
A Proof-Theoretic Approach to Logic
Programming.
II. Programs as Definitions

LARS HALLNAS* and PETER SCHROEDER-
HEISTERt
* Programming Methodology Group, Department of Computer
Science, Chalmers University of Technology and University of
Goteborg, AY196 Goteborg, Sweden
t Fakultdt fur Informatik, Universitdt Tubingen, 7400 Tubingen,
Germany

Abstract
We introduce a definitional extension of logic programming by means of an inference
schema (PV), which, in a certain sense, is dual to the (\-P) schema of rule application
discussed in Part I. In the operational semantics, this schema is dual to the resolution
principle. We prove soundness and completeness for the extended system, discuss the
computation of substitutions that this new schema gives rise to, and also consider the
notion of negation intrinsic to the system and its relation to negation by failure.

1. The definitional reading of logic programs

When one writes a logic program, one intends to define somehow the
predicates involved, i.e., to give them a meaning via those rules whose heads
start with the predicates in question. This is reflected in the terminology
used in several PROLOG textbooks and manuals, where the set of rules for
a predicate p is called the 'definition' of p. The proof-theoretic approach can
be used to obtain an extension of definite Horn clause programming, which
makes this definitional reading of logic programs precise. Proof-
theoretically, we can look at a program rule X^A as an introduction rule
for A or as a clause in an inductive definition. The corresponding analogy is
that in ordinary natural deduction, the introduction rules for a logical
constant a can be viewed as rules giving meaning to a, whereas the
elimination rule for a is uniquely determined by the introduction rules for a
in the following sense: the elimination rule for a states that everything that
can be derived from the premises of each introduction rule for a can be
derived from the conclusion of these introduction rules (which is the same
for all introduction rules). For example, in the case of a disjunction Ex v E2,

This paper continues 'A Proof-Theoretic Approach to Logic Programming. I. Clauses as Rules', which
appeared in Vol. 1 No. 2 of this journal. In the following this first part is referred to as 'Part I'.

J. Logic Computa!., Vol. 1 No. 5, pp. 635-660, 1991 © Oxford University Press

635

636/ Logic Programming

the elimination rule for v states that a formula E follows from Ex v E2 if E
follows both from Er and from E2 (which are the premises of the two
introduction rules for v with conclusion £, v E2). The motivation behind
this principle is that to assume a formula E with main operator a means to
assume that E has been derived according to its definition, i.e. according to
at least one of the introduction rules for a (if there is one). Therefore, what
follows from the premises of each introduction rule for oc also follows from E
itself. If there is no introduction rule for oc, we have as a limiting case that
from E everything follows.1

To make this idea more precise in the case of logic programming, where
we deal with predicates and atoms rather than logical constants and logically
compound formulae, and where different introduction rules for the same
predicate may have different conclusions, we introduce the following
notation. Let

D(A) =def {Ya | Y^> B is a program rule such that A = Bo)

This means, D(A) is a set of sets, containing as its elements all sets of
premises from which A can be inferred according to the given program rules.
The set (D(A))6 for a substitution 6 is defined elementwise, i.e. it is
{Yid, .. ., Yn6} if D(A) is {Yt, . . ., 1̂ ,}. To obtain a convenient notation, we
use X, D(>1) I- F as an abbreviation for the set of all sequents X, Y h F such
that Y is in D(>4). Relying on the above motivation we may then require the
following: if some F is derivable from each set in D(A) (perhaps with
additional assumptions X), it is also derivable from A itself.

We define D(P) to be the sequent calculus which results from C^(P) by
the addition of the inference schema:

X,A\-F

provided for all o:D(Ao) = (B(A))a

The proviso is to ensure that (Ph) is closed under substitution, i.e. that
derivability of X \- F in D(P) implies that of XoVFo for any substitution a
(for C_(P) this is obvious). At the same time, the proviso guarantees that
D(/l) is finite: D(y4) can be infinite only if some program rule Y^>B, for
which A = Bo for some o, contains variables in the premises Y which do not
occur in B. But then the proviso would not be fulfilled.

1 This relationship between introduction and elimination rules for logical constants was first pointed
out by Gentzen [7] and has been elaborated in the meaning-theoretical reinterpretation of general proof
theory by Prawitz [16] and Martin-L6f [14]. An analogous inversion principle for atomic systems was first
formulated by Lorenzen [13]. For detailed formulations of the uniform relationship between introduction
and elimination rules for logical constants which is exploited e.g. in the logical framework [24] see
[17,18,19,21,22]. A discussion of the logical and philosophical background of our application of these
ideas to logic programming can be found in [20].

Logic Programming / 637

To demonstrate how powerful the inference schema (Ph) is, consider as an
example the program with the single rule

Then a sequent expressing modus ponens can be derived by using the
inference schema (Pf-), which was not possible with the example program
given in Section 5 of Part I where a rule for modus ponens had to be stated
explicitly:

(Ph)

Another example is the derivation of h ± -^t(x) in the same program, where
1 is a zero-place predicate. Since _L does not occur in the program, D(±) is
empty:

hi^r '
For some more general comments on the definition of object logics in our
system, cf. [20].

