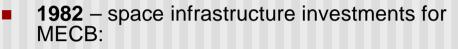


MIRAX and the Brazilian Space Program

João Braga

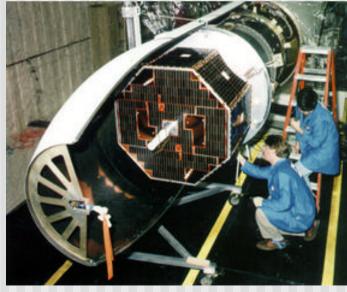
INPE Brazil

Brazilian Space Program


- 1961 "Comissão Nacional de Atividades Espaciais" (CNAE) established
- 1961 first activities and research in space and atmospheric sciences
- 1965 sounding rocket launches from Natal, with Brazilian payloads
- **1971** INPE is established
- 1979 "Missão Espacial Completa Brasileira" (MECB): development of
 - "data collecting" and remote sensing satellites (INPE)
 - satellite launch vehicle (IAE/CTA)
 - a launching site near the equator Alcantara (IAE/CTA)

Brazilian Space Program

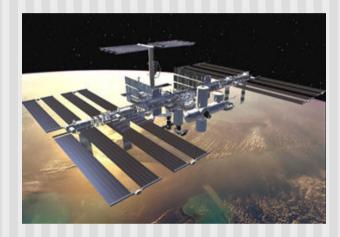
LIT (1983-87) and CRC (1987-89)


LIT - Integration and Testing Laboratory CRC - Satellite Control and Tracking Center

- 1988 Cooperation agreement with China (China-Brazil Earth Resources Satellites -CBERS)
- 1993 launch of first "Satélite de Coleta de Dados" - SCD-1 by a Pegasus

CRC

SCD-1


MIRA

Brazilian Space Program

- 1994 Agência Espacial Brasileira (AEB) is created with headquarters in Brasília
- 1997 launch of "Satélite de Coleta de Dados" 2 - SCD-2 by a Pegasus
- 1997 Brazilian participation in the ISS.
- 1999 launching of CBERS-1 from Shanxi (China) by Long March 4B launcher
- ~1997-2000 two VLS launch attempts are unsuccessful
- 2003 VLS disaster and launch of CBERS-2

Monitor e Imageador de Raios-X (MIRAX) (www.cea.inpe.br/mirax)

MIRAX preliminary scientific team

João Braga, Flavio D'Amico, Chico Jablonski, Jorge Mejía¹ Rick Rothschild, Biff Heindl, Jim Matteson² John Heise, Jean in 't Zand³ Rüdiger Staubert, Jörn Wilms, Eckhard Kendziorra⁴ Ron Remillard⁵, Erik Kuulkers⁶

1 INPE, 2 CASS/UCSD, 3 SRON, 4 IAA-A/Tübingen, 5 MIT, 6 ESA/ESTEC

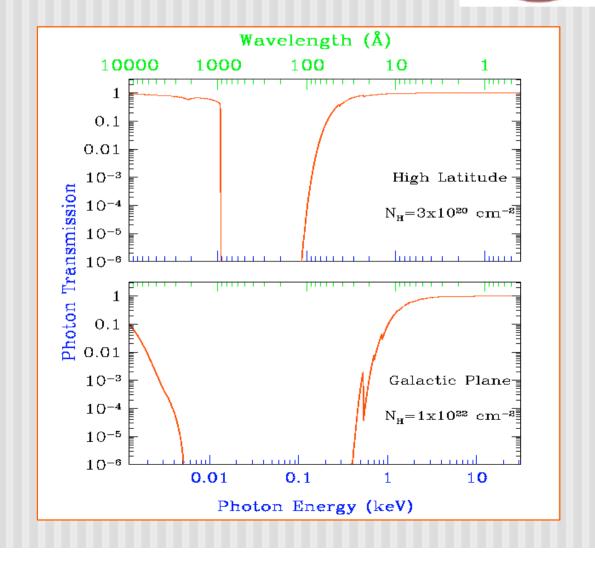
MIRAX brief history

- Selected by INPE's Astrophysics Division on May 2000 to be part of INPE's microsatellite scientific program
- Collaboration with CASS/UCSD: CZT detectors
- Collaboration with IAA Tübingen: onboard computer and software development
- Collaboration with MIT: science and software for data archiving and distribution
- Presented at Brazilian Astronomical Society (SAB) meetings - open to community participation
- Collaboration with SRON: soft X-ray camera (WFC)

