
A Proof-Theoretic Approach to Logic
Programming. I. Clauses as Rules

LARS HALLNAS* AND PETER SCHROEDER-
HEISTER,f * Programming Methodology Group, Department of
Computer Science, Chalmers University of Technology and University
of Goteborg, 412 96 Goteborg, Sweden; t Seminar fiir natiirlich-
sprachliche Systeme, Universitdt Tubingen, 7400 Tubingen, FRG

Abstract
In this paper definite Horn clause programs are investigated within a proof-theoretic
framework; program clauses being considered rules of a formal system. Based on this
approach, the soundness and completeness of SLD-resolution is established by purely
proof-theoretic methods. Extended Horn clauses are defined as rules of higher levels and
related to an approach based on implication formulae in the bodies of clauses. In a further
extension, which is treated in Part II of this series, program clauses are viewed as clauses
in inductive definitions of atoms, justifying an additional inference schema: a reflection
principle that roughly corresponds to interpreting the program clauses as introduction rules
in the sense of natural deduction. The evaluation procedures for queries with respect to
the defined extensions of definite Horn clause programs are shown to be sound and
complete. The sequent calculus with the general elimination schema even permits the
introduction of a genuine notion of falsity which is not defined via a meta-rule.

Keywords: Logic programming; proof theory; rule; inductive definition.

1. Introduction
The aim of this paper is to advance the view that definite Horn clause
programs are sets of inference rules for the derivation of atoms rather than
sets of logically compound formulae. This means that the theory of logic
programming belongs to proof theory, in so far as proof theory not only
studies complex logical and mathematical formalisms but also the general
structure of proofs or derivations, independently of the internal logical
structure of formulae being derived.

In the following we shall in particular deal with the proof-theoretic idea of
rules of higher levels. Such rules result from rules in the ordinary sense by
finite iteration of the process of rule formation. In derivations with higher
level rules, one is allowed to introduce and discharge assumptions which are
themselves rules. The concept of higher level rules was introduced by
Schroeder-Heister [7] in the context of natural deduction systems in order to
yield a uniform description of the relationship between introduction and
elimination inferences for logical constants. However, the idea behind this

1. Lope Compulat., Vol. 1 No. 2, pp. 261-283, 1990 © Oxford University Press

261

262 / Logic Programming. I

notion is completely independent of this application and can equally well be
applied to derivations of atomic formulae. This leads to a natural extension
of definite Horn clause programs, when we consider rules of higher levels to
be generalized Horn clauses which may occur in a program. With respect to
such extended programs, a query does not simply ask whether a certain
atom (or more generally: a set of atoms) or a substitution instance thereof is
derivable, but whether it is derivable from certain assumptions, where these
assumptions may include rules.

The idea of derivations from rules as assumptions will be formally
captured by a sequent calculus C^(P) which is defined in relation to a given
program P. This approach is related to a concept of clauses which may
contain implication formulae in their bodies. This latter concept leads to a
sequent calculus C_(P) which is based on the idea of introduction rules for
an implication constant —*• both to the right and left of the sequent sign.
Although differently motivated, the systems C^(P) and CU(P) are equiv-
alent in the sense that they can be embedded into each other.

A further proof-theoretic conception that we shall apply to logic program-
ming is the view that introduction inferences determine the meaning of a
constant whereas elimination inferences only reflect this meaning in some
sense. We think of the rules of a logic program whose head has A as a
substitution instance as determining the meaning of A. Consequently, a
general inference schema corresponding to the idea of elimination inferences
in natural deduction is then added to C^(P), yielding an extended system
D(P). By means of this additional inference schema, an atom can be
introduced as an assumption in a way that depends on the meaning given to
it by the program rules.

With respect to the sequent calculi C^(P), CL(P) and D(P) there are
evaluation procedures for queries which are formally handled by proofs in
certain 'linear' formal systems LC^(P), LC^(P) and LD(P). The soundness
and completeness of these formal systems will be established by proving
their equivalence with C^(P), C_(F), and D(P), respectively. Since a very
restricted version of these linear calculi (namely, without inference schemas
for handling assumptions, higher level rules or implication formulae) covers
the usual procedure of SLD-resolution for definite Horn clause programs,
the soundness and completeness of SLD-resolution is obtained as a limiting
case.

To make things easier to follow, however, we shall not start with the most
general case, but apply our methods first to standard definite Horn clause
programs and prove the soundness and completeness of SLD-resolution
independently of the generalizations considered. This is especially justified
because our way of proceeding reveals the proof-theoretic content which is
only implicit in the use of the least-Herbrand-model property in standard
proofs.

Logic Programming. I / 263

Our calculus D(P) with the additional inference schema corresponding to
elimination rules has the advantage that it contains a natural notion of falsity
and thus of negation. This is due to the fact that from any zero-place
predicate _L, which is not head of a program rule (i.e. P does not define 1) ,
everything follows. In other words, in D(P) we have a built-in 'ex falso
quodlibet', so that the notion of falsity in D{P) resembles the intuitionistic
concept of absurdity. To assume that 1 holds according to P is absurd since
what this should mean is not defined. Thus negation need not be introduced
via a meta-rule (like negation as finite failure) but is so-to-speak 'intrinsic' in
the system. The rule of 'negation as finite failure' can be looked upon as a
derived inference schema of D(P). An analogous treatment of falsity is not
possible within the framework of usual definite Horn clause programs, since
derivations from assumptions, and correspondingly queries referring to
assumptions, must be available for that purpose.

This paper is the first in a two-part series. It discusses the basic
proof-theoretic view of logic programming, according to which clauses are to
be treated as inference rules. Here Sections 2 and 3 deal with ordinary logic
programming based on definite Horn clauses, and Sections 4 and 5 with the
extensions by rules of higher levels and by implication formulae. Part II will
be concerned with the definitional view of logic programs (Sections 1 and 2),
including computational aspects connected with this view (Section 3) and the
notion of negation which is then available (Section 4). A general discussion
of this approach and its possible applications concludes the two papers
(Section 5).

