential mishaps. In any case, provided we as-
sume that such events are independent, that their probabil-
ity of occurrence is constant throughout a single block of
trials, and that k is constant, the simulated observer’s over-
all performance on a block is binomially distributed, with
an underlying probability that can be expressed with Equa-

tion 1—it is easy to show that variations in k or in the
probability of a mishap are described by a change in l . We
shall use lgen to denote the generating function’s l param-
eter, possible values for which were 0, .01, .02, .03, .04,
and .05.

To generate each data set, then, we chose (1) a sampling
scheme, which gave us the vector of stimulus values x,
(2) a value for N, which was divided equally among the el-
ements of the vector n denoting the number of observa-
tions in each block, and (3) a value for lgen, which was as-
sumed to have the same value for all blocks of the data
set.9 We then obtained the simulated performance vector
y: For each block i, the proportion of correct responses yi
was obtained by finding the proportion of a set of ni ran-
dom numbers10 that were less than or equal to ygen(xi). A
maximum-likelihood fit was performed on the data set
described by x, y, and n, to obtain estimated parameters
â, b̂ , and l̂. There were two fitting regimes: one in which
l̂ was fixed at 0, and one in which it was allowed to vary
but was constrained within the range [0, .06]. Thus, there
were 336 conditions: 7 sampling schemes 3 6 values for
lgen 3 4 values for N 3 2 fitting regimes. Each condition
was replicated 2,000 times, using a new randomly gen-
erated data set, for a total of 672,000 simulations overall,
requiring 3.024 3 108 simulated 2AFC trials.

Simulation results: 1. Accuracy. We are interested in
measuring the accuracy of the two fitting regimes in es-
timating the threshold and slope, whose true values are
given by the stimulus value and gradient of F(x;{agen,
bgen}) at the point at which F(x;{agen, bgen}) 5 0.5. The
true values are 8.85 and 0.118, respectively—that is, it is
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Figure 2. A two-alternative forced-choice Weibull psychometric function with parameter vector
qq 5 {10, 3, .5, 0} on semilogarithmic coordinates. The rows of symbols below the curve mark the x
values of the seven different sampling schemes used throughout the remainder of the paper.
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F(8.85;{10, 3}) 5 0.5 and F¢(8.85;{10, 3}) 5 0.118. From
each simulation, we use the estimated parameters to ob-
tain the threshold and slope of F(x;{â, b̂}). The medians
of the distributions of 2,000 thresholds and slopes from
each condition are plotted in Figure 3. The left-hand col-
umn plots median estimated threshold, and the right-
hand column plots median estimated slope, both as a
function of lgen. The four rows correspond to the four
values of N: The total number of observations increases
down the page. Symbol shape denotes sampling scheme
as per Figure 2. Light symbols show the results of fixing
l at 0, and dark symbols show the results of allowing l
to vary during the fitting process. The true threshold and
slope values (i.e. , those obtained from the generating func-
tion) are shown by the solid horizontal lines.

The first thing to notice about Figure 3 is that, in all the
plots, there is an increasing bias in some of the sampling
schemes’ median estimates as lgen increases. Some sam-
pling schemes are relatively unaffected by the bias. By
using the shape of the symbols to refer back to Figure 2,
it can be seen that the schemes that are affected to the
greatest extent (s3, s5, s6, and s7) are those containing
sample points at which F(x,{agen, bgen}) . 0.9, whereas
the others (s1, s2, and s4) contain no such points and are
affected to a lesser degree. This is not surprising, bearing
in mind the foregoing discussion of Equation 1: Bias is
most likely where high performance is expected.

Generally, then, the variable-l regime performs better
than the fixed-l regime in terms of bias. The one excep-
tion to this can be seen in the plot of median slope esti-
mates for N 5 120 (20 observations per point): Here,
there is a slight upward bias in the variable-l estimates,
an effect that varies according to sampling scheme but that
is relatively unaffected by the value of lgen. In fact, for
lgen # .02, the downward bias from the fixed-l fits is
smaller, or at least no larger, than the upward bias from
fits with variable l. Note, however, that an increase in N
to 240 or more improves the variable-l estimates, reduc-
ing the bias and bringing the medians from the different
sampling schemes together. The variable-l f itting
scheme is essentially unbiased for N $ 480, independent
of the sampling scheme chosen. By contrast, the value of
N appears to have little or no effect on the absolute size
of the bias inherent in the susceptible fixed-l schemes.

Simulation results: 2. Precision. In Figure 3, the bias
seems fairly small for threshold measurements (maximally,
about 8% of our stimulus range when the fixed-l fitting
regime is used or about 4% when l is allowed to vary).
For slopes, only the fixed-l regime is affected, but the ef-
fect, expressed as a percentage, is more pronounced (up
to 30% underestimation of gradient).

However, note that however large or small the bias ap-
pears when expressed in terms of stimulus units, knowl-
edge about an estimator’s precision is required in order to
assess the severity of the bias. Severity in this case means
the extent to which our estimation procedure leads us to
make errors in hypothesis testing: finding differences be-
tween experimental conditions where none exist (Type I

errors) or failing to find them when they do exist (Type II).
The bias of an estimator must thus be evaluated relative
to its variability. A frequently applied rule of thumb is that
a good estimator should be biased by less than 25% of its
standard deviation (Efron & Tibshirani, 1993).

The variability of estimates in the context of fitting psy-
chometric functions is the topic of our companion paper
(Wichmann & Hill, 2001), in which we shall see that one’s
chosen sampling scheme and the value of N both have a
profound effect on confidence interval width. For now, and
without going into too much detail, we are merely inter-
ested in knowing how our decision to employ a fixed-l
or a variable-l regime affects variability (precision) for the
various sampling schemes and to use this information to
assess the severity of bias.

Figure 4 shows two illustrative cases, plotting results
for two contrasting schemes at N 5 480. The upper pair
of plots shows the s7 sampling scheme, which, as we have
seen, is highly susceptible to bias when l is fixed at 0
and observers lapse. The lower pair shows s1, which we
have already found to be comparatively resistant to bias.
As before, thresholds are plotted on the left and slopes
on the right, light symbols represent the fixed-l fitting
regime, dark symbols represent the variable-l fitting
regime, and the true values are again shown as solid hor-
izontal lines. Each symbol’s position represents the me-
dian estimate from the 2,000 fits at that point, so they are
exactly the same as the upward triangles and circles in
the N 5 480 plots of Figure 3. The vertical bars show the
interval between the 16th and the 84th percentiles of
each distribution (these limits were chosen because they
give an interval with coverage of .68, which would be ap-
proximately the same as the mean plus or minus one
standard deviation (SD) if the distributions were Gauss-
ian). We shall use WCI68 as shorthand for width of the
68% confidence interval in the following.