To see the necessity of the proviso, consider a program containing the rule
p(x)^q. Here, x is an extra variable in the premise of the rule which does
not occur in its conclusion. Then p(x) is in D(^), hence in D(q{x/y}), but
not in (D(q)){x/y). This means that according to the proviso, the schema
(Ph) cannot be applied with conclusion X, qVF. However, it must be
emphasized that this restriction for the applicability of (Ph) is not due to the
proviso's being too strong—it is a natural proviso for the interpretation of P
as a definition (see below). Rather, it has to do with the fact that in program
rules with extra variables in the premises these variables are understood
existentially but are not quantified explicitly. In other words, it is intrinsic to
the usual way variables are handled in program rules. If we could write a
program rule such as p(x)^>q in the form Hxp(x)^>q where 2X expresses a
kind of existential quantification in the premise of the rule, the problem
mentioned would not arise. Another possibility would be to require in the
definition of D(A) that extra variables in Y be replaced by new constants.
We do not deal with this family of problems here since it is not specific for
the approach we propose. There are techniques in automated theorem
proving to handle quantification that would be appropriate for our context
(see, e.g., [11]).

From the standpoint of the theory of definitions, as treated in logic
textbooks (see, e.g., Suppes [23], ch. 8), the proviso is perfectly well

638 / Logic Programming

motivated. One does not usually allow for extra variables in the definiens
which do not occur in the definiendum. In this sense we may interpret the
proviso as telling that A has a definite meaning according to the definition
(program) P. However, the proviso is not equivalent to the no-extra-
variable condition. If one has p^>q(x) and r^q(t) as program rules, then
there are no variables at all in the premises, but D(q(x)) is {p}, whereas
D(q(x){x/t}) is {p, r). So the proviso also expresses that A is instantiated
far enough to have a definite meaning with respect to P.

Note that the proviso is a decidable property of A: The proviso holds iff
D{A) contains no variables beyond those occurring in A and furthermore for
all program rules Y => B such that A 6 = B6, we have that Y6 = Z6 for some
Z in D(A), which are decidable properties.

In addition to C^(P), D(P) gives us new means to assume an atom.
Whereas in C_(P), by assuming A, we could gain nothing more than A itself
(via (/)), in D(P) we can assume A (via (PY)) by, so to speak, 'reflecting'
on the meaning of A. If D(A) is empty, (PY) permits to infer X, AYF for any
X and F. In particular, we can prove X, 1 \-F for any zero-place predicate 1
which is not head of a program rule (see above). This means that D(P) has a
genuine notion of falsity and thus of negation (see Section 4).

In D(P) the conceptual difference between implication formulae and
program rules remarked earlier (Section 5 of Part I) becomes extremely
important. According to the reading of a logic program which underlies the
calculus D(P), to add a rule to a program means to change the definition of
an atom by giving a new introduction rule for it, whereas by assuming an
implication formula the meaning of predicates as given by the program is not
changed. One of the most important consequences of this fact is that for
D(P) transitivity in the sense of (10) [Section 5 of Part I] is lost. Take for
example the program P consisting of the single rule {p —><?}=> P- The
following derivation shows that we have both p YD{P) q and YD(P)p:

pYp p,qYq

However, YD(P) q does not hold, because there is no program rule such that
Yq can be obtained via (YP) (which is the only schema of D(P) which
permits inference of a sequent of the form YA). This result is not unwanted at
all. If transitivity held for D(P), the atom q would be derivable in the program
above without assumptions. According to our definitional reading of
programs this would mean that it would be possible to establish an atom

Logic Programming / 639

starting with a meaningless predicate, since there is no introduction rule for
it in the program.

The schemas (/), (I—>) and (—>h) give the basic (= program-
independent) interpretation of ->. Now in D(P) we may use any—>-
condition to form definitional clauses. Since there is no restriction we can of
course not expect the interpretation of these programs as definitions to be
total in general. We can write down programs that do not give any sensible
definition of certain atoms as the atom p in the example program just
mentioned shows. The failure of transitivity may be viewed as a reflection of
the fact that the rules of a program sometimes only partially define the
meaning of a predicate (see [10]). This situation can be compared with that
of a language based on partial recursive functions. In both cases we have a
very general and elementary framework for presentations of definitions, and
in both cases the framework is general enough to give definitions that have
no total interpretations.2

However, those problems only arise with programs containing implica-
tions in the premises of rules. A definite Horn clause program which
contains no implications (and thus corresponds to a monotone inductive
definition), will always represent a total definition in the sense that
transitivity holds:

PROPOSITION 1

If P is a definite Horn clause program (i.e. a program without implications in
the premises of clauses), then the following holds: If X[-D(P)F and
Y, F\-D(P) G, then X, YYD(P) G.

PROOF. We prove the proposition by induction on the lexical ordering of
pairs (m, k), where m is the complexity of F and k is the sum of the lengths
of the derivations of X V F and Y, F \- G:

If X\-For Y, F VG is an initial sequent (i.e. inferred by schema (/)), then
we are immediately done. If the last step in the derivation of X \-F uses
(—»h) or (Ph), the assertion follows by straightforward application of the
induction hypothesis with respect to the second component of (m, k), and
similarly, if the last step in the derivation of Y, F r- G uses (I—>) or (\-P), or
uses (—»(-) or (PI-) with F not being introduced at this step.