MIRAX summary

X-ray astronomy satellite mission

- small (~200 kg, ~240 W), low-cost (~US\$10M)
- energy range: 2 to 200 keV
- angular resolution: 5'-7'30" (coded aperture imaging)
- localization: ~ 1' (10 σ)
- spectral resolution: 1.2 keV @ 6 keV, < 5 keV @ 60 keV
- time resolution: < 120 ms (10 ms for the CXDs)
- field-of-view: 58° x 26° FWHM along the Galactic Plane
- sensitivity ~10 x ASM/RXTE, ~40 x BATSE (Earth Occ.)
- inertial pointing (fixed at central GP for ~9 months)
- equatorial low orbit (~550 km)
- S-band telemetry (~1.5 Mbit/s) (1 or 2 stations)
- Launch in ~2008 by Indian launcher (possibly)


MIRAX mission

- First Brazilian astronomical satellite project
- High-energy astrophysics observational window for the Brazilian community
- International collaboration: INPE, UCSD, SRON, Tübingen, MIT ⇒ expertise in space missions and cost sharing
- Strong participation of Brazilian institutions and industry (IPEN etc.)
- 100% public data, NASA HEASARC archive

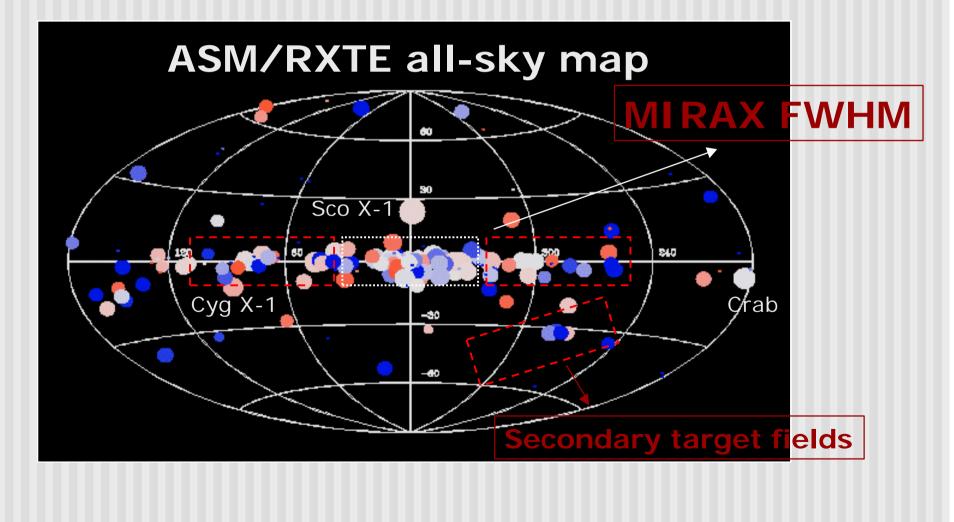
Photon transmission through the Galaxy

MIRAX SCIENCE

Continuous broadband imaging spectroscopy of a large source sample (~9 months/yr)