2. Clauses as formulae versus clauses as rules

Logic programs are finite sets of program clauses. A standard notation for
program clauses is

A*-Bx,...,Bn,

where A, Bu ..., Bn represent atomic formulae of first-order logic (and
where as a limiting case the 5, may be missing).

Such clauses can be understood in two different ways: (i) as compound
logical formulae; or (ii) as rules of a formal system for the derivation of
atomic formulae (axioms being considered rules without premises). The
clauses-as-formulae view is commonly adopted when giving logic programs a
model-theoretic semantics. In this case A*^BU . . ., Bnis taken as shorthand
for V(fl, A . . . A Bn 3 A) or, what in classical logic amounts to the same, for
V(-ifl, v . . . v ->Bn v A). Here V denotes universal closure, i.e. universal
quantification over the variables free in Bx A . . . A Bn -=>A. A goal, which
may be posed as a query with respect to a program, is then either written as
a headless clause <—Bu...,Bn and understood as V(-ifi, v . . . v->Bn) or

264 / Logic Programming. I

written as Bt,. . ., Bn and understood as 3(flx A . . . A Bn). In the first case
one interprets it as something one wants to refute by giving a certain
substitution as a counterexample to the universal closure, in the second case
as something one wants to prove on the basis of the given program by giving
a substitution as a witness for the existential closure. In classical logic both
readings are dual to each other. We shall follow the second reading since it
both seems more natural and allows for a constructive interpretation.

If we abbreviate 'for which 0' by '(?0)', (B , A . . . A Bn) by G and
first-order logical consequence by 't ' , a query may be symbolized as

(10) PtGO
or

(10) (PtBrfand... andPtBmO) (1)

The substitution 0 is then called a correct answer substitution of G with
respect to P. Since clauses are understood to be universally quantified, free
variables may occur only in GO, i.e. to the right of E. Thus P1= GO means the
same as PtV(G0). It turns out that where GO is a closed formula, we can
restrict ourselves to Herbrand interpretations whose universe is based on the
constants appearing in PL) {GO}. This is to say that PtGO if and only if
each Herbrand model of P is a Herbrand model of GO, i.e. GO holds in the
least Herbrand model of P.

The clauses-as-rules interpretation is favoured when one thinks of a logic
program P as defining a continuous mapping on the lattice of all Herbrand
interpretations of P, which has a certain Herbrand interpretation as its least
fixpoint. Using another terminology this means that programs are formal
systems with the ground instances of clauses as primitive rules of inference,
determining a set of ground atoms (i.e. a certain Herbrand interpretation) as
a set of derivable formulae. In other words, logic programs are inductive
definitions of Herbrand interpretations.

Both views of logic programs are connected by the theorem that the least
fixpoint according to the second interpretation (= set of derivable ground
atoms = inductively defined set) is exactly the least Herbrand model of the
program considered. (This is the way of matters are presented in [3],
although explicit reference to rules and formal systems is lacking.) The fact
that the least fixpoint interpretation is equivalent to the least-Herbrand-
model interpretation shows that both approaches give an adequate semantics
to definite Horn clause programs only for ground answer substitutions.
Answer substitutions 0 for a query G for which GO is not ground are not
necessarily correct even if all ground instances of GO hold in the least
Herbrand model of P.

However, a slight modification of the clauses-as-rules view leads to
satisfactory results also for substitutions which are not necessarily ground.
We just have to consider the clauses themselves to be rules, and not only

Logic Programming. I / 265

their ground instances. Such a rule, which we write as

Bu...,Bn=>A
with limiting case

allows one to pass from (not necessarily ground) atoms Bxo,..., Bna to the
(not necessarily ground) atom A a for any substitution a. This step may be
written schematically as

Blo...BHo

Dx,

with

Aa
as a limiting case.

According to this view, a program P defines a formal system which allows
the derivation of (not necessarily closed) atomic formulae. We denote this
calculus which is based on the program P by C(P). A query of the form
Bu . . ., Bm then asks for the substitutions 6 such that Bfi is derivable in
C(P) for all i (1 < / < n), or symbolically

(?0) (\-c(P)BlOand...and\-C{P)BmO). (2)

In the following, P denotes programs as sets of rules, and Pf denotes the
corresponding program on the clauses-as-formulae view. More precisely, Pf

contains the formula V(̂ 4) if the premise-free rule=>/l is in P, and the
formula V(5, A . . . A Bn => A) if the rule Bx, . . ., Bn ^>A is in P. Using this
terminology, and replacing first-order consequence E by derivability in
first-order logic \-L, we can rewrite a query in the clauses-as-formulae view of
the form (1) as

(?0) {PfVLBldand...andPfVLBme). (3)

It can be shown that very little of the strength of classical first-order
consequence (or derivability) is needed for defining the correctness of
answer substitutions. We lose nothing if instead we base our theorizing on
the clauses-as-rules approach, understanding queries in the sense of (2)
rather than in the sense of (3). This is seen as follows. Suppose first-order
logic L is formulated as a natural deduction system for classical logic as in [2]
or [6]. Then multiple A-introduction

A1...An

Ax A . . . A An

and multiple V-elimination

(A A/)

Ba

are derived inference schemata.

(W E)

266 / Logic Programming. I

Now assume \-C(p)A, i.e. let a derivation of A in C(P) be given. We
replace each step of the form

by
rjTjp: (assumption introduction)

(5)

and each step of the form

A i a A a (6)Au...,A
BO

by
- =-r (assumption introduction)

(A A |) V04,A...AA,=,fi)
(A/\AAz)B)o(A A |)

Axa A . . . /\Ano (Ax/\.. . AAnz)B)o
(modus ponens),

Bo (7)
where if n = 1, the step (A A) is omitted.