So assume F = Ft—*F2 and consider the following situation:

X,Fl\-F2 YhF, Y,F2\-G

2 The definitional reading of programs is based on an attempt to give a partial interpretation of
possibly non-monotonic operators (see [10]). So clearly there are connections with notions like Clark's
'completion' and McCarthy's 'circumscription'. We cannot discuss them in this paper, but only point to
the fact that here are a lot of questions of interest. (Some aspects of these questions are discussed in [8]
and [9]). A particularly interesting point is the relationship between the semantics given by D(P) and the
three-valued semantics proposed by Mycroft, Fitting and Kunen (see [12]).

640 / Logic Programming

We apply the induction hypothesis to the derivations of X, Fx \- F2 and
Y, F2\-G since the first component of (m, k) is lowered, obtaining a
derivation of X, Y,FXYG. By using the induction hypothesis with respect to
this derivation and that of Y h Fx we obtain X, Y\-G.

Now assume F = A and consider the following situation:

XYZ Y,D(A)\-G
XV A Y,A\-G

where Z 6 D(A). Since P is a definite Horn clause program, the elements of
Z are atomic. Therefore the first component of (m, k) does not increase by
considering the derivations of X \- Z and Y,ZYG (the latter is contained in
Y, D(A) h G). So we may apply the induction hypothesis (possibly several
times) to these derivations due to the fact that the second component of
(m, k) is lower. Thus we have X, Y\-G. (Note that if P were an arbitrary
program, this argument would not be valid, since the elements of Z could be
of higher complexity than A.) H

2. Linear derivations: soundness and completeness

Much as in Section 3 of Part I we now define a calculus LD for linear
derivations. We then demonstrate quite analogously to Theorems 1.1 and
1.2 that D(P) and LD(P) are equivalent, which gives us soundness and
completeness results. The system LD(P) contains as a subsystem the system
LC^(P) for linear derivations corresponding to C_(P). So we obtain at the
same time soundness and completeness of LC^(P) in relation to C-,(P).

We define the following ordering on substitutions: 6 < a iff 66 — a for a 6
which is nonempty and is not a renaming substitution. Given an atom A, a
substitution a is called A-sufficient if for A a the proviso for the application
of (Ph) in D(P) is fulfilled, i.e., D(Aox) = (D(Ao))t for all x. A
substitution a is called minimal A-sufficient if a is A-sufficient and there is no
6 < a which is A-sufficient. Since obviously, given a, there can be no infinite
descending chain with respect to < starting from a, minimal A-sufficient
substitutions exists given an A-sufficient substitution. In principle such
minimal A-sufficient substitutions are computable if they exist (although they
are not unique). However, the special algorithmic problems of such
computations are not essential for the following completeness proof. (They
are treated in Section 3 below.)

The linear calculus LD(P) serves for the derivation of pairs (2, a) where
2 is a set of sequents and a a substitution. As in Section 3 of Part I, we say
that a and x agree on 2 if a and x become identical after deleting all
bindings for variables not in 2 . The sign U in (2UF, a) expresses that 2
and F are assumed to be disjoint, and in 2 U {X \- A} the sequent X\- A is

Logic Programming / 641

considered the element selected from the goal 2.0 {X\-A}. The inference
schemata for LD(P) are the following:

(0)*.(0,6 >

(LG{X,A\-B},oO)y }L

where a is a unifier of A and B

(ZU{X,F\-G},0)

(ZU{ZhF}U{Z,Ghtf},g)
/ v I ' I r v (c _^ /^*\ i _ u i o \ ^ ^

(SaU(Zahyg),^)
0 <ZU{AThZ?},a0> y ^ ^ h P) -

where y=>A is a program rule or a variant thereof, and a is a unifier of A
and B

(XaU(Xo,T)(Ao)\-Fa),0)
(ZO{X,A\-F},oO) K)L

provided a is an ̂ -sufficient substitution.
By LC_> we denote the system which results from LD by taking away

(P\-)L- The notions defined in Section 3 of Part I are carried over to the
present case in the following way. The substitution a mentioned to the left
of an inference line is called the substitution used at that application of the
inference, similarly we say that Y^A is used at applications of (}-P)L; the
variables in Y^>A are called rule variables. If they occur nowhere else in
the linear derivation, the linear derivation is called purified. A linear
derivation is called strict, if the unifiers used at applications of (l)L and
(\-P)L are most general and the ^-sufficient substitutions used at applications
of (\-P)L are minimal. If a linear derivation of (2, T) is given, x can be
written as 06, where 6 is the initial substitution of the step (0)L and 0 the
computed substitution.

If we restrict ourselves to L%^, it can easily be seen that these derivations
can be viewed as representing SLD-derivations of an extended kind. Instead
of atoms one now selects sequents from the query to be evaluated. Then one
either evaluates them according to (I—*)L or (-^\-)L without unification, or,
for a sequent ZYB, one either tries to unify B with the head of a program
rule via (\-P)L or with a member of the antecedent set Z via (l)L.
Concerning search strategies there are now more possibilities of branching
than in the case of programming with usual definite Horn clauses. However,

642/ Logic Programming

unification still remains the central algorithm applied in the computation.
This situation becomes different when we consider the usage of (P\-)L where
something essentially new comes in (see Section 3).

In the following we shall establish soundness and completeness of LD(P)
with respect to the semantics given by the sequent calculus D(P). If one
omits everything that refers to the inference schemata (Ph) and (PV)L, this is
at the same time a soundness and completeness result for LC^(P) with
respect to the semantics given by C_(/>).

THEOREM 2.1
Suppose a linear derivation of (F, T<5) with computed substitution x and
initial substitution 6 is given. Then FT is derivable in D(P).