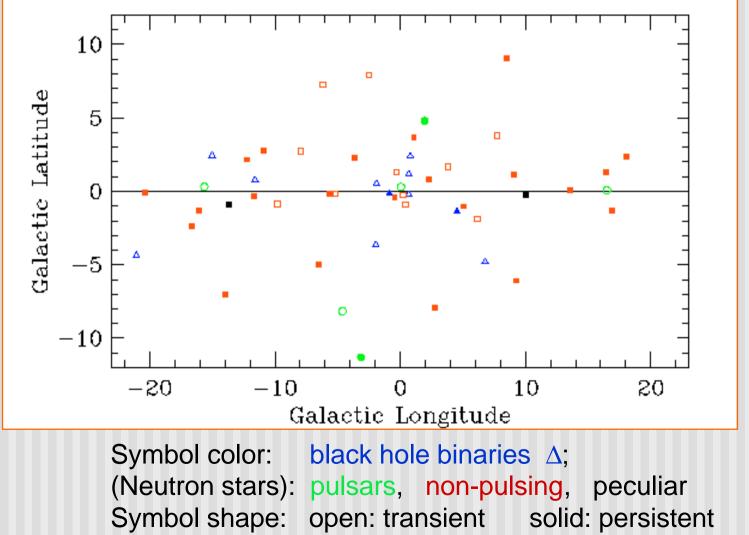
- Complete history of transient sources
- Study of the non-thermal universe (hard X-rays)
- Accretion torques on neutron stars
 - \Rightarrow X-ray pulsars and burst oscillations, millisecond accretion pulsars
- Spectral state transitions and evolution on accreting black-holes
- Relativistic jets on microquasars
 - \Rightarrow X-ray light curves during radio ejections
- Fast X-ray novae, X-ray bursts, SGRs
- Gamma-ray bursts (~1/month)
- AGN variability (obscured AGNs)

MIRAX Strategy



- Hard X-ray survey of central Galactic plane with GC continuous monitoring
- Unique capability to detect, localize, identify, and study short-lived, rare, and/or unpredictable phenomena, including X-ray transients and fast X-ray novae
- Alert service for astronomers on all λs; coordinated optical/IR and radio observations
- Secondary target fields: microquasars jets and Cygnus region;
 X-ray pulsars in Vela/Centaurus; Magellanic Clouds survey

MIRAX Strategy



MIRAX Primary Field

MIRAX Primary Field: Central Galactic Plane

MIRAX strategy

Advantages over previous/existing missions:

- Detect, localize, identify, and study short-lived, unpredictable phenomena which last from minutes to days, and are very likely to be missed by traditional observing strategies;
- Observe longer-lived phenomena in great detail from 2 to 200 keV.
- Every object will be observed for 60 min of every 90 min orbit, 15 times a day, for 9 months
- Integral and Swift GC observations suffer from low duty cicles which make them unlikely to detect short-lived transients and unable to perform detailed studies of longer-lived phenomena

MIRAX instruments

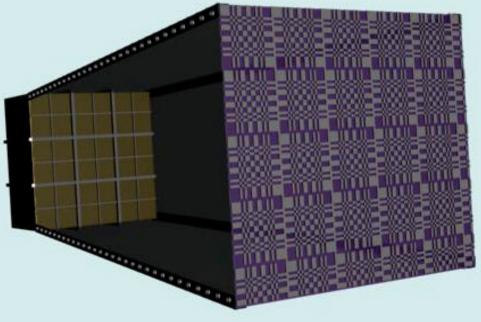
2 hard X-ray imaging cameras (10-200 keV) built by DAS/INPE in collaboration with CASS

⇒ Detectors developed at CASS/UCSD

1 soft X-ray imaging camera (1.8 – 28 keV)

BeppoSAX WFC spare flight unit

Þ provided by SRON (Holland)