Since the formulae introduced in (5) and (7) belong to Pf, we have
obtained a derivation in first-order logic of A from Pf which only uses
assumption introduction, (A A) , (W) and modus ponens as inference steps.
Conversely, given a derivation in L of A from Pf, by using proof-theoretic
methods as described in [6], in particular normalization, this derivation can
be transformed into one which only uses the patterns of inference (5) and (7)
where the assumptions introduced belong to Pf. Therefore, by replacing
these patterns by (4) and (6), respectively, we obtain a derivation of A in P.

This shows that the part of first-order logic needed within the clauses-as-
formulae framework is even less than its positive fragment. And as no rule
of negation is involved, the distinctions between, for example, classical,
intuitionistic and minimal logic make no difference to the result. What is
actually involved in the patterns (5) and (7) is just the logical reformulation
of rule application as given through (4) and (6). The inferences (5) and (7)
look more complicated since the instantiation of a rule, being implicit in rule
application, is made explicit as a step of universal instantiation, and since
combining several premises into one, which is necessary to apply modus
ponens, requires the introduction of conjunction. Since only that modest
fragment of first-order logic is used that exactly corresponds to rule
application, it is clearer to work immediately in the framework of rules
rather than using full logical consequence or derivability.

3. Linear derivations: soundness and completeness
In this section we use A, B, C for atoms and X, Y, Z for finite sets of atoms,
which we also call goals. Every letter may be primed or indexed. We write

Logic Programming. I / 267

Xo to denote substitution by a in each element of X. We consider rules to
be of the form X^A (where X may be empty), i.e. the premises of rules
are taken to be sets rather than sequences of atoms. By P we denote the
program which is assumed to be given. The rules in P are also called
program rules. A variant of a program rule is any rule which results from a
program rule by relabelling its variables in such a way that different variables
are transformed into different variables. Derivations in the formal system
C(P) based on the program P are then defined by the inference schema

o^-X^A (hP),
Aa

where X^A is a program rule or a variant thereof. This schema is to be
read as follows: If for each element C of X a derivation of Co is given, then
by applying (hP) we obtain a derivation of A o. (This means that for
different C t, C2 e X, the derivations of Cxo and C2o may be different, even if
Cxo and C2o are identical.) Allowing variants of program rules relieves us
from explicitly considering renaming substitutions in many cases. In an
application of (HP), a is called the substitution used at this step. Likewise,
X^>A is called the rule used at this application. The formulation of (hP)
with sets X instead of sequences means in particular that in a derivation in
C(P) the order of branches from left to right is not important. By a
derivation of a set Z we mean a set containing at least one derivation of each
element of Z. The empty set is thus a derivation of the empty set. We write
f-C(P)Z if there is a derivation of Z in P (so hc(P)0 is always true). The length
of a derivation is the number of inference steps in it, where, when
considering a derivation of a set, we have to take the sum of the lengths of
the derivations of its elements. It is clear that if we have a derivation of Z we
can easily obtain a derivation of Zd for any substitution 6. We just have to
replace every step (\-P) by

Posing a goal Z as a query can now be written as

(id) (yc(P)ze).

If a derivation of Z in C(P) is given, the variables occurring in rules
used at steps of the form (I-P) are also called the rule variables of that
derivation. A derivation is called purified if rule variables occurring in a rule
X^A only occur at one single step of the form (I-P) where X^>A is used,
and here only in the rule X^A and not in Xo or Aa. It is obvious that by
relabelling rule variables and changing substitutions in steps of the form

268 / Logic Programming. I

(hP), every derivation can be purified, without the derived set Z being
altered.

Logic programming systems based on definite Horn clause programs are in
general not theorem provers. If we pose a goal X of atoms as a query, we do
not usually want to know whether for each atom A in X there is a derivation
of A by means of the rules of a program P. Rather we want to know whether
there is a substitution 6 such that for each A in X, A8 is derivable, and if so,
for which 6 this holds. Thus we want to find 6 and at the same time a
derivation of X6. Obviously, this cannot be achieved by simple backward
reasoning along the rules of P. Such backward reasoning would start from
some A in X and try to find a derivation of A by looking for rules which,
when applied in the last step, would lead to A, and so on. Logic
programming systems like PROLOG start instead from X alone, and want to
construct a derivation for X6 for some substitution 6 which is not given at
the beginning. If we consider XO to be composed of X and 6, then we may
say that the system starts from only the one component X. Thus, if we want
to consider its query evaluation procedure to be a kind of (sophisticated)
backward reasoning, we must develop a concept of derivation in which these
two components are kept apart. In order to enable backward reasoning from
X to establish the derivability of X6 without previous knowledge of 0, we
need a concept of forward reasoning in which substitutions are split off from
formulae. For this purpose we define a calculus LC(P) for the derivation of
pairs of the form (X, 0). Derivations in LC{P) are also called linear
derivations (with respect to P) because there will be no branching. Standard
SLD-resolution can then be shown to be backward reasoning along linear
derivations of pairs (X, 6), starting from a selected element of the left
component X and constructing 6 step by step.

We use Lloyd's [3] terminology concerning substitutions and their
composition, i.e. substitutions are finite sets of bindings x/t such that x is a
variable and t a term different from x. We say that a and x agree on A!" if a
and T become identical after deleting all bindings for variables not in X. If V
is a set of variables, we say that a acts on V it a contains a binding for a
variable in V. The sign U denotes the union of sets which are assumed to be
disjoint.

A linear derivation is a finite sequence of pairs whose left component is a
goal and whose right component is a substitution, which is generated by the
inference schemata

(YqU*q,0)
a(YO{B},o6)X^A {"P)L-

In applications of (JrP)L it is assumed that

(i) X ^A is a variant of a program rule
(ii) Ao = Bo.

Logic Programming. I / 269

We say that a and X^A are used at the application of ()-P)L considered.
The variables occurring in X^A are called rule variables. A linear
derivation is called purified if the variables of a rule used at an application of
(hP)z. only occur in X^A and nowhere else in the derivation. The length of
a linear derivation is its length as a finite sequence.