Applying the rule of thumb mentioned above
(bias # 0.25 SD), bias in the fixed-l condition in the
threshold estimate is significant for lgen . .02, for both
sampling schemes. The slope estimate of the fixed-l fit-
ting regime and the sampling scheme s7 is significantly
biased once observers lapse—that is, for lgen $ .01. It is
interesting to see that even the threshold estimates of s1,
with all sample points at p , .8, are significantly biased
by lapses. The slight bias found with the variable-l fitting
regime, however, is not significant in any of the cases
studied.

We can expect the variance of the distribution of esti-
mates to be a function of N—the WCI68 gets smaller with
increasing N. Given that the absolute magnitude of bias
stays the same for the fixed-l fitting regime, however, bias will
become more problematic with increasing N: For N 5 960,
the bias in threshold and slope estimates is significant
for all sampling schemes and virtually all nonzero lapse
rates. Frequently, the true (generating) value is not even
within the 95% confidence interval. Increasing the num-
ber of observations by using the fixed-l fitting regime,
contrary to what one might expect, increases the likelihood
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Figure 3. Median estimated thresholds and median estimated slopes are plotted in the left-hand and right-hand columns,
respectively; both are shown as a function of llgen. The four rows correspond to four values of N (120, 240, 480, and 960).
Symbol shapes denote the different sampling schemes (see Figure 2). Light symbols show the results of fixing ll at 0; dark
symbols show the results of allowing ll to vary during the fitting. The true threshold and slope values are shown by the solid
horizontal lines.
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of Type I or II errors. Again, the variable-l fitting regime
performs well: The magnitude of median bias decreases
approximately in proportion to the decrease in WCI68.
Estimates are essentially unbiased.

For small N (i.e. , N 5 120), WCI68s are larger than those
shown in Figure 4. Very approximately,11 they increase
with 1/ÏNw; even for N 5 120, bias in slope and threshold
estimates is significant for most of the sampling schemes
in the fixed-l fitting regime once lgen ³ .02 or .03. The
variable-l fitting regime performs better again, although
for some sampling schemes (s3, s5, and s7) bias is signif-
icant at lgen $ .04, because bias increases dispropor-
tionally relative to the increase in WCI68.

A second observation is that, in the case of s7, correct-
ing for bias by allowing l to vary carries with it the cost

of reduced precision. However, as was discussed above,
the alternative is uninviting: With l fixed at 0, the true
slope does not even lie within the 68% confidence inter-
val of the distribution of estimates for lgen ³ .02. For s1,
however, allowing l to vary brings neither a significant
benefit in terms of accuracy nor a significant penalty in
terms of precision. We have found that these two contrast-
ing cases are representative: Generally, there is nothing to
lose by allowing l to vary in those cases where it is not
required in order to provide unbiased estimates.

Fixing lambda at nonzero values. In the previous
analysis, we contrasted a variable-l fitting regime with one
having l fixed at 0. Another possibility might be to fix l
at a small but nonzero value, such as .02 or .04. Here, we
report Monte Carlo simulations exploring whether a fixed
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spectively. The vertical bars show WCI68 (see the text for details). Data for two sampling schemes, s1 and s7, are shown for N 5 480.
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small value of l overcomes the problems of bias while
retaining the desirable property of (slightly) increased
precision relative to the variable-l fitting regime.

Simulations were repeated as before, except that l was
either free to vary or fixed at .01, .02, .03, .04, and .05,
covering the whole range of lgen. (A total of 2,016,000
simulations, requiring 9.072 3 109 simulated 2AFC trials.)

Figure 5 shows the results of the simulations in the same
format as that of Figure 3. For clarity, only the variable-l
fitting regime and l fixed at .02 and .04 are plotted,
using dark, intermediate, and light symbols, respectively.
Since bias in the fixed-l regimes is again largely inde-
pendent of the number of trials N, only data correspond-
ing to the intermediate number of trials is shown (N 5 240
and 480). The data for the fixed-l regimes indicate that

both are simply shifted copies of each other—in fact, they
are more or less merely shifted copies of the l fixed at zero
data presented in Figure 3. Not surprisingly, minimal bias
is obtained for lgen corresponding to the fixed-l value.
The zone of insignificant bias around the fixed-l value
is small, however, only extending to, at most, l 6 .01. Thus,
fixing l at, say, .01 provides unbiased and precise esti-
mates of threshold and slope, provided the observer’s lapse
rate is within 0 # lgen # .02. In our experience, this zone
or range of good estimation is too narrow: One of us
(F.A.W.) regularly fits psychometric functions to data from
discrimination and detection experiments, and even for a
single observer, l in the variable-l fitting regime takes on
values from 0 to .05—no single fixed l is able to provide
unbiased estimates under these conditions.

Figure 5. Data shown in the format of Figure 3; median estimated thresholds and median estimated slopes are plotted as
a function of llgen in the left-hand and right-hand columns, respectively. The two rows correspond to N 5 240 and 480. Sym-
bol shapes denote the different sampling schemes (see Figure 2). Light symbols show the results of fixing ll at .04; medium
gray symbols those for ll fixed at .02; dark symbols show the results of allowing ll to vary during the fitting. True threshold
and slope values are shown by the solid horizontal lines.
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Discussion and Summary
Could bias be avoided simply by choosing a sampling

scheme in which performance close to 100% is not ex-
pected? Since one never knows the psychometric function
exactly in advance before choosing where to sample per-
formance, it would be difficult to avoid high performance,
even if one were to want to do so. Also, there is good rea-
son to choose to sample at high performance values: Pre-
cisely because data at these levels have a greater influence
on the maximum-likelihood fit, they carry more informa-
tion about the underlying function and thus allow more ef-
ficient estimation. Accordingly, Figure 4 shows that the
precision of slope estimates is better for s7 than for s1 (cf.
Lam, Mills, & Dubno, 1996). This issue is explored more
fully in our companion paper (Wichmann & Hill, 2001). Fi-
nally, even for those sampling schemes that contain no sam-
ple points at performance levels above 80%, bias in thresh-
old estimates was significant, particularly for large N.

Whether sampling deliberately or accidentally at high
performance levels, one must allow for the possibility that
observers will perform at high rates and yet occasionally
lapse: Otherwise, parameter estimates may become biased
when lapses occur. Thus, we recommend that varying l
as a third parameter be the method of choice for fitting
psychometric functions.

Fitting a tightly constrained l is intended as a heuristic
to avoid bias in cases of nonstationary observer behavior.
It is, as well, to note that the estimated parameter l̂ is, in
general, not a very good estimator of a subject’s true
lapse rate (this was also found by Treutwein & Stras-
burger, 1999, and can be seen clearly in their Figures 7
and 10). Lapses are rare events, so there will only be a
very small number of lapsed trials per data set. Further-
more, their directly measurable effect is small, so that
only a small subset of the lapses that occur (those at high
x values where performance is close to 100%) will affect
the maximum-likelihood estimation procedure; the rest
will be lost in binomial noise. With such minute effective
sample sizes, it is hardly surprising that our estimates of
l per se are poor. However, we do not need to worry, be-
cause as psychophysicists we are not interested in lapses:
We are interested in thresholds and slopes, which are de-
termined by the function F that reflects the underlying
mechanism. Therefore, we vary l not for its own sake, but
purely in order to free our threshold and slope estimates
from bias. This it accomplishes well, despite numerically
inaccurate l estimates. In our simulations, it works well
both for sampling schemes with a fixed nonzero lgen and
for those with more random lapsing schemes (see note 9
or our example shown in Figure 1).