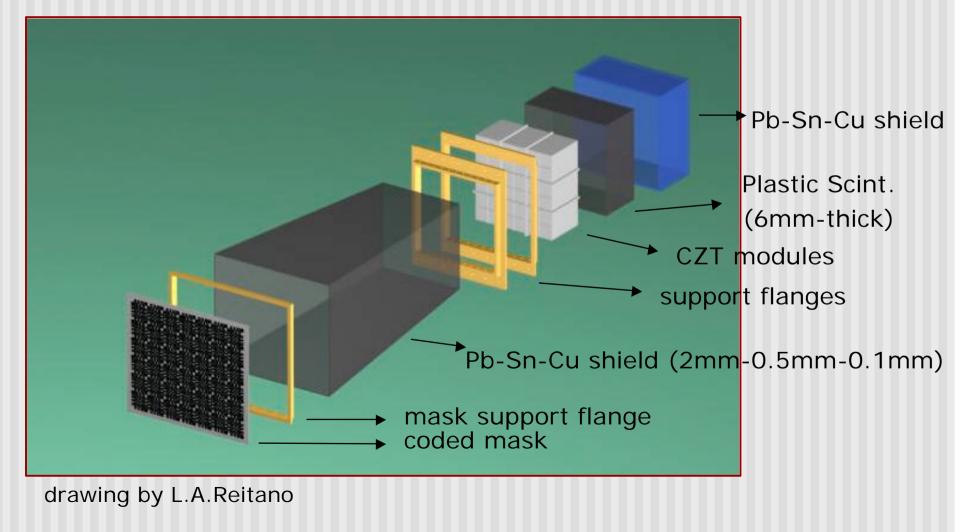
Câmeras de Raios-X Duros - CXD

- wide field ⇒ 57.6° x 25.8° FWHM
 39° x 6.2° uniform fully-coded FOV (combination of 2 CXDs offset by 29°)
- high angular resolution 6/
- Iocalization: < 1'</p>
- coded mask imag
- plastic scintillator (collaboration wind)
- Pb-Sn-Cu graded
- ²⁴¹Am tagged calil

CZT detectors

Energy range: 10-20

Crossed-strip CZT (Contemporation of the contemporation of the


- 0.5-mm spatial resolutio
- 3x3 modules of 2x2 dete
 Provided by CASS/UCSD

7cm x 7cm x 10cm

CXD concept

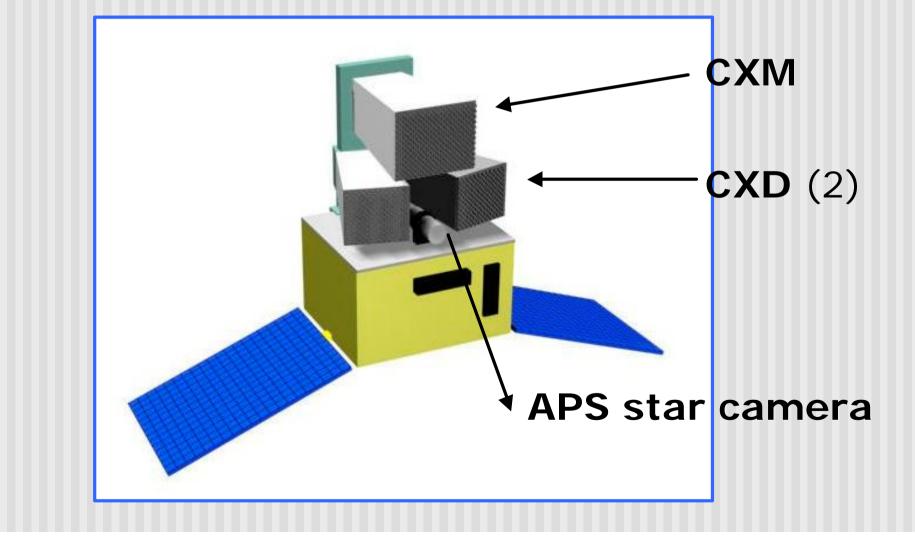
Câmera de Raios-X Moles - CXM

 Spare flight unit of the Wide Field Camera on Bepp WFC/BeppoSAX
 ⇒ provide and a second second

Jager et al. 1997

- wide fi
- angula
- Localiz
- spectr
- time r
- effective

MIRAX sensitivity


CXDs:

- Background rejection: events on multiple, non-contiguous sites; low-energy deep interactions
- Background: ~200 counts s⁻¹ per imager (aperture flux dominates up to ~60 keV)
- Sources in the central GP FOV: ~1 Crab \Rightarrow 120 counts s⁻¹
- \Rightarrow < 2 x 10⁻⁵ photons/cm² s keV @ 100 keV (one day, 5 s)
- ⇒ 2.6 mCrab/day, 10-100 keV
 - (70% observing efficiency due to Earth occultation)
 - ~40 times better than BATSE/CGRO (Earth occult. technique)
 - CXD one-year "survey" sensitivity (syst. limit of 0.1% of bkg):
 - **\mathbf{P} 10⁻¹¹ ergs/cm² s (10-50 keV) (> 20 times better than HEAO-1 A4)**
- **CXM:** ~10 times better than ASM/RXTE
 - \Rightarrow ~ 5 mCrab/day, 2-10 keV