The inference schema (\-P)L for linear derivations may be motivated as
follows. Suppose a unifies A and B, i.e. Ao = Bo. Then the rule X=$>A
allows us to pass over from Xo to Bo in C(P), where additional formulae
Yo that have been proved remain unaffected. This substitution a, which is
used in order to obtain some instance of B, is split off from the goal on the
left side and added to the substitution on the right side of the pair. The
substitution 6 already present on the right side contains the substitutions
used at earlier stages. Thus it is the aim of linear derivations to split off at
each step of a given derivation in C(P) that part of the substitution which is
used to perform this step.

A linear derivation is called strict if all unifiers used at applications of
(KP)z. are most general unifiers (mgu's). The substitution 6 of the initial step
(0)L of a linear derivation is called the initial substitution of this linear
derivation. If a linear derivation of (X, T) is given, then x can obviously be
written as 68 where 6 is the initial substitution of the linear derivation. The
substitution 6 is then called the computed substitution of the linear
derivation of {̂ f, r) . 1

A strict linear derivation of (X, 66) with computed substitution 6 and
initial substitution 8 can be conceived of as representing an SLD-refutation
of X with computed answer substitution 6 written upside down. Whereas in
linear derivations substitutions are split up into parts, in SLD-refutations
unifiers are joined together in order to obtain a correct answer substitution.
This becomes immediately obvious if in linear derivations we omit the right
components of the pairs, since they can be constructed from the sequence of
substitutions of the previous steps in the linear derivation. A linear

1 More precisely, the computed substitution of a linear derivation can be inductively defined as
follows:

0 is the computed substitution of a linear derivation of the form

If p is the computed substitution of a linear derivation of

(YaUXa.8),

then op is the computed substitution of the linear derivation ending with the step

a, 9)

270 / Logic Programming. I

derivation then takes the form

<5 ^

on

where Zo is the empty set,

represents
<5 (0,6)

and, for each i (1 < / < n),

represents
<Y&

ar {Y,U{Bl},ot,...,ol6)

where Z, = Ŷ U {B,} and yl.a, = B,a,.
If the linear derivation is strict, then, read from the bottom to the top, this

is nothing but a successful SLD-derivation (i.e. an SLD-refutation) for Zn

with sequence of mgu's an, . .., ox. Here the 6 represents an arbitrary
substitution by which the substitution an. . . ox can be specialized, yielding
a substitution on . . . ox6 which is obviously a correct answer substitution
if on. .. ox is one.2 Resolution can thus be conceived of as backward
reasoning with the aim of constructing a linear derivation.

Therefore the following results have immediate consequences for the
characterization of SLD-resolution.

THEOREM 1.1

Suppose a linear derivation of (Z, 66) with computed substitution 9 and
initial substitution 6 is given. Then ZO is derivable in C(P).

PROOF. By induction on the length of the linear derivation considered. If it
only consists of the initial step

the assertion is trivial, since 0 is a derivation of 0 in C(P).
2 Unlike Lloyd [3], we do not assume that the bindings in correct answer substitutions for X are

restricted to variables actually occurring in X.

Logic Programming. I / 271

Suppose the schema (}-P)L is used in the last step:

{YoUXo,6)
°

Let dx be the computed substitution of the linear derivation of the premise
of this inference. Then we know by induction hypothesis that there is a
derivation in C{P) of Yady U Xadx. By applying (hP) we obtain a derivation
in C(P) of Yo6i U {BoO^. Obviously, adx is the computed substitution of
the linear derivation ai (Y V {B}, oO). •

Since derivations in C(P) are closed under substitutions, we have as a
corollary that Zx is derivable in C(P) if (Z, T) is derivable in LC(P). Since
linear derivations may be read as successful SLD-derivations, this theorem
establishes the soundness of SLD-resolution. To establish completeness, we
proceed by proving three lemmas. The first two of them correspond roughly
(though not exactly) to the 'lifting lemma' and the 'mgu lemma', respectively
(see [3], Section 8).

LEMMA 1.1
A linear derivation of {Zx, 0) with computed substitution y can be
transformed into one of (Z, xd) with computed substitution xy provided x
does not act on rule variables in the given linear derivation. If the linear
derivation of {Zx, 6) is purified, then so is that of {Z, x6). The length of
the linear derivation remains unchanged by this transformation.

PROOF. An initial step
T, y>

is transformed into an initial step

Suppose the inference schema (\-P)L is used in the last step:

{YxoUXcd)
a

where Bxo = Ao.
Since r does not act on any variables in X^>A, we have that Xxa = Xo

and Axa — Ao = Bxa. Therefore we may replace this step by

, 8)

If y is the computed substitution of the linear derivation of
{Yx\3{Bx}, ad), then xy is the computed substitution of the linear
derivation of {Y\J {B}, xod). Obviously, the property of being purified is
not changed by the transformation performed, nor is the length of the linear
derivation considered. D

272 / Logic Programming. I

LEMMA 1.2

A linear derivation of (Z, T) with computed substitution y can be
transformed into a strict linear derivation of (Z, T) with computed
substitution y' such that y = y'p for some p. If the linear derivation of
(Z, T) is purified, then so is the strict linear derivation of (Z, T) . The length
of the linear derivation remains unchanged by this transformation.

PROOF. By induction on the length of the given linear derivation. Applica-
tions of (0)L remain unchanged, the computed substitution being 0 .