In addition, our simulations have shown that N 5 120
appears too small a number of trials to be able to obtain re-
liable estimates of thresholds and slopes for some sam-
pling schemes, even if the variable-l fitting regime is em-
ployed. Similar conclusions were reached by O’Regan and
Humbert (1989) for N 5 100 (K 5 10; cf. Leek, Hanna,

& Marshall, 1992; McKee, Klein, & Teller, 1985). This is
further supported by the analysis of bootstrap sensitivity
in our companion paper (Wichmann & Hill, 2001).

GOODNESS OF FIT

Background
Assessing goodness of fit is a necessary component of

any sound procedure for modeling data, and the impor-
tance of such tests cannot be stressed enough, given that
fitted thresholds and slopes, as well as estimates of vari-
ability (Wichmann & Hill, 2001), are usually of very lim-
ited use if the data do not appear to have come from the
hypothesized model. A common method of goodness-of-
fit assessment is to calculate an error term or summary
statistic, which can be shown to be asymptotically dis-
tributed according to c2—for example, Pearson X 2—and
to compare the error term against the appropriate c2 dis-
tribution. A problem arises, however, since psychophysical
data tend to consist of small numbers of points and it is,
hence, by no means certain that such tests are accurate. A
promising technique that offers a possible solution is
Monte Carlo simulation, which being computationally in-
tensive, has become practicable only in recent years with
the dramatic increase in desktop computing speeds. It is
potentially well suited to the analysis of psychophysical
data, because its accuracy does not rely on large numbers
of trials, as do methods derived from asymptotic theory
(Hinkley, 1988). We show that for the typically small K and
N used in psychophysical experiments, assessing good-
ness of fit by comparing an empirically obtained statistic
against its asymptotic distribution is not always reliable:
The true small-sample distribution of the statistic is often
insufficiently well approximated by its asymptotic distri-
bution. Thus, we advocate generation of the necessary dis-
tributions by Monte Carlo simulation.

Lack of fit—that is, the failure of goodness of fit—may
result from failure of one or more of the assumptions of
one’s model. First and foremost, lack of fit between the
model and the data could result from an inappropriate
functional form for the model—in our case of fitting a psy-
chometric function to a single data set, the chosen under-
lying function F is significantly different from the true one.
Second, our assumption that observer responses are bino-
mial may be false: For example, there might be serial de-
pendencies between trials within a single block. Third, the
observer’s psychometric function may be nonstationary
during the course of the experiment, be it due to learn-
ing or fatigue.

Usually, inappropriate models and violations of inde-
pendence result in overdispersion or extra-binomial vari-
ation: “bad fits” in which datapoints are significantly fur-
ther from the fitted curve than was expected. Experimenter
bias in data selection (e.g. , informal removal of outliers),
on the other hand, could result in underdispersion: fits that
are “too good to be true,” in which datapoints are signifi-
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cantly closer to the fitted curve than one might expect (such
data sets are reported more frequently in the psychophysi-
cal literature than one would hope12).

Typically, if goodness of fit of fitted psychometric func-
tions is assessed at all, however, only overdispersion is
considered. Of course, this method does not allow us to
distinguish between different sources of overdispersion
(wrong underlying function or violation of independence)
and/or effects of learning. Furthermore, as we will show,
models can be shown to be in error even if the summary
statistic indicates an acceptable fit.

In the following, we describe a set of goodness-of-fit
tests for psychometric functions (and parametric models
in general). Most of them rely on different analyses of the
residual differences between data and fit (the sum of
squares of which constitutes the popular summary statis-
tics) and on Monte Carlo generation of the statistic’s dis-
tribution, against which to assess lack of fit. Finally, we
show how a simple application of the jackknife resampling
technique can be used to identify so-called influential
observations—that is, individual points in a data set that
exert undue influence on the final parameter set. Jackknife
techniques can also provide an objective means of iden-
tifying outliers.

Assessing overdispersion. Summary statistics measure
closeness of the data set as a whole to the fitted function.
Assessing closeness is intimately linked to the fitting pro-
cedure itself: Selecting the appropriate error metric for
fitting implies that the relevant currency within which to
measure closeness has been identified. How good or bad
the fit is should thus be assessed in the same currency.

In maximum-likelihood parameter estimation, the pa-
rameter vector qq̂ returned by the fitting routine is such
that L(qq̂; y) $ L(qq; y) for all qq. Thus, whatever error met-
ric, Z, is used to assess goodness of fit,

(3)

should hold for all qq.
Deviance. The log-likelihood ratio, or deviance, is a

monotonic transformation of likelihood and therefore ful-
fills the criterion set out in Equation 3. Hence, it is com-
monly used in the context of generalized linear models
(Collett, 1991; Dobson, 1990; McCullagh & Nelder, 1989).

Deviance, D, is defined as

(4)

where L(qqmax;y) denotes the likelihood of the saturated
model—that is, a model with no residual error between
empirical data and model predictions. (qqmax denotes the
parameter vector such that this holds and the number of
free parameters in the saturated model is equal to the total
number of blocks of observations, K.) L(qq̂;y) is the likeli-
hood of the best-fitting model; l(qqmax;y) and l(qq̂;y) de-
note the logarithms of these quantities, respectively. Be-
cause, by definition, l(qqmax;y) $ l(qq̂;y) for all qq, and

l(qqmax;y) is independent of qq̂ (being purely a function of
the data, y), deviance fulfills the criterion set out in
Equation 3. From Equation 4 we see that deviance takes
values from 0 (no residual error) to infinity (observed
data are impossible given model predictions).

For goodness-of-fit assessment of psychometric func-
tions (binomial data), Equation 4 reduces to

(5)

( pi refers to the proportion correct predicted by the fitted
model).

Deviance is used to assess goodness of fit, rather than
likelihood or log-likelihood directly, because, for correct
models, deviance for binomial data is asymptotically dis-
tributed as c 2

K , where K denotes the number of data-
points (blocks of trials).13 For derivation, see, for exam-
ple, Dobson (1990, p. 57), McCullagh and Nelder (1989),
and in particular, Collett (1991, sects. 3.8.1 and 3.8.2).
Calculating D from one’s fit and comparing it with the
appropriate c2 distribution, hence, allows simple good-
ness-of-fit assessment, provided that the asymptotic ap-
proximation to the (unknown) distribution of deviance is
accurate for one’s data set. The specific values of L(qq̂;y)
or l(qq̂;y) or by themselves, on the other hand, are less
generally interpretable.