PROOF. The cases (0)L and (\-P)L are treated like the corresponding cases
in the proof of Theorem 1.1. The cases (I—>)L and (-*\-)L, which do not
involve any computation of substitutions, are handled by straightforward
applications of the induction hypothesis.

Suppose the schema (J)L is used in the last step of the linear derivation of

(ZG{X,A\-B},o0)

Then 9 is xx6 where xx is the computed substitution of the linear derivation
of (2a, 6). Therefore by induction hypothesis we have a derivation of 2ar ,
in D(P). Furthermore, since a unifies A and B, by (/) we have a (trivial)
derivation of Xaxx, AaxxYBoxx in D(P). Since axx is x, we have a
derivation of 2 T U {XX, AX h Bx) in D(P).

Suppose {PY)L is used in the last step in the linear derivation of (F, T<5):

(Zq U (Xo, D(Ao) h Fa), 6)
° (Z\J{X,A\-F},od)

Then 6 is T,6, where xx is the computed substitution of the linear derivation
of (Za U (Xo, D(Aa) VFo), 6). Therefore by induction hypothesis we have
a derivation of Haxx U (Xaxx, (D(Ao))xx\- Foxx in D(P). Since a is assumed
to be ^-sufficient, we have that (D(Ao))xx = U(Aaxx). And since axx is also
A-sufficient, we can apply schema (P\-) in D(P) to obtain a derivation of
JLaxx U (Xaxx, Aaxx\- Foxx). This is the desired result, because x = axx. H

LEMMA 2.1
A linear derivation of (FT, 6) with computed substitution y can be
transformed into one of (F, xd) with computed substitution yO provided x
does not act on rule variables in the given linear derivation. If the linear
derivation of (FT, 6) is purified, then so is that of (F, xd). The length of
the linear derivation remains unchanged by this transformation.

Logic Programming / 643

PROOF. Only (7)̂ . and (PY)L have to be considered in addition to the proof
of Lemma 1.1. Suppose the schema (7)L is used in the last step:

(Xxa, 6)
°(ZT\J{XT,AT\-BX), ad)

Since a is a unifier of Ax and Bx, xo is a unifier of A and B. Therefore we
can replace this step by

T° (ZU{X,A\-B}, xod)

If y is the computed substitution of the linear derivation of
(Z T U {XX, AX\-BX}, ad), then xy is the computed substitution of the
linear derivation of (2 U {X, A \-B}, xad).

Suppose the schema (P\-)L is used in the last step:

(Uxo U (Xxa, D(Axo) \-Fxo), d)
° , ad)

Since a is /Ir-sufficient, xa is A-sufficient. Therefore we can replace this step
by the following application of (P\-)L:

(Zxo U (Xxa, D(Axa) \- Fxo), 5)
X° (HU{X,A\-F}, xad)

If y is the computed substitution of the linear derivation of
(XxO{Xx, AxVFx), ad), then xy is the computed substitution of the
linear derivation of (2 U {X, AVF), xad).

Neither the property of being purified nor the length of the considered
derivation are changed by these transformations. H

LEMMA 2.2
A linear derivation of (T, x) with computed substitution y can be
transformed into a strict linear derivation of (F, T) with computed substitu-
tion y' such that y = y'p for some p. If the linear derivation of (F, T) is
purified, then so is the strict linear derivation of (F, x). The length of the
linear derivation remains unchanged by this transformation.

PROOF. With respect to applications of (7)L, we can argue as in the proof of
Lemma 1.2, since that argument only depended on the way a most general
unifier is related to a (not necessarily most general) unifier a used at an
application of an inference schema. With respect to applications of (P\-)L we
can also rely on this argument, taking into account that minimal yl-sufficient
substitutions are related to .,4-sufficient substitutions in the same way as most
general unifiers are related to unifiers. (The uniqueness of most general
unifiers, which has no analogue in the case of minimal A-sufficient
substitutions, is not used in the argument.) H

644/ Logic Programming

LEMMA 2.3
Suppose a purified derivation of F in D(P) is given. Then there is a linear
derivation of (F, r) such that x only acts on V, where V is the set of rule
variables of the derivation of F.

PROOF. We have to consider the case of applications of (/) and (PY) in the
derivation in D(P) assumed to be given.

Suppose F is 2U {X, AY A). By induction hypothesis there is a linear
derivation of (£, r) . By applying (J)L, we obtain a linear derivation of
(2U {X, A \-A), r) . The condition on variables is fulfilled by the assump-
tion that the given derivation of F in D(P) is purified.

Suppose F is 2 U {X, AY F} and the derivation of X, AYF uses the
schema (PY) in the last step. Then by induction hypothesis there is a linear
derivation of (2U(Ar, D(A)\-F), x) where r fulfils the variable condition
stated in the assertion. Since the proviso for the application of (PY) is
fulfilled, we know that the empty substitution is ^-sufficient. Therefore by
applying (PY)L we obtain a linear derivation of (2 U {X, A YF}, x). H

THEOREM 2.2
From a derivation of FT in D(P) a purified strict linear derivation of (F, T')
can be obtained, such that x and x' agree on F.