Suppose the schema (\-P)L is used in the last step:

(YaUXo, 0)

where Ba = Ao.
Let y be the computed substitution of this linear derivation: it can be

written as ayt if yx is the computed substitution of the linear derivation of
the premise (YoUXo,d) of the inference step considered. We can
compute an mgu ft of B and A in such a way that a = i*6 for some 6 which
does not act on rule variables of the linear derivation ending with
(YaUXo, 6).3 By applying Lemma 1.1 to this linear derivation, we obtain
a linear derivation of the same length of (Y/xUXfi, 66) with computed
substitution 6yt. The induction hypothesis gives us a strict linear derivation
of (YpUXn, 66) with computed substitution y2 such that 6yx = y2p for
some p. By applying the step

we obtain a strict linear derivation of (Y0{B},o6) with computed
substitution fxy2- Since oyx = fi6yt = fiy2p, we obtain y = y'p by taking y' to
be fxy2- Obviously, the property of being purified is not changed by this
transformation, nor is the length of the linear derivation. •

LEMMA 1.3

Suppose a purified derivation of Z in C(P) is given. Then there is a linear
derivation of (Z, T) for some x such that T only acts on V, where V is the set
of rule variables of the derivation of Z.

PROOF. By induction on the length of purified derivations in C(P). If Z is
empty,

(0,0)
is the linear derivation we are looking for.

3 If /i, is any mgu of A and B such that o = /i,6, for some 6,, then A(ilpp '6 , = B\ixpp ' £ , for any
renaming substitution p of {Afit, Bnt}. By choosing an appropriate p, we may take n to be /j,p and 6 to
bep '6 , .

Logic Programming. I / 273

Let Z be YO {B}. Then the derivation of Z contains derivations of Y and
of B. If there is more than one derivation of B, choose one of them.
Suppose it proceeds by

in the last step, where Aa = B. Since the derivation of Z is assumed to be
purified, we have that B = Ba and Y = Ya. In particular, a is a unifier of A
and B. By induction hypothesis we obtain a linear derivation of (YaU
Xo, xx) such that xx only acts on V. By applying the step

(YoUXo,xx)
°

we obtain a linear derivation of (Z, axx). Since both a and xx only act on V,
also axx only acts on V. It is obvious that the resulting derivation is
purified. •

THEOREM 1.2
From a derivation of Zx in C(P) a purified strict linear derivation of (Z, x')
can be obtained, such that x and x' agree on Z.

PROOF. First we rename rule variables in the derivation of Zx in C(P) in
such a way that the resulting derivation of Zx is purified and all rule
variables are distinct from variables on which x acts. Lemma 1.3 then gives a
purified linear derivation of (Zx, 0) for 6 only acting on these rule
variables. By Lemma 1.1 a purified linear derivation of (Z, xd), and by
Lemma 1.2 a purified strict linear derivation of (Z, xd) is obtained. The
substitutions x and xd agree on Z, since 6 does not act on variables in Z or
Zx. •

This theorem establishes completeness of SLD-resolution. It is also
provable without the 'purified' and 'strict' requirements, i.e. derivations in
C(P) can be transformed into linear derivations. But the result is, of course,
stronger if a narrower class of linear derivations is considered.

Remarks on the concepts of soundness and completeness
In the terminology used in this section, to prove soundness and complete-
ness means roughly to prove the equivalence of two formal systems: the
calculus C(P) based on the program P and the calculus LC(P) for linear
derivations. How does this relate to the notions of soundness and complete-
ness as used in the standard theory of logic programming?

Since derivations in LC(P) can be read as upside-down versions of
SLD-refutations in the usual sense, the only problem here is our definition
of correct answer substitutions with respect to the calculus C{P). One might
argue that the notions of soundness and completeness should relate some

274 / Logic Programming. I

syntactic concept such as derivability in LC(P) to some genuinely semantic
concept, and not to another syntactic concept such as derivability in C(P).

This objection, however, misses the central point of our clauses-as-rules
approach. Whereas formulae can be given a semantics in terms of models
(although it seems quite questionable to us whether this would be an
appropriate semantics in the context of programming), rules have by their
very nature an inferential reading: the meaning of a clause considered as a
rule is specified by saying how this rule is to be applied, which is exactly
what the inference schema (\-P) does. Therefore the definition of the
calculus C(P) actually represents the semantics of clauses-as-rules. So the
calculus C(P) is not a purely syntactic device, but has a semantic function.

It is, of course, possible to consider the system C{P) just as a technical
means to prove soundness and completeness of SLD-resolution with respect
to the clauses-as-formulae approach. But even then there is nothing strange
about our defining correct answer substitutions with reference to the calculus
C(P). As shown in Section 2, an atom A is derivable in C(P) iff A is
derivable in first-order logic from Pf (where Pf is the program viewed as
consisting of clauses-as-formulae). Since first-order logic is complete, A is
derivable in C(P) iff A is a logical consequence of Pf. Therefore the notion
of a correct answer substitution as defined with respect to the semantic
concept of logical consequence from Pf is equivalent to the one defined with
respect to the syntactic concept of derivability in C(P). It is actually the
advantage of defining correct answer substitutions proof-theoretically that
one can reduce the proofs of soundness and completeness to a comparison
between calculi and therefore stay at the proof-theoretic level.

A further remark is appropriate with respect to the notion of computation
involved in linear derivations. We have shown completeness in the following
abstract sense: If a derivation of Xx in C(P) is given, then we can construct a
linear derivation of (X, x') such that x and x' agree on X. In particular,
when choosing unifiers in the linear derivation, we can take over substitu-
tions from the derivation in C(P) rather than compute them with some
particular algorithm. The completeness we have proved (which may be
called abstract completeness) does not imply computational completeness in
the sense that, when faced with some goal X, any correct answer substitution
x' can eventually be computed according to some particular evaluation
procedure (or at least some correct answer substitution which is more
general than x'), without previous knowledge of a derivation of Xx' in
C(P). So abstract completeness is completeness of a formal system (namely,
LC(P)) rather than completeness of a computational procedure. It is well
known that evaluation procedures based on the unification algorithm
including the occur-check and using breadth-first search are computationally
complete in this sense, but this issue involves topics such as search strategies
which go beyond abstract completeness. In the terminology of complexity

Logic Programming. I / 275

theory: abstract completeness is non-deterministic whereas computational
completeness is not.