Pearson X 2. The Pearson X 2 test is widely used in
goodness-of-fit assessment of multinomial data; applied
to K blocks of binomial data, the statistic has the form

, (6)

with ni, yi, and pi as in Equation 5. Equation 6 can be in-
terpreted as the sum of squared residuals (each residual
being given by yi 2 pi), standardized by their variance,
pi(1 - pi)ni

-1. Pearson X 2 is asymptotically distributed ac-
cording to c 2 with K degrees of freedom, because the 
binomial distribution is asymptotically normal and c2

K is
defined as the distribution of the sum of K squared unit-
variance normal deviates. Indeed, deviance D and Pear-
son X 2 have the same asymptotic c2 distribution (but see
note 13).

There are two reasons why deviance is preferable to
Pearson X 2 for assessing goodness of fit after maximum-
likelihood parameter estimation. First and foremost, 
for Pearson X 2, Equation 3 does not hold—that is, the
maximum-likelihood parameter estimate qq̂ will not gen-
erally correspond to the set of parameters with the small-
est error in the Pearson X 2 sense—that is, Pearson X 2 er-
rors are the wrong currency (see the previous section,
Assessing Overdispersion). Second, differences in deviance
between two models of the same family—that is, between
models where one model includes terms in addition to
those in the other—can be used to assess the significance
of the additional free parameters. Pearson X 2, on the other
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hand, cannot be used for such model comparisons (Collett,
1991). This important issue will be expanded on when we
introduce an objective test of outlier identification.

Simulations
As we have mentioned, both deviance for binomial data

and Pearson X 2 are only asymptotically distributed ac-
cording to c2. In the case of Pearson X 2, the approximation
to the c2 will be reasonably good once the K individual bi-
nomial contributions to Pearson X2 are well approximated
by a normal—that is, as long as both ni pi $ 5 and ni(1 2
pi) $ 5 (Hoel, 1984). Even for only moderately high p val-
ues like .9, this already requires ni values of 50 or more,
and p 5 .98 requires an ni of 250.

No such simple criterion exists for deviance, however.
The approximation depends not only on K and N, but im-
portantly, on the size of the individual ni and pi—it is dif-
ficult to predict whether or not the approximation is suf-
ficiently close for a particular data set. (see Collett, 1991,
sect. 3.8.2). For binary data (i.e. , ni 5 1), deviance is not
even asymptotically distributed according to c2, and for
small ni, the approximation can thus be very poor even if
K is large.

Monte-Carlo-based techniques are well suited to an-
swering any question of the kind “what distribution of
values would we expect if . . .?” and, hence, offers a po-
tential alternative to relying on the large-sample c2 approx-
imation for assessing goodness of fit. The distribution of
deviances is obtained in the following way. First, we gen-
erate B data sets yi*, using the best-fitting psychometric
function, y(x,qq̂), as the generating function. Then, for each
of the i 5 {1, . . . , B} generated data sets yi*, we calcu-
late deviance Di*, using Equation 5, yielding the deviance
distribution D*. The distribution D* reflects the deviances
we should expect from an observer whose correct re-

sponses are binomially distributed with success proba-
bility y(x,qq̂). A confidence interval for deviance can then
be obtained by using the standard percentile method: D*(n)

denotes the 100 nth percentile of the distribution D* so
that, for example, the two-sided 95% confidence interval
is written as [D*(.025), D*(.975)].

Let Demp denote the deviance of our empirically ob-
tained data set. If Demp . D*(.975), the agreement between
data and fit is poor (overdispersion), and it is unlikely that
the empirical data set was generated by the best-fitting
psychometric function, y(x,qq̂). y(x,qq̂) is, hence, not an
adequate summary of the empirical data or the observer’s
behavior.

When using Monte Carlo methods to approximate the
true deviance distribution D by D*, one requires a large
value of B so that the approximation is good enough to be
taken as the true or reference distribution—otherwise, we
would simply substitute errors arising from the inappro-
priate use of an asymptotic distribution for numerical er-
rors incurred by our simulations (Hämmerlin & Hoffmann,
1991).

One way to see whether D* has indeed approached D is
to look at the convergence of several of the quantiles of
D* with increasing B. For a large range of different val-
ues of N, K, and ni, we found that for B $ 10,000, D* has
stabilized.14

Assessing errors in the asymptotic approximation
to the deviance distribution. We have found, by a large
amount of trial-and-error exploration, that errors in the
large-sample approximation to the deviance distribution
are not predictable in a straightforward manner from
one’s chosen values of N, K, and x.

To illustrate this point, in this section we present six ex-
amples in which the c2 approximation to the deviance dis-
tribution fails in different ways. For each of the six ex-

Figure 6. Histograms of Monte-Carlo-generated deviance distributions D* (B 5 10,000). Both panels
show distributions for N 5 300, K 5 6, and ni 5 50. The left-hand panel was generated from pgen 5 {.52,
.56, .74, .94, .96, .98}; the right-hand panel was generated from pgen 5 {.63, .82, .89, .97, .99, .9999}. The
solid dark line drawn with the histograms shows the c2

6 distribution (appropriately scaled).
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amples, we conducted Monte Carlo simulations, each
using B 5 10,000. Critically, for each set of simulations,
a set of generating probabilities pgen was chosen: In a real
experiment, these values would be determined by the po-
sitioning of one’s sample points x and the observer’s true
psychometric function ygen. The specific values of pgen
in our simulations were chosen by us to demonstrate typ-
ical ways in which the c2 approximation to the deviance
distribution fails: For the two examples shown in Figure 6,
we change only pgen, keeping K and ni constant; for the
two shown in Figure 7, ni was constant, and pgen covered
the same range of values; Figure 8, finally, illustrates the
effect of changing ni while keeping pgen and K constant.

In order to assess the accuracy of the c2 approximation
in all examples, we calculated the following four error
terms: (1) the rate at which using the c2 approximation
would have caused us to make Type I errors of rejection,
rejecting simulated data sets that should not have been
rejected at the 5% level (we call this the false alarm rate,
or PF), (2) the rate at which using the c2 approximation
would have caused us to make Type II errors of rejection,
failing to reject a data set that the Monte Carlo distribu-
tion D* indicated as rejectable at the 5% level (we call this
the miss rate, PM), (3) the root-mean squared error DPRMS
in cumulative probability estimate (CPE ), given by Equa-
tion 9 (this is a measure of how different the Monte Carlo
distribution D* and the appropriate c2 distribution are,
on average), and (4) the maximal CPE error DPmax, given
by Equation 10, an indication of the maximal error in per-
centile assignment that could result from using the c2 ap-
proximation instead of the true D*.

The first two measures, PF and PM, are primarily useful
for individual data sets. The latter two measures, DPRMS
and DPmax, provide useful information in meta-analyses

(Schmidt, 1996), where models are assessed across sev-
eral data sets. (In such analyses, we are interested in CPE
errors even if the deviance value of one particular data
set is not close to the tails of D: A systematic error in
CPE in individual data sets might still cause errors of re-
jection of the model as a whole, when all data sets are
considered.)