PROOF. The proof is exactly the same as that of Theorem 1.2, with F in the
place of Z and D(P) in the place of C(P). H

As in the case of definition Horn clause programming, we may remark
that we have proved an abstract completeness result with respect to a certain
semantics of higher-level rules. This semantics is given by the inference
schemata of the system D(P) (or C_»(P), if we restrict ourselves to the
system without the definitional reading of program clauses). The complete-
ness result is abstract, since we only assume that, given a unifier, a most
general unifier exists and, given an A-sufficient substitution, a minimal
^-sufficient substitution exists. For our completeness result we do not rely
on any particular algorithm to compute a unifier or most general unifier,
given two expressions A and B, or to compute an .4-sufficient or minimal
/1-sufficient substitution, given an atom A.

3. Computation of ^-sufficient substitutions

The linear calculus which has been shown to be complete with respect to the
calculus D(P) giving the semantics of generalized Horn clauses and their
definitional reading, was considered an abstract description of a computa-
tion. It relied on the fact that there are ^-sufficient substitutions for any A,
even minimal ones, and that they can in principle be computed. Being in
principle computable means that there is a recursive function of arbitrary

Logic Programming / 645

complexity by means of which they can be computed. In order to obtain an
evaluation procedure that can be implemented, we need, however, an
effective algorithm. In the following we describe an easy procedure which
computes ^-sufficient substitutions. The situation here is completely parallel
to the one in ordinary definite Horn clause programming. When proving
soundness and completeness of SLD-resolution, one does not rely on any
specific unification algorithm. But such an algorithm is, of course, needed
when one wants to implement the evaluation procedure. The algorithm for
the computation of ^-sufficient substitutions a to be described in the
following does not always compute minimal ones. This has to do with the
fact that in this algorithm only the conclusions (i.e. heads) of program
clauses are taken into account from which Aa can be obtained by
substitution, and not the premises as required by the definition of D(Ao).
This restriction does however make the algorithm very efficient, which is
important for implementation purposes.

In the following we throughout assume that variables can be arbitrarily
renamed. Since the algorithm only acts on the conclusions of program
clauses, we define

P(A) = {B | X => B e P and A = Bx for some T}

In other words P(^4) is defined to be the set of all heads of program clauses,
which have A as a substitution instance. It is obvious that

for any 6, for if Bx = A for some X => B e P and some substitution x, then
BxQ = A6 for any 0. The converse

is not true for all 6: Consider the program P consisting of the single rule
p(l)^q(l). Then q(l) e ¥(q(x)d) where 0 is the substitution which binds x
to 1, but q(l) £ P(q(x)). Therefore the following condition

P(A ad) = ¥(A a) for all 0 (*)

is a non-trivial condition on substitutions a. We shall show that (*)
together with one further condition implies that a is ^-sufficient. We say
that a program clause X^>B fulfils the no-extra-variable-condition, if every
variable occurring in X also occurs in B. Suppose now that A is fixed. Then
we say that a passes the variable-check, if all program clauses X => B, for
which Bx = Ao holds for some x, fulfil the no-extra-variable-condition.
Intuitively, the variable-check for a means that every clause from which Aa
can be obtained by substitution, fulfils the no-extra-variable-condition.

PROPOSITION 2.1

If o satisfies (*) and passes the variable-check, then a is ^-sufficient.

646/ Logic Programming

PROOF. We have to show that D(Aad) = (D(Aa))6 for any 0. Suppose
YeD(AoO), which means that there is a program clause X^>B such that
Y = Xx and Aad = Bx for some substitution x. Since (*) is assumed to hold
for a, there is a r' such that Aa = Bx', therefore Bx = Bx'O. Since a passes
the variable-check, we can infer from Bx = Bx'O that Xx = Xx'B also holds.
Hence, Y = Xx'6. Since Ao= Bx', this means that Y e (D(Ao))0. H

Now consider the algorithm which is described by the following recursive
definition: Let mgu(A, B) be the mgu of A and B if there is one and the
empty substitution otherwise. Let '» ' be an explicit notation for the
composition of substitutions. Let Xt => Bu . . ., Xn => Bn be an ordering of all
program clauses. Then we define

<7O = 0

a=on

Intuitively, a is computed by first trying to unify A with Bu then, if
successful, the unification result with B2, and so on. If a is the empty
substitution, then either A is not unifiable with any Bh or A is identical (and
therefore unifiable) with at least one Bt. If a is nonempty, then A is unifiable
with at least one fl,. When implementing this procedure one would, of
course, consider only those program clauses Ar,=>fi, whose head fl, starts
with the same predicate symbol as A. The algorithm for the computation of
a can be viewed as computing at the same time a set Uc.{Bu . . ., Bn} in
the following way: If at stage / of the computation of a, Aak is unifiable with
Bi+U then Bi+l is put into U. More formally, U can be defined as:

U = {Bi+1 \0<i<n, Aot is unifiable with /?,+,}

This set U is called the set of heads of program clauses computed by the
algorithm.

PROPOSITION 2.2
Let U be the set of heads of program clauses computed by the algorithm and
a the computed substitution. Then U is a maximal subset of {Bu . . ., Bn)
such that {A} U U is unifiable in the following sense:

(i) o is an mgu of {A} U U
(ii) if {A} U U' is unifiable, where (/ c [/ ' c {Bt, . . ., Bn), then U = U'

(hi) U = P(Ao).

PROOF, (i) If U is empty, then {A} U U = {A} and a is empty, so that a is
an mgu of {A} U U for trivial reasons.