It should be pointed out that abstract completeness does not hinge on the
fact that a certain unification algorithm is available, but just on the fact that
given a unifier a, there is a most general unifier ju such that a = /z<5 (compare
Lemma 1.2),* no matter how n is actually computed and whether /x can be
computed without giving the unifier a as a previous piece of information.
These are questions belonging to the computational aspects of completeness.

This situation is not different in the standard proofs of completeness of
SLD-resolution such as those of Lloyd [3], which are seemingly more
semantic. In considering the least-Herbrand-model as generated inductively
by means of program clauses (compare the proof of Theorem 8.3 in [3]), one
considers a kind of derivations of the elements of the least-Herbrand-model
which corresponds to our derivations in C{P). Furthermore, the complete-
ness theorems do not rely on the particular computation procedures for most
general unifiers, but just on the existence of mgu's if unifiers are given
(compare the mgu Lemma 8.1 in [3]). So what one usually calls complete-
ness is abstract completeness in our sense.

4. Logic programming with higher level rules

If we have a formal system K, we can ask not only whether some formula A
is derivable in K (\-KA), but also whether there is a derivation of A in K
from a set of assumption formulae X (X\-KA). In such a derivation we may
introduce assumptions according to the schema

for any formula A, the resulting derivation then being dependent on all
formulae introduced in that way. Since logic programs can be viewed as
formal systems, the concept of a derivation from assumptions is also defined
for such programs. In particular, given a program P, queries of the form

(?0) XOVc^Ad (8)

have a well-defined sense: they ask for substitutions 0 such that Ad is
derivable from the set of assumptions X6 according to the rules of the
program P. Such a query is different from

\-ciruxyA0 (9)

which asks for substitutions 6 such that A 6 is derivable according to the
rules of the program P enlarged by the elements of X as axioms. A query of
the form (9) can easily be handled in the standard systems based on definite
Horn clause programs: we just have to add A" as a set of clauses without
bodies to the given program P and consider a query to be posed with respect

276 / Logic Programming. I

to this extension of P. The difference between (8) and (9) is that in program
rules, but not in assumptions, variables are understood as expressing
generality, i.e. they may be substituted arbitrarily. Therefore we have that
for any 6, XVC(P)A implies X0\-C(P)A6 but not necessarily X\-C(P)A6,
whereas \-CiPUX)A always implies \-C(Pux)Ad. Thus the extension of logic
programming systems by queries of the form (8) is an extensi8n which goes
beyond mere database handling.

By permitting the introduction of assumptions, we have only widened the
notion of a derivation and correspondingly the notion of a query as what
may be asked about a derivation. The notion of a rule is extended when we
allow for the discharging of assumptions, as in natural deduction. Here this
will be carried out immediately for rules of all finite levels, where
assumptions may themselves be rules. We define rules of any level n >: 0 and
correspondingly programs with rules of higher levels as follows:

Each atom is a rule of level 0. If X is a non-empty finite set of rules of
maximum level n, then X=$>A is a rule of level n +1. We also consider
0^>A, which is identified with A (and thus is a rule of level 0). A program
P is a finite set of rules.

From now on we use A, B, C as syntactic variables for atoms, R for rules,
and X, Y, Z for finite sets of rules (all letters with or without subscripts). If
we write rules explicitly, we sometimes omit set brackets, i.e. when we write

this is to be understood as

As before, we suppose a fixed program P to be given, whose rules are
referred to as program rules.

A rule of level 0 asserts an atom. A rule of level 1 is a rule in the familiar
sense, allowing one to pass from formulae to formulae. A rule of level 2 is a
rule which permits discharge of assumption formulae. Its general form is

((*„, . . ., B,m)d>Bl), . .., (£Bnl, . . ., B^^BJ^A

(where some, but not all, m, may be 0). Its intended meaning is that one
may pass from Bu ..., Bn to A, and for each B(discharge dependencies on
Bni, . . ., Bnmr For example, the rule of r>-introduction in natural deduction
can be written in the following way as a rule of level 2:

«*)=»*O0) =>«*=> 30
(with / a unary predicate symbol, => a two-place function symbol and x, y
variables), and similarly the rule of v-elimination:

t(xvy), (t(x)^t(z)), (t(y))^t(z))^t(z).

A rule of level 3 is a rule by whose application assumption rules of level 1

Logic Programming. I / 277

(and perhaps also atoms) can be discharged, and so on. An example of a
rule of level 3 is the generalized :D-elimination rule of the form

t{x 3 y), ((,(*) ^> t(y)) 4> t(z)) ^ t(z),

by means of which one may pass over to any atom t(c), provided one has
derived both t(a r> b) and t(c), where in the derivation of t(c) one may have
used the level 1 rule t(a)^>t(b) as an assumption. (This rule is equivalent to
the level 1 rule of modus ponens

but follows a uniform pattern of elimination rules.)
In general, the intended meaning of a higher level rule

can be stated as follows: if, for each i (1 <i ^n), Bt has been derived from
Xj, then A may be asserted and Xj may be discharged. This is to be
understood with respect to any substitution instance of the rule. Rules of
level 0 or 1 are definite Horn clauses in the usual sense, whereas rules of
higher levels iterate the formation of definite Horn clauses to the left of the
rule arrow =>• The precise meaning of applying, assuming and discharging a
rule is given by the definition of how to derive an atom from a set of
assumptions X (which may contain rules) with respect to a program P. This
could be done in a natural deduction style framework in which discharging
of assumptions is made explicit, e.g. by bracketing the assumptions
concerned. However, for the purpose of this paper it is more useful to define
the derivability of A from X with respect to P directly by means of a calculus
of sequents, where a sequent is understood as an expression of the form
XV A. This sequent calculus is called C^(P). It is the advantage of a sequent
calculus that the assumptions on which a formula depends are written down
explicitly with every inference step. For a detailed treatment of rules of
higher levels in a natural deduction style framework see [7], and in a
sequent-style formulation see [8].