In order to define DPRMS and DPmax, it is useful to in-
troduce two additional terms, the Monte Carlo cumula-
tive probability estimate CPEMC and the c2 cumulative
probability estimate CPEc2. By CPEMC, we refer to

(7)

that is, the proportion of deviance values in D* smaller
than some reference value D of interest. Similarly,

(8)

provides the same information for the c2 distribution
with K degrees of freedom. The root-mean squared CPE
error DPRMS (average difference or error) is defined as

(9)

and the maximal CPE error DPmax (maximal difference or
error) is given by
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Figure 7. Histograms of Monte-Carlo-generated deviance distributions D* (B 5 10,000). For both dis-
tributions, pgen was uniformly distributed on the interval [.52, .85], and ni was equal to 2. The left-hand
panel was generated using K 5 60 (N 5 120), and the solid dark line shows cc2

60 (appropriately scaled). The
right-hand panel’s distribution was generated using K 5 240 (N 5 480), and the solid dark line shows the
appropriately scaled cc2

240 distribution.
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Figure 6 illustrates two contrasting ways in which the
approximation can fail.15 The left-hand panel shows re-
sults from the test in which the data sets were generated
from pgen 5 {.52, .56, .74, .94, .96, .98} with ni 5 50 ob-
servations per sample point (K 5 6, N 5 300). Note that
the c 2 approximation to the distribution is (slightly)
shifted to the left. This results in DPRMS 5 4.63, DPmax 5
6.95, and a false alarm rate PF of 1.1%. The right-hand
panel illustrates the results from very similar input condi-
tions: As before, ni 5 50 observations per sample point (K
5 6, N 5 300), but now pgen 5 {.63, .82, .89, .97, .99,
.9999}. This time, the c2 approximation is shifted to the
right, resulting in DPRMS 5 14.18, DPmax 5 18.42, and a
large miss rate: PM 5 59.6%.

Note that the reversal is the result of a comparatively
subtle change in the distribution of generating probabil-
ities. These two cases illustrate the way in which asymp-
totic theory may result in errors for sampling schemes that
may occur in ordinary experimental settings, using the
method of constant stimuli. In our examples, the Type I er-
rors (i.e. , erroneously rejecting a valid data set) of the left-
hand panel may occur at a low rate, but they do occur. The
substantial Type II error rate (i.e. , accepting a data set
whose deviance is really too high and should thus be re-
jected) shown on the right-hand panel, however, should be
cause for some concern. In any case, the reversal of error
type, for the same values of K and ni, indicates that the type
of error is not predictable in any readily apparent way from
the distribution of generating probabilities and the error
cannot be compensated for by a straightforward correction,
such as a manipulation of the number of degrees of free-
dom of the c2 approximation.

It is known that the large-sample approximation of the
binomial deviance distribution improves with an increase

in ni (Collett, 1991). In the above examples, ni was as large
as it is likely to get in most psychophysical experiments
(ni 5 50), but substantial differences between the true
deviance distribution and its large-sample c2 approxima-
tion were nonetheless observed. Increasingly frequently,
psychometric functions are fitted to the raw data ob-
tained from adaptive procedures (e.g. , Treutwein &
Strasburger, 1999), with ni being considerably smaller.
Figure 7 illustrates the profound discrepancy between the
true deviance distribution and the c2 approximation under
these circumstances. For this set of simulations, ni was
equal to 2 for all i. The left-hand panel shows results
from the test in which the data sets were generated from
K 5 60 sample points uniformly distributed over [.52,
.85] (pgen 5 {.52, . . . , .85}), for a total of N 5 120 obser-
vations. This results in DPRMS 5 39.51, DPmax 5 56.32,
and a false alarm rate PF of 31.0 %. The right-hand panel
illustrates the results from similar input conditions, ex-
cept that K equaled 240 and N was thus 480. The c2 ap-
proximation is even worse, with DPRMS 5 55.16, DPmax
5 86.87, and a false alarm rate PF of 89.9%.

The data shown in Figure 7 clearly demonstrate that a
large number of observations N, by itself, is not a valid in-
dicator of whether the c2 approximation is sufficiently
good to be useful for goodness-of-fit assessment.

After showing the effect of a change in pgen on the c2

approximation in Figure 6, and of K in Figure 7, Figure 8
illustrates the effect of changing ni while keeping pgen and
K constant: K 5 60 and pgen were uniformly distributed
on the interval [.72, .99]. The left-hand panel shows results
from the test in which the data sets were generated with
ni 5 2 observations per sample point (K 5 60, N 5 120).
The c2 approximation to the distribution is shifted to the
right, resulting in DPRMS 5 25.34, DPmax 5 34.92, and a
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Figure 8. Histograms of Monte-Carlo-generated deviance distributions D* (B 5 10,000). For both distrib-
utions, pgen was uniformly distributed on the interval [.72, .99], and K was equal to 60. The left-hand panel’s
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miss rate PM of 95%. The right-hand panel shows results
from very similar generation conditions, except that ni 5 4
(K 5 60, N 5 240). Note that, unlike in the other examples
introduced so far, the mode of the distribution D* is not
shifted relative to that of the c2

60 distribution, but that the
distribution is more leptokurtic (larger kurtosis or 4th-
moment). DPRMS equals 5.20, DPmax equals 34.92, and
the miss rate PM is still a substantial 70.2%.

Comparing the left-hand panels of Figures 7 and 8 fur-
ther points to the impact of p on the degree of the c2 ap-
proximation to the deviance distribution: For constant N,
K, and ni, we obtain either a substantial false alarm rate
(PF 5 .31; Figure 7) or a substantial miss rate (PM 5 .95;
Figure 8).

In general, we have found that very large errors in the
c2 approximation are relatively rare for ni . 40, but they
still remain unpredictable (see Figure 6). For data sets with
ni , 20, on the other hand, substantial differences between
the true deviance distribution and its large-sample c2 ap-
proximation are the norm, rather than the exception. We
thus feel that Monte-Carlo-based goodness-of-fit assess-
ments should be preferred over c2-based methods for bi-
nomial deviance.

Deviance residuals. Examination of residuals—the
agreement between individual datapoints and the corre-
sponding model prediction—is frequently suggested as
being one of the most effective ways of identifying an in-
correct model in linear and nonlinear regression (Collett,
1991; Draper & Smith, 1981).

Given that deviance is the appropriate summary sta-
tistic, it is sensible to base one’s further analyses on the
deviance residuals, d. Each deviance residual di is de-
fined as the square root of the deviance value calculated
for datapoint i in isolation, signed according to the direc-
tion of the arithmetic residual yi 2 pi. For binomial data,
this is

(11)

Note that

(12)

Viewed this way, the summary statistic deviance is the
sum of the squared deviations between model and data; the
dis are thus analogous to the normally distributed unit-
variance deviations that constitute the c2 statistic.