If U is not empty, it can be written as {B\ . . ., Bm) such that Aa1 = flV
and B'&&*1 = Bi+l&+l for most general unifiers a1, . . ., a"1, such that

Logic Programming / 647

o1°. . .°om = o. Then a is a most general unifier of the set {A} U U (and
therefore independent of any order of its elements).

(ii) Suppose {A} U C/U {£,} is unifiable for 5, <£ U. Then B, is unifiable
with Ao since a = Oj-i6 for some 6. Then fiy is also unifiable with Aoj_u

since the variables in B, may be considered distinct from those bound by d.
But then Bj belongs to U, contrary to the assumption.

(Hi) If BeU, then Ao = Bo by (i). Thus B e¥(Ao). Conversely, if
B e ¥(Ao), then Bx = Ao for some r. Since variables in B can be assumed
to be distinct from variables in A or Ao, we have Ao = A or. Thus Ao and 5
are unifiable, i.e. {A}UUU{B} is unifiable. By (ii) this means that
BeU. H

Instead of the set U of heads of program clauses computed by the
algorithm we may, for the substitution a computed by the algorithm,
consider the set Za of clauses whose heads are in ¥(Ao), i.e., Za = {Xj^>
Bj | Bt e V(Ao)}. It follows from Proposition 2.2 that if each element in Za

fulfills the no-extra-variable-condition, then o passes the variable check.
Therefore, by adding the check of the no-extra-variable-condition, the
algorithm can easily be extended to an algorithm for the computation of o
which passes the variable check: compute o as described above, then check
the no-extra-variable-condition for Za. If this condition is not fulfilled, the o
computed is not appropriate, and the whole procedure has to start again by
choosing another permutation of the program clauses. This choice of
another permutation is a step in backtracking. There are of course various
possibilities in determining the choice of another permutation which differ
with respect to efficiency that we do not discuss here. It may be pointed out
that the check of the no-extra-variable-condition poses no specific problem,
since this check can be performed by preprocessing the whole program.

From the following result we can, together with Proposition 2.1, infer that
we have obtained an algorithm for the computation of .^-sufficient
substitutions:

PROPOSITION 2.3

If o is computed by the algorithm described, then o satisfies (*).

PROOF. Suppose B e P(Aod), i.e. AoQ = BT for some T. Then B and Ao are
unifiable, since the variables in B may be renamed arbitrarily. Then by
Proposition 2.2 (i), B is unifiable with every element of U, where U is the set
of heads of program clauses computed by the algorithm. Hence B e U by
Proposition 2.2 (ii). Therefore Bo = Ao by Proposition 2.2 (i), i.e. Be
P(Ao). -I

The following result shows that the substitution computed by the
algorithm is a minimal substitution satisfying the condition (*).

648 / Logic Programming

PROPOSITION 2.4

Suppose a is computed by the algorithm. Suppose a' satisfies (*) and
a = a'6 for some 6. Then Aa and Aa' are variants of each other (i.e. are
equal modulo renaming).

PROOF. Since a=a'6, we have P(Ao) = P(Aa'd). Therefore P(Ao) =
P(Ao'), since a' is supposed to satisfy (*). If P(Aa) = 0 then a is the
empty substitution. Since a = o'8, this implies that a' is a renaming
substitution and the assertion is fulfilled. Now suppose P(Ao) =
{Bt, . . ., Bm). Then ByTx = . . .= Bmrm=Aa' for certain r1, . . ., xm. Since
we may assume that the variables in B, and Bt are distinct for any i =£; and
distinct from variables in A and Aa' and variables bound by a', we have
that a ' t j . . . rm unifies the set {A, Bt, . . ., Bm). On the other hand we have
by Proposition 2.2 (i) and (iii) that a is an mgu of {A, Bu . . ., Bm). Thus
a'ti. . . zm = aO for some 6. Hence Aa' =Aod since xx. . . rm does not
contain bindings for variables in A. By assumption we also have Aa — Aa'b.
This means that Aa and Aa' are variants of each other. H

We have shown that our algorithm computes a minimal substitution
satisfying (*) and therefore, when extended with the variable check,
computes an A-sufficient substitution by Proposition 2.1. This ^-sufficient
substitution need not be minimal, as the following simple example shows:

Consider the program consisting of the two clauses

<l(x)^> p(x, a)

Then both clauses fulfil the no-extra-variable-condition, where a is an
individual constant and x and y are individual variables. Let A be p{x, y).
Then the ^-sufficient unifier computed by the algorithm is a={x/a, y/a}
(independently of in which order the program clauses are considered when
performing the algorithm). However, both al = {x/a} and o2-{yla} are
A -sufficient and both ax<o and o2<o hold. In fact, both ox and a2 are
minimal yl-sufficient, whereas a is not. The obvious reason is that the
algorithm 'does too much', when successively unifying heads of program
clauses, not taking into account whether new bodies of program clauses are
obtained. On the other hand, extensive checking of the bodies of clauses
strongly impairs the effectiveness of execution.

4. Falsity
This section relies throughout on the definitional reading of program rules
which underlies the sequent calculus D(P). Assume 1 is a zero-place
predicate constant which has not been given any definition by the program
P, i.e., -L is not head of a program rule. Then D(±) is empty, and by (PI-)

Logic Programming / 649

we can derive X, LYF for any X and F. An implication formula F is said to
be true according to P if \-D(P) F, and false if F\-D(P) L. So the connection of
falsity with the intuitive concept of negation is simply that 1 is any
expression that is not defined by the given program P. Thus if hD(P) is a
natural notion of consequence, A\-DiP)± should imply that \-D(P)A does not
hold, for which it suffices to know that hD(/>) is transitive.