The turnstile \- is now a symbol of the object language C^(P). We shall
use the notation X\-C^P)A to express that the sequent X \-A is derivable in
C^,(P). Furthermore, in the context of informal motivations we continue to
speak of the derivability of A from X with respect to P, since this is the
notion which the derivability of the sequent X\-A in C^{P) is intended to
capture. We use the following abbreviations: X, Y V A stands for X U Y \-A;
X, A \-B for X U {A} \-B; X \- Y^A stands for X, Y\-A, and X I- Y for the
set {X \-R | R 6 Y}. In particular, X1-0 is the empty set of sequents. So if a
rule or a set of rules of level > 0 appears to the right of the turnstile, this is
always an abbreviation. Rules as well as sequents have only atoms on the
right.

278 / Logic Programming. I

The system C^(P) is then defined by the following inference schemata:

X\-Y

where in applications of (HP), Y=$>A is a program rule or a variant thereof.
The schema (=£>) says how to introduce a rule Y^A as an assumption,
namely, by using it to infer A from Y, whereas according to (HP), Y^>A is
used as a program rule and thus does not appear to the left of the turnstile.
As a limiting case, (^) captures the schema

X,AYA

by just letting Y^A be 0^>A. Since variables in program rules are
understood universally, substitutions are involved in (\-P), but not in (=£>).

In the following, finite sets of sequents will be denoted by r and 2. Similar
to the conventions of Section 3, a derivation of a set F in C^(P) is defined to
be a set containing a derivation in C^(P) of each element of F. We write
Hc=J>(P)r to indicate that there is a derivation of F in C^P). Substitution F0
is defined elementwise. The length of a derivation is the number of inference
steps used.

A query with respect to P poses a question of the form

l6 and... and Xn6 Y

which, using the terminology introduced, can be written as

for some F. Thus a query can be represented by a finite set F of sequents
(where, as a trivial case, the empty set is allowed). This generalizes the
notion of a query in the standard theory of logic programming, where it is a
finite set of atoms.

Evaluation of queries is defined by linear derivations of pairs (2, a) in a
system LC^{P), which are based on the following inference schemata:

77^v (0)z -

{Lo\J{Xo\-Yo}, 0)

Logic Programming. I / 279

where a is a unifier of A and B; and

(Lo\J{XoYYo,e))
{•zo{xvB),oe) ^ K)L'

where Y^>A is a program rule or a variant thereof and a is a unifier of A
and B.

As in Section 3, we can prove soundness and completeness of LC^(P)
with respect to C^(P), in particular: if HZ,C=>(P)(2, T) , then HC^P^T and if
I-C=J,(P)ZT, then \-LC^P)('E, T ') for some x' such that x and x' agree on 2. The
proofs of these assertions proceed exactly as those of Theorems 1.1 and 1.2.
Only (40 and (40*. have to be considered in addition. Since these inference
schemata are construed in parallel to (I-P) and (t-P)L, we do not give
detailed proofs here.

5. Rules and implications
Apart from the fact that program rules are primitive rules of inference
whereas assumption rules are explicitly assumed and thus appear to the left
of the turnstile, program rules and assumption rules are treated alike in
C^,(P). They are both considered as rules in the sense that they permit the
derivation of atoms, provided other atoms have been derived (perhaps from
assumptions). In particular, the rule arrow 4> is only iterated to the left and
not to the right.

Another possibility of extending definite Horn clause programs is to
consider (iterated) implications in the bodies of program clauses. Syntacti-
cally, iterated implications differ from higher level rules in that iteration is
now allowed both to the right and to the left, and in that there is no
conjunction-like association corresponding to the comma (however, the
latter would be easy to introduce). Semantically, the difference between
higher level rules and iterated implications is that rules can be assumed by
applying them [reflected in the inference schema (40 °f C^(P)] but cannot
be asserted, whereas iterated implications are formulae that can be both
assumed and asserted. Correspondingly, in the following sequent system we
will postulate introduction rules for iterated implications on the left of the
turnstile, governing assumption, as well as on the right of the turnstile,
governing assertion. To make the conceptual difference between implica-
tions and rules clear, we use the single arrow —> for implication.

Let an implication formula be defined as follows: every atom is an
implication formula. If F and G are implication formulae, then so is
(F-* G). Let in the following F, G, H (with and without subscripts) denote
implication formulae, and let X, Y, Z denote sets of implication formulae.
Let a program rule have the form X 4>A Let P be a fixed program. Let a

280 / Logic Programming. I

sequent be of the form X YF, and let X Y Y denote {X YF \ F e Y}. Then
C_»(P) is defined by the following inference schemata:

X,AYA w

X, FYG _

XYF-*G^~~

XYF X,GYH

XYYo , va Y^A (YP),
XYAo v '

where Y^A is a program rule or a variant thereof.
In C_(P) we have not given up the clauses-as-rules view of logic programs

which is the basis of our proof-theoretic approach. The difference between
C^,(P) and C_»(P) only concerns the bodies of program clauses. In both
cases clauses have the form Y^A and are therefore rules. This is expressed
in the inference schema (YP) which is the same in both systems. The
difference is that, in C^(P), Y may contain (higher level) rules, governed by
a single inference schema (=», whereas in C_(P), Y may contain (iterated)
implications governed by the two schemata (I—>) and (—> Y).

Formally, a clauses-as-formulae view may of course be given for C^(P)
simply by interpreting both -» and ^> as intuitionistic implication. How-
ever, this does not capture our intentions. Not even the implication —>, which
may appear in bodies of clauses, must be read as intuitionistic implication,
although this reading might be suggested by our choice of the inference
schemata (I—>) and (-*Y) which are exactly those of the intuitionistic
sequent calculus. We consider —> to be a kind of implication in terms of
which 'propositional' implications like intuitionistic implication can be
defined. A program for defining intuitionistic implication D as a two-place
function constant occurring in the scope of a truth predicate t may, for
example, be given by

(cf. the similar program in Section 4 with higher level rules). Thus one may
perhaps look at —*• as a kind of 'meta-leveF implication which may be used to
define object-level implications within a truth-definition. (Note that 'meta-
level' here still means 'on the basis of a program' and not 'in the
meta-language'.)