Model checking. Over and above inspecting the resid-
uals visually, one simple way of looking at the residuals
is to calculate the correlation coefficient between the
residuals and the p values predicted by one’s model. This
allows the identification of a systematic (linear) relation
between deviance residuals d and model predictions p,
which would suggest that the chosen functional form of
the model is inappropriate—for psychometric functions,
that presumably means that F is inappropriate.

Needless to say, a correlation coefficient of zero implies
neither that there is no systematic relationship between
residuals and the model prediction nor that the model cho-
sen is correct; it simply means that whatever relation might
exist between residuals and model predictions, it is not a
linear one.

Figure 9A shows data from a visual masking experi-
ment with K 5 10 and ni 5 50, together with the best-
fitting Weibull psychometric function (Wichmann, 1999).
Figure 9B shows a histogram of D* for B 5 10,000 with
the scaled c2

10-PDF. The two arrows below the deviance
axis mark the two-sided 95% confidence interval [D*(.025),
D*(.975)]. The deviance of the data set Demp is 8.34, and
the Monte Carlo cumulative probability estimate is
CPEMC 5 .479. The summary statistic deviance, hence,
does not indicate a lack of fit. Figure 9C shows the de-
viance residuals d as a function of the model prediction
p [p 5 y(x;qq̂) in this case, because we are using a fitted
psychometric function]. The correlation coefficient be-
tween d and p is r 5 2.610. However, in order to deter-
mine whether this correlation coefficient r is significant
(of greater magnitude than expected by chance alone if our
chosen model was correct), we need to know the expected
distribution r. For correct models, large samples, and con-
tinuous data—that is, very large ni—one should expect the
distribution of the correlation coefficients to be a zero-
mean Gaussian, but with a variance that itself is a function
of p and, hence, ultimately of one’s sampling scheme x.
Asymptotic methods are, hence, of very limited applica-
bility for this goodness-of-fit assessment.

Figure 9D shows a histogram of r*obtained by Monte
Carlo simulation with B 5 10,000, again with arrows
marking the two-sided 95% confidence interval [r*(.025),
r*(.975)]. Confidence intervals for the correlation coeffi-
cient are obtained in a manner analogous to the those ob-
tained for deviance. First, we generate B simulated data
sets yi*, using the best-fitting psychometric function as
generating function. Then, for each synthetic data set
yi*, we calculate the correlation coefficient ri* between
the deviance residuals di* calculated using Equation 11
and the model predictions p 5 y(x;qq̂). From r*, one then ob-
tains 95% confidence limits, using the appropriate quan-
tile of the distribution.

In our example, a correlation of 2.610 is significant,
the Monte Carlo cumulative probability estimate being
CPEMC(2.610) 5 .0015. (Note that the distribution is
skewed and not centred on zero; a positive correlation of
the same magnitude would still be within the 95% con-
fidence interval.) Analyzing the correlation between de-
viance residuals and model predictions thus allows us to
reject the Weibull function as underlying function F for
the data shown in Figure 9A, even though the overall de-
viance does not indicate a lack of fit.

Learning. Analysis of the deviance residuals d as a
function of temporal order can be used to show perceptual
learning, one type of nonstationary observer performance.
The approach is equivalent to that described for model
checking, except that the correlation coefficient of deviance
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residuals is assessed as a function of the order in which
the data were collected (often referred to as their index;
Collett, 1991). Assuming that perceptual learning im-
proves performance over time, one would expect the fit-
ted psychometric function to be an average of the poor
earlier performance and the better later performance.16

Deviance residuals should thus be negative for the first
few datapoints and positive for the last ones. As a conse-
quence, the correlation coefficient r of deviance residu-

als d against their indices (which we will denote by k) is
expected to be positive if the subject’s performance im-
proved over time.

Figure 10A shows another data set from one of F.A.W.’s
discrimination experiments; again, K 5 10 and ni 5 50,
and the best-fitting Weibull psychometric function is
shown with the raw data. Figure 10B shows a histogram
of D* for B 5 10,000 with the scaled c2

10-PDF. The two
arrows below the deviance axis mark the two-sided 95%
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Figure 9. (A) Raw data with N 5 500, K 5 10, and ni 5 50, together with the best-fitting Weibull psychometric function
yyfit with parameter vector qq 5 {4.7, 1.98, .5, 0} on semilogarithmic coordinates. (B) Histogram of Monte-Carlo-generated
deviance distribution D* (B 5 10,000) from yyfit. The solid vertical line marks the deviance of the empirical data set shown
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(C) Deviance residuals d plotted as a function of model predictions p on linear coordinates. (D) Histogram of Monte-Carlo-
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ficient between d and p 5 yyfit of the empirical data set shown in panel A, remp 5 2.610; the two arrows below the x-axis
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confidence interval [D*(.025), D*(.975)]. The deviance of the
data set Demp is 16.97, the Monte Carlo cumulative prob-
ability estimate CPEMC(16.97) being .914. The summary
statistic D does not indicate a lack of fit. Figure 10C
shows an index plot of the deviance residuals d. The cor-
relation coefficient between d and k is r 5 .752, and the
histogram r* of shown in Figure 10D indicates that such
a high positive correlation is not expected by chance
alone. Analysis of the deviance residuals against their

index is, hence, an objective means to identify percep-
tual learning and, thus, reject the fit, even if the summary
statistic does not indicate a lack of fit.

Influential observations and outliers. Identification
of influential observations and outliers are additional re-
quirements for comprehensive goodness-of-fit assess-
ment.

The jackknife resampling technique. The jackknife is
a resampling technique where K data sets, each of size
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K 2 1, are created from the original data set y by suc-
cessively omitting one datapoint at a time. The jth jack-
knife y(-j) data set is thus the same as y, but with the j th
datapoint of y omitted.17

Influential observations. To identify influential obser-
vations, we apply the jackknife to the original data set
and refit each jackknife data set y(-j); this yields K param-
eter vectors qq̂(21), . . . , qq̂(-K). Influential observations are
those that exert an undue influence on one’s inferences—
that is, on the estimated parameter vector qq̂—and to this
end, we compare qq̂(-1), …, qq̂(-K) with qq̂. If a jackknife pa-
rameter set qq̂(-j) is significantly different from qq̂, the jth
datapoint is deemed an influential observation because its
inclusion in the data set alters the parameter vector sig-
nificantly (from qq̂(-j) to qq̂).

Again, the question arises: What constitutes a signifi-
cant difference between qq̂ and qq̂(-j)? No general rules exist
to decide at which point qq̂(-j) and qq̂ are significantly dif-
ferent, but we suggest that one should be wary of one’s
sampling scheme x if any one or several of the parameter
sets qq̂(-j) are outside the 95% confidence interval of qq̂. Our
companion paper describes a parametric bootstrap method
to obtain such confidence intervals for the parameters qq̂.
Usually, identifying influential observations implies that
more data need to be collected, at or around the influential
datapoint(s).