LEMMA 3
If F is false according to P, then X, F \- G is derivable in D(P) for any X and
G.

PROOF. By induction on the length of derivations of F \-1 in D(P). If (/)
has been applied in the last step, then F is J_, and we use that X, L\-G is
derivable. The schema (I—>) cannot be applied in the last step since ± is an
atom. If (—»h) has been applied in the last step, we use the induction
hypothesis with respect to the right premise of this application. The schema
(\-P) cannot be applied in the last step, since by assumption no program rule
has ± as its head. If (Ph) has been applied in the last step, we use the
induction hypothesis with respect to the premise of this application. H

To understand F is false in P really means to understand what kind of
notion of consequence)- DW represents. Intuitively, a program (definition) P
generates a local notion of consequence \-D(P). If this 'consequence relation'
is transitive one may view hD(P) as a natural notion of consequence given by
P viewed as a 'logic'. But still FhD(P) 1 may be much weaker than simply
not\-D(P)F. If either \-D(P)F or F\-D(P) 1, then we may say that P decides F.
FVD(P)L is an internal (intensional) notion while not\-D(P)F is an external
(extensional) one: in the first case we can see that Fis false by using the tools
P itself provides us with, but in the second case we may use any technique
whatsoever to establish that F does not hold. Analogously, X\-D{P)F means
that F follows from X within P and not something like if\-D{P) X, then hD(P) F.
This is the basic reason why it is natural to view hD(/>) as a local notion of
consequence intrinsic to P considered as the basis of a logic. It is easy to see
that the internal and external perspectives will coincide for a set of sequents
if and only if P is locally complete in a certain strong sense, i.e. if transitivity
holds for hO(P) for a certain collection of sets of rules and P decides a large
enough collection of atoms (see [10]).

Now we consider the connection between a certain notion of finite failure
for sequents and the proposed notion of falsity. What we want to establish is
that if F is ground and VF fails finitely, then F is false, or more generally
that if X and F are ground and XV F fails finitely, then all elements of X are
true and F is false (according to the program P). This means that the

650 / Logic Programming

inference schema of negation as finite failure, formulated as

/VTT^, \-F fails finitely
(NFF) provided F is ground

r r l

is a derived inference schema of D(P). Obviously, (NFF) is not an inference
schema in the usual sense, because in its premise it refers to computational
aspects of proofs. This is why one calls an inference schema like (NFF),
which in its standard formulation allows one to pass over from the finite
failure of a ground atom to the negation of this atom, a 'meta-rule'. In
practically all logic programming systems which contain a notion of
negation, a schema corresponding to (NFF) is at least implicitly used as a
primitive schema defining negation. This would also have to be the case if
we wanted to add a notion of negation or falsity to a logic programming
system based on C(P). Systems based on D(P) do not need schemata like
(NFF) because of the schema (PI-), which so to speak directly incorporates
genuine negation into the calculus. To define negation by failure, we need a
notion of a computational successor of a sequent.

The computational successors (in short: successors) of a sequent, which
are sets of sequents, are defined as follows:

(i) The empty set 0 is a successor of X, A \- B if A and B are unifiable;
(ii) {X, F h G} is a successor of X \- F-> G;
(iii) (X - {F^> G} \- F) U {X - {F^> G}, G\-H} is a successor of

X, (F^G)hH;
(iv) Xa h Yo is a successor of X \- B if a is an mgu of A and B for some

rule Y^A which is a program rule or a variant thereof;
(v) Xa- {Aa}, D(Aa) YHo is a successor of X, A \-H if o is a minimal

^-sufficient substitution.

In this definition, the clauses (iii) and (v) differ from what would be
expected by simply reading the inference schemata of LD(P) backwards. In
the antecedents of sequents in successors, we used in (iii) 'X — {F—>G}'
rather than 'X' and in (v) 'Xa — {Aa}' rather than 'Xa' in order to give the
notion of a computational successor a non-trivial rendering. What we have
essentially done is considering a contraction-free variant of D{P) and
LD(P). Otherwise, if Z contains at least one implicational formula F—*G,
the sequent Z, G\-H would be in one of the successors of Z\-H, and
Z, GYH would be in one of its own successors. Similarly, if Z contains at
least one atom for which a minimal A-sufficient substitution a exists, the
sequent Za, D(Ao)\- Ha would be in one of the successors of Z\-H, and
Za, D(Ao)\-Ha would be in one of its own successors. However, we do not
require that computational successors must be denned in exactly the way
proposed. In particular, there are several possibilities of restricting contrac-

Logic Programming / 651

tion, which differ in strength. In the following, we only assume that some
notion of computational successor like the one defined above is given.

We then say that a sequent X \- F fails finitely if every computational
successor of X V F contains an element which fails finitely. We call a program
P normal, if the body of a rule in P does not contain variables beyond those
occurring in the head of the rule. Using the terminology introduced in
Section 1, this can also be expressed by requiring that D(Ao) = (D(A))a for
all ground A.

One may think of the following proposition as expressing the soundness of
a certain notion of finite failure.