Although the systems C^(P) and C^(P) are motivated in different ways,
they are equivalent in the sense that they can be embedded into each other.

Logic Programming. I / 281

Define the following translation of rules into implication formulae:

A° = A

= R°i^(• • • (K^A).. .)•

If P is a program in the sense of C^(P), let P° be the result of replacing
every program rule Ru . . ., Rn ^>A by /?? , . . . , R°^>A. Conversely, define
the following translation of implicational formulae into rules:

A+=A

If P is a program in the sense of C_(F), let P+ be the result of replacing
every program rule Glf . . ., Gn=$>A by Gf, . . ., G*^A. Then it can be
easily shown that

/ ? ! , . . . , Rn\-c*(p)<A iff R°,.. .,R°nVc_(po)A

and

Ft, • • -, Fn\-CMnGiffFt, . . ., F:\-CMP^G+.

Furthermore, it is easy to see that for C_(P) the following proposition
holds:

if X \-c^P) F and Y, F (-C_(P) G, then X, Y \-CAP) G. (10)

For C_(P) again an evaluation procedure can be defined by means of a
linear calculus LC_(P), and soundness and completeness can be proved.
This system LC^(P) is a subsystem of the calculus LD(P) considered in Part
II. If one takes away from the proof given there everything that has to do
with the rules (PI-) and {P\-)L, all results can be read as results for C^(P)
and LC^(P).

Assumptions versus databases in sequent-style systems

A query is always a query with respect to a given program P. This program
may be considered as a database, forming the general background of
reasoning and expressing certain assumptions about the world the program-
mer is dealing with. In the case of generalized Horn clause programs, a
query is a set of sequents, whose antecedents can be interpreted as
assumptions. When we ask whether [a substitution instance of]

X\-A

is derivable in C^.(P) or C^(P), this can be read as expressing that [a
substitution instance of] A is derivable from the [corresponding substitution
instances of] assumptions X with respect to P. The set of assumptions X here

282 / Logic Programming. I

is not to be considered as an addition to the database P. We do not, when
assuming X, change the program P by extending it with X. Thus 'assuming'
a program is to be distinguished from assuming certain rules as antecedents
of sequents with respect to the program. One may perhaps say that the
program represents global assumptions whereas the assumptions in antece-
dents of sequents are local. It is the conceptual advantage of sequent-style
systems that they make this distinction explicit. The local assumptions are
always carried with the sequents as their antecedents whereas the global
assumptions remain in the background as the database.

As mentioned above, mixing up databases with local assumptions may
even lead to technical mistakes: if Y contains variables it does not only make
a conceptual difference whether a sequent X U Y \- A is derived with respect
to a program (database) P, or whether X h A is derived with respect to the
extended database P U Y, since within the database the variables in Y are
understood universally whereas within the antecedent of a sequent they are
not.

Miller [4], Miller et al. [5], Gabbay and Reyle [1] and others have
discussed logical extensions of definite Horn clause programs by allowing
implications to occur in the bodies of clauses. Apart from the fact that they
work in the clauses-as-formulae framework, their treatment of queries with
assumptions is different from ours, particularly with respect to the distinction
between local assumptions and databases. Instead of working with a calculus
of sequents, where this distinction is obvious and natural, Miller and Gabbay
and Reyle work with ordinary derivability of formulae from a database
(program) P. A hypothetical query which in our framework would be
written as the sequent XV A, is understood as a query of A with respect to
the extended program PUX.

Acknowledgements

The authors started their collaboration when Peter Schroeder-Heister visited the
University of Stockholm in the autumn of 1984, supported by a travel grant from the
Deutsche Forschungsgemeinschaft. The present paper was written during a stay of
Lars Hallnas at the University of Konstanz in January 1987, which was financed by
the Stifterverband fur die Deutsche Wissenschaft. The final version was completed
when P. S.-H. visited the University of Stockholm in the autumn of 1987, supported
by Svenska Institutet. The results were presented in part at the 4th Japanese-
Swedish Workshop on Fifth Generation Computer Systems, Skokloster (Sweden),
July 1986, at the Computer Laboratory, University of Cambridge (England), at the
Workshop on General Logic at the Laboratory for Foundations of Computer
Science, University of Edinburgh (Scotland), February 1987, and at the Logic
Colloquium, Granada (Spain), July 1987. We would like to thank Dale Miller,
Michael Morreau, Tobias Nipkow and the reviewers for helpful comments.

Logic Programming. I / 283

References

[1] D. M. Gabbay and U. Reyle (1984). N-PROLOG: an extension of PROLOG with
hypothetical implications: I., Journal of Logic Programming, 1, 319-55.

[2] G. Gentzen (1985). Untersuchungen iiber das logische SchlieBen, Mathematische
Zeitschrift, 39, 176-210, 405-31.

[3] J. W. Lloyd (1984). Foundations of Logic Programming. Springer-Verlag, Berlin.
[4] D. Miller (1986). A theory of modules for logic programming. In Proceedings of the 1986

Symposium on Logic Programming (Salt Lake City Utah). IEEE Computer Society Press,
Washington.

[5] D. Miller, G. Nadathur and A. Scedrov (1987). Hereditary marrop formulas and uniform
proof systems. In Second Annual Symposium on Logic in Computer Science. IEEE
Computer Society Press, Washington.

[6] D. Prawitz (1965). Natural Deduction: A Proof-Theoretical Study. Almkvist and Wiksell,
Stockholm.

[7] P. Schroeder-Heister (1984). A natural extension of natural deduction, Journal of
Symbolic Logic, 49, 1284-1300.

[8] P. Schroeder-Heister (1987). Structural Frameworks with Higher-Level Rules: Proof-
Theoretic Investigations. Habilitationsschrift, Universitat Konstanz.

Received 19 February 1990