Outliers. Like the test for influential observations, this
objective procedure to detect outliers employs the jack-
knife resampling technique. (Testing for outliers is some-
times referred to as test of discordancy; Collett, 1991.) The
test is based on a desirable property of deviance—namely,
its nestedness: Deviance can be used to compare differ-
ent models for binomial data as long as they are members
of the same family. Suppose a model M1 is a special case
of model M2 (M1 is “nested within” M2), so M1 has fewer
free parameters than M2. We denote the degrees of free-
dom of the models by v1 and v2, respectively. Let the de-
viance of model M1 be D1 and of M2 be D2. Then, the dif-
ference in deviance, D1 2 D2, has an approximate c 2

distribution with v1 2 v2 degrees of freedom. This ap-
proximation to the c2 distribution is usually very good
even if each individual distribution, D1 or D2, is not reli-
ably approximated by a c2 distribution (Collett, 1991); in-
deed, D1 2 D2, has an approximate c2 distribution with
v1 2 v2 degrees of freedom, even for binary data, despite
the fact that, for binary data, deviance is not even asymp-
totically distributed according to c2 (Collett, 1991). This
property makes this particular test of discordancy applic-
able to (small-sample) psychophysical data sets.

To test for outliers, we again denote the original data set
by y and its deviance by D. In the terminology of the pre-
ceding paragraph, the fitted psychometric function y(x;qq̂)
corresponds to model M1. Then, the jackknife is applied
to y, and each jackknife data set y(-j) is refit to give K pa-
rameter vectors qq̂(-1), . . . , qq̂(-K), from which to calculate de-
viance, yielding D(-1), . . . , D(-K ). For each of the K jack-

knife parameter vectors qq̂(-j), an alternative model M2 for
the (complete) original data set y is constructed as

(13)

Setting z equal to yj 2 y (x;qq̂(-j)), the deviance of M2 equals
D(-j), because the jth datapoint, dropped during the jack-
knife, is perfectly fit by M2 owing to the addition of a ded-
icated free parameter, z.

To decide whether the reduction in deviance, D 2 D(-j),
is significant, we compare it against the c2 distribution with
one degree of freedom, because v1 2 v2 5 1. Choosing a
one-sided 99% confidence interval, M2 is a better model
than M1 if D 2 D(-j) > 6.63, because CPEc2(6.63) 5 .99.
Obtaining a significant reduction in deviance for data set
y(-j) implies that the jth datapoint is so far away from the
original fit y(x;qq̂) that the addition of a dedicated pa-
rameter z, whose sole function is to fit the j th datapoint,
reduces overall deviance significantly. Datapoint j is thus
very likely an outlier, and as in the case of influential ob-
servations, the best strategy generally is to gather addi-
tional data at stimulus intensity xj, before more radical
steps, such as removal of yj from one’s data set, are con-
sidered.

Discussion
In the preceding sections, we introduced statistical tests

to identify the following: first, inappropriate choice of F;
second, perceptual learning; third, an objective test to
identify influential observations; and finally, an objective
test to identify outliers. The histograms shown in Figures
9D and 10D show the respective distributions r* to be
skewed and not centered on zero. Unlike our summary sta-
tistic D, where a large-sample approximation for binomial
data with ni > 1 exists even if its applicability is sometimes
limited, neither of the correlation coefficient statistics has
a distribution for which even a roughly correct asymptotic
approximation can easily be found for the K, N, and x typ-
ically used in psychophysical experiments. Monte Carlo
methods are thus without substitute for these statistics.

Figures 9 and 10 also provide another good demonstra-
tion of our warnings concerning the c2 approximation of
deviance. It is interesting to note that for both data sets,
the MCS deviance histograms shown in Figures 9B and
10B, when compared against the asymptotic c2 distribu-
tions, have considerable DPRMS values of 3.8 and 5.9, with
DPmax 5 5.8 and 9.3, respectively. Furthermore, the miss
rate in Figure 9B is very high (PM 5 .34). This is despite
a comparatively large number of trials in total and per
block (N 5 500, ni 5 50), for both data sets. Further-
more, whereas the c2 is shifted toward higher deviances
in Figure 9B, it is shifted toward lower deviance values
in Figure 10B. This again illustrates the complex inter-
action between deviance and p.
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SUMMARY AND CONCLUSIONS

In this paper, we have given an account of the proce-
dures we use to estimate the parameters of psychometric
functions and derive estimates of thresholds and slopes.
An essential part of the fitting procedure is an assessment
of goodness of fit, in order to validate our estimates.

We have described a constrained maximum-likelihood
algorithm for fitting three-parameter psychometric func-
tions to psychophysical data. The third parameter, which
specifies the upper asymptote of the curve, is highly con-
strained, but it can be shown to be essential for avoiding
bias in cases where observers make stimulus-independent
errors, or lapses. In our laboratory, we have found that the
lapse rate for trained observers is typically between 0%
and 5%, which is enough to bias parameter estimates sig-
nificantly.

We have also described several goodness-of-fit statis-
tics, all of which rely on resampling techniques to gen-
erate accurate approximations to their respective distri-
bution functions or to test for influential observations and
outliers. Fortunately, the recent sharp increase in com-
puter processing speeds has made it possible to fulfill
this computationally expensive demand. Assessing good-
ness of fit is necessary in order to ensure that our esti-
mates of thresholds and slopes, and their variability, are
generated from a plausible model for the data and to
identify problems with the data themselves, be they due
to learning, to uneven sampling (resulting in influential
observations), or to outliers.

Together with our companion paper (Wichmann &
Hill, 2001), we cover the three central aspects of model-
ing experimental data: parameter estimation, obtaining
error estimates on these parameters, and assessing good-
ness of fit between model and data.
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NOTES

1. For illustrative purposes, we shall use the Weibull function for F
(Quick, 1974; Weibull, 1951). This choice was based on the fact that the
Weibull function generally provides a good model for contrast discrim-
ination and detection data (Nachmias, 1981) of the type collected by
one of us (F.A.W.) over the past few years. It is described by

2. Often, particularly in studies using forced-choice paradigms, l does
not appear in the equation, because it is fixed at zero. We shall illustrate
and investigate the potential dangers of doing this.

3. The simplex search method is reliable but converges somewhat
slowly. We choose to use it for ease of implementation: first, because of
its reliability in approximating the global minimum of an error surface,
given a good initial guess, and second, because it does not rely on gra-
dient descent and is therefore not catastrophically affected by the sharp
increases in the error surface introduced by our Bayesian priors (see the
next section). We have found that the limitations on its precision (given
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error tolerances that allow the algorithm to complete in a reasonable
amount of time on modern computers) are many orders of magnitude
smaller than the confidence intervals estimated by the bootstrap proce-
dure, given psychophysical data and are therefore immaterial for the
purposes of fitting psychometric functions.

4. In terms of Bayesian terminology, our prior W(l) is not a proper
prior density, because it does not integrate to 1 (Gelman, Carlin, Stern, &
Rubin, 1995). However, it integrates to a positive finite value that is re-
flected, in the log-likelihood surface, as a constant offset that does not
affect the estimation process. Such prior densities are generally referred
to as unnormalized densities, distinct from the sometimes problematic
improper priors that do not integrate to a finite value.