MIRAX concept (preliminary)

Coded aperture experiments on satellites

mission	Energy range (keV)	FOV	Angular resolution
WFC/BeppoSAX	2-28	2 x (20° x 20°) FWHM	5′
ASM/RXTE	2-10	"4π sr" (3 x 6°x90° FWHM)	12′
WXM/HETE	2-25	~1.6 sr FWZI	11′
JEM-X/INTEGRAL	5-35	4.8° diam. FCFOV	3′
IBIS/INTEGRAL	15-10000	9° x 9° FCFOV	12′
BAT/SWIFT	15-150	2 sr PCFOV	17′
MIRAX	2-200	58° x 26° FWHM 39° x 6°12′ FC	6'-7'

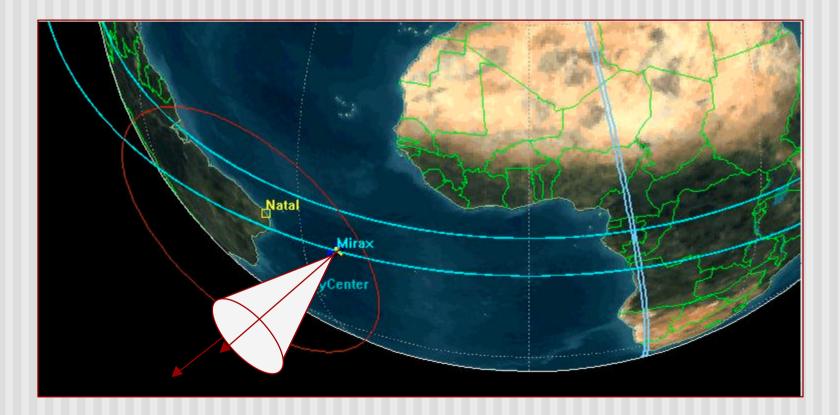
MIRAX satellite

simple and light

- based on an existing, tested platform (FBM)
- payload has no moving parts
- payload: 124.5 kg, 88-96 W, 1m diam. x 54cm
- 2 10 A-hr 28 V batteries

3-axis attitude control system

 reaction wheels, torque rods, 2 start trackers, sun sensor, magnetometer


pointing requirements

- inertial pointing
- 0.5° precision (goal: 0.1° 6′)
- 0.01°(36")/hr (1/10 pixel) stability (jitter)
- 0.01°(36") attitude knowledge (goal: 20")

Mission Geometry

mission data

- One or two ground stations
 - Brazil (Natal) and maybe in Kenya (Italian station Malindi)
- 100% of data immediately available to the community
 - Database at mission centers and HEASARC (GSFC)
 - Specific web pages:
 - Deep exposure webpage
 - Transient detection webpage
 - Flux history webpage
 - Pulsar period history webpage
- Guest Observer program (mission center at INPE)

MIRAX team contributions

•	hard X-ray cameras (CXDs)	DAS/INPE, CASS/UCSD
	CZT detectors for CXDs	CASS/UCSD
	soft X-ray camera (CXM)	SRON
	payload structures	DAS/INPE
•	APS star camera	ETE/INPE
•	payload flight computer (CEU)	IAA Tübingen, CEA/INPE
•	spacecraft	ETE/INPE
•	assembly, integration & testing	LIT/INPE
•	launch	AEB
	mission operations	ETE, CRC/INPE
	software for data reduction and processing	IAAT, MIT
•	data storage and distribution	INPE, UCSD, MIT, IAAT
•	Guest Observer support	INPE, UCSD, MIT, IAAT

MIRAX current status

- 2003 NASA proposal for CZT and HXI development at UCSD (SMEX - Mission of Opportunity) was not selected due to launch uncertainty, but received category 1 rating
- AEB launcher program not yet clearly defined piggyback launch on an Indian launcher being considered
- Possibility to fly a CXD prototype at FBM satellite
- Satellite development depends critically on MCT
 - AEB and INPE budget for satellite programs
 - FAPESP funding being considered
 - "Fundo Setorial Espacial" is an option
- Partnership with IPEN being established for plastic scintillator active shield development
- Coded mask fabrication work being done at LAS/INPE