5. See Treutwein and Strasburger (1999) for a discussion of the use
of beta functions as Bayesian priors in psychometric function fitting. Flat
priors are frequently referred to as (maximally) noninformative priors in
the context of Bayesian data analysis, to stress the fact that they ensure
that inferences are unaffected by information external to the current data
set (Gelman et al. , 1995).

6. One’s choice of prior should respect the implementation of the
search algorithm used in fitting. Using the flat prior in the above exam-
ple, an increase in l from .06 to .0600001 causes the maximization term
to jump from zero to negative infinity. This would be catastrophic for some
gradient-descent search algorithms. The simplex algorithm, on the other
hand, simply withdraws the step that took it into the “infinitely unlikely”
region of parameter space and continues in another direction.

7. The log-likelihood error metric is also extremely sensitive to very
low predicted performance values (close to 0). This means that, in yes/no
paradigms, the same arguments will apply to assumptions about the
lower bound as those we discuss here in the context of l. In our 2AFC
examples, however, the problem never arises, because g is fixed at .5.

8. In fact, there is another reason why l needs to be tightly con-
strained: It covaries with a and b, and we need to minimize its negative
impact on the estimation precision of a and b. This issue is taken up in
our Discussion and Summary section.

9. In this case, the noise scheme corresponds to what Swanson and
Birch (1992) call “extraneous noise.” They showed that extraneous noise
can bias threshold estimates, in both the method of constant stimuli and
adaptive procedures with the small numbers of trails commonly used
within clinical settings or when testing infants. We have also run simu-
lations to investigate an alternative noise scheme, in which lgen varies
between blocks in the same dataset: A new lgen was chosen for each
block from a uniform random distribution on the interval [0, .05]. The
results (not shown) were not noticeably different, when plotted in the
format of Figure 3, from the results for a fixed lgen of .2 or .3.

10. Uniform random variates were generated on the interval (0,1),
using the procedure ran2 () from Press et al. (1992).

11. This is a crude approximation only; the actual value depends
heavily on the sampling scheme. See our companion paper (Wichmann
& Hill, 2001) for a detailed analysis of these dependencies.

12. In rare cases, underdispersion may be a direct result of observers’
behavior. This can occur if there is a negative correlation between indi-

vidual binary responses and the order in which they occur (Colett, 1991).
Another hypothetical case occurs when observers use different cues to
solve a task and switch between them on a nonrandom basis during a
block of trials (see the Appendix for proof).

13. Our convention is to compare deviance, which reflects the prob-
ability of obtaining y given qq̂, against a distribution of probability mea-
sures of y*1 . . . y*B, each of which is also calculated assuming qq̂. Thus,
the test assesses whether the data are consistent with having been gen-
erated by our fitted psychometric function; it does not take into account
the number of free parameters in the psychometric function used to ob-
tain qq̂. In these circumstances, we can expect, for suitably large data sets,
D to be distributed as c 2 with K degrees of freedom. An alternative
would be to use the maximum-likelihood parameter estimate for each
simulated data set, so that our simulated deviance values reflect the
probabilities of obtaining y*1 . . . y*B given qq̂*1 . . . qq̂*B . Under the latter
circumstances, the expected distribution has K - P degrees of freedom,
where P is the number of parameters of the discrepancy function (which
is often, but not always, well approximated by the number of free 
parameters in one’s model—see Forster, 1999). This procedure is ap-
propriate if we are interested not merely in fitting the data (summariz-
ing, or replacing, data by a fitted function), but in modeling data, or
model comparison, where the particulars of the model(s) itself are of in-
terest.

14. One of several ways we assessed convergence was to look at the
quantiles .01, .05, .1, .16, .25, .5, .75, .84, .9, .95, and .99 of the simulated
distributions and to calculate the root mean square (RMS) percentage
change in these deviance values as B increased. An increase from B 5
500 to B = 500,000, for example, resulted in an RMS change of approx-
imately 2.8%, whereas an increase from B 5 10,000 to B 5 500,000 
gave only 0.25%, indicating that for B 5 10,000, the distribution has al-
ready stabilized. Very similar results were obtained for all sampling
schemes.

15. The differences are even larger if one does not exclude datapoints
for which model predictions are p 5 0 or p 5 1.0, because such points
have zero deviance (zero variance). Without exclusion of such points, c2-
based assessment systematically overestimates goodness of fit. Our Monte
Carlo goodness-of-fit method, on the other hand, is accurate whether such
points are removed or not.

16. For this statistic, it is important to remove points with y 5 1.0 or
y 5 0.0 to avoid errors in one’s analysis.

17. Jackknife data sets have negative indices inside the brackets as a
reminder that the jth datapoint has been removed from the original data
set in order to create the jth jackknife data set. Note the important dis-
tinction between the more usual connotation of “jackknife,” in which
single observations are removed sequentially, and our coarser method,
which involves removal of whole blocks at a time. The fact that obser-
vations in different blocks are not identically distributed and that their
generating probabilities are parametrically related by y(x,qq̂) may make
our version of the jackknife unsuitable for many of the purposes (such
as variance estimation) to which the conventional jackknife is applied
(Efron, 1979, 1982; Efron & Gong, 1983; Efron & Tibshirani, 1993).
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APPENDIX
Variance of Switching Observer

(Manuscript received June 10, 1998; 
revision accepted for publication February 27, 2001.)

Assume an observer with two cues, c1 and c2, at his or her dis-
posal, with associated success probabilities p1 and p2, respectively.
Given N trials, the observer chooses to use cue c1 on Nq of the tri-
als and c2 on N(12q) of the trials. Note that q is not a probabil-
ity, but a fixed fraction: The observer uses c1 always and on ex-
actly Nq of the trials. The expected number of correct responses
of such an observer is

(A1)

The variance of the responses around Es is given by

(A2)

Binomial variance, on the other hand, with Eb 5 Es and, hence,
pb 5 qp1 1 (12q)p2, equals

(A3)
For q 5 0 or q 5 1 Equations A2 and A3 reduce to s 2

s 5
s 2

b 5 Np2(12p2) and s 2
s 5 s 2

b 5 Np1(12p1), respectively.
However, simple algebraic manipulation shows that for 0 ,
q , 1, s 2

s < s 2
b for all p1, p2 [ [0,1] if p1 Þ p2.

Thus, the variance of such a “fixed-proportion-switching” ob-
server is smaller than that of a binomial distribution with the
same expected number of correct responses. This is an example
of underdispersion that is inherent in the observer’s behavior.

sb b bNp p N qp q p qp q p2
1 2 1 21 1 1 1= -( ) = + -( )( ) - + -( )( )[ ].

s s N qp p q p p2
1 1 2 21 1 1= -( ) + -( ) -( )[ ].

E N qp q ps = + -( )[ ]1 21 .