THEOREM 3.1
Let P be a normal program. If X \- H is ground and fails finitely, then all
elements of X are true and H is false according to P{ i.e. \-X and H \- ± are
derivable in D(P)).

PROOF. By induction on the notion 'X\-H fails finitely'. First we observe
that X\-H cannot have the empty set as a successor, since every successor to
X\-H must contain an element which fails finitely. Next we consider the
possible successors of X \-H according to clauses (ii)-(v) of the definition of
a computational successor.

We first assume that X\-H has a successor according to the clauses (ii)
and (iv) (i.e. X\-H has a successor which results from evaluating the
succedentif of X\-H).

(ii) H is F-> G, and {X, F \- G} is a successor of X \- H. Since X, F h G
fails finitely, we have by induction hypothesis that \-X, F and G h _L are
derivable in D(P). Since from \-F and G H we can obtain i7—»GI-1 by
application of (—»!-), both \-X and H\- ± are derivable in D(P).

(iv) H is A, and for each Y in D(A), X\-Y is a successor of X\-H
(remember that A. is ground). Each Y must contain a G such that G is
ground (since P is normal) and X \- G fails finitely. Thus by induction
hypothesis, G ho(P) 1 from which by (P\-) we obtain A\-±. The induction
hypothesis also gives \-X.

We now suppose that X \- H has no successors according to clauses (ii) and
(iv) (i.e. X \-H has no successor which results from evaluating H rather than
some element of X). Then H must be an atom A such that D{A) = 0 . This
means that H\-± is derivable in D(P) by means of (PH). Thus, when
considering successors of X \-H according to clauses (iii) and (v) of the
definition of a computational successor, we only have to show that \-X is
derivable in D(P).

(iii) X is Z, (F-> G) and {Z - {F-* G}\-F}U{Z- {F^ G), G V H) is
a successor of XYH. By induction hypothesis, we have either (-O(P) Z —
{F-> G} and FhD(P) 1, or \-D(P) Z- {F-*G}, f-D(P) G and H\-D(P) 1 . In the
first case we obtain from Lemma 3 F\-D(P)G and thus \-D(P)F—>G, in the

652 / Logic Programming

second case we obtain \-D(P)F-*G from \-G. Thus in both cases we have

(v) X is Z, A and Z — {A},D(A)\-H isa successor of X \- H (we again use
that A is ground and P is normal). Then, by induction hypothesis, we have
\-D(P) Z - {A} and \-D(P) Y for some Y in D(^4). By (\-P) we obtain hD(P) A and
thus I-D(F)X H

We consider finite failure only in connection with ground sequents and
normal programs. This is to say that all ground A have a definite meaning
according to P, which is a natural condition on a definition. Now of course
lots of programs—'computation' programs, etc.—do not satisfy this condi-
tion for all ground A. So there is room for refinements of this theorem.
Furthermore, this does not mean that our notion of falsity is useless for such
programs, but only that the relationship established between finite failure
and our notion of falsity does not hold in general in such cases.

It is easy to see that the converse of Theorem 3.1—which would express
the completeness of a notion of finite failure—does not hold in general.
Consider the following program for the unary predicate t, the individual
constant a (representing an atomic proposition), and the variables x and y
ranging over terms built up from a by means of the function symbols -i and

The sequent t(a A ~ia) I-1 is derivable in D(P), as the following derivation shows:

t(a)\-t(a) t(a),L\-L

f(q),(f(q)-»J.)H ;

t(a A -ia) h 1

However, it can easily be seen that Yt{a A -id) does not fail finitely.
If we restrict ourselves to definite Horn clause programs, i.e. programs

without implications in premises of clauses, completeness of finite failure can
be achieved in the following sense:

THEOREM 3.2
If P is a normal definite Horn clause program, A is ground and A I-D(P) J_,
then \-A fails finitely.

PROOF. First we prove for definite Horn clause programs P that if Art-D(P) _L
for a set of atoms X, then B hD(P) ± for some B € X, whereby the derivation
of B \-1 is not longer than that of X V 1. We use induction on the length of

Logic Programming / 653

the derivation of A ' h i : if it consists of an initial sequent, the assertion is
trivially fulfilled. If this is not the case, then, since X is not defined by the
program and X consists only of atoms, we have the following situation:

Z, D(ff) h X

Z,B\-±
where X = Z U {B}. By induction hypothesis there is for each Y e D(B) an
Ae ZUY such that A \-D(P) X. If A e Z the assertion is fulfilled. So assume
there is an AeY for each YeD(B) such that A\-DiP)±. But then
D(B) (-£,(/>) X, so B \-DiP) X. Clearly the length of the derivation does not
increase.

Now we prove the main assertion by induction on the length of the
derivation of A \- X: If this derivation consists of the initial sequent X h X,
the assertion is satisfied, since I- X fails finitely. If the derivation does not
consist of an initial sequent we have the following situation:

DQ4) I- X
A\-±

Assume \-A has a successor YX where X e D(^4). Since P is a normal
program, X consists of ground atoms. We have X\-D{P)L, so B\-D(P)± for
some ground B e X. Therefore by induction hypothesis, since the derivation
of B V X is not longer than that of X\-±, \-B fails finitely. So \-A fails
finitely. H

To illustrate the relationship between our notion of finite failure and our
notion of falsity, we give the following simple example. Let P be the
program consisting of the rules

(/(*)-> <O0)=>'(*=>*)
where p is a given atomic proposition and x, y range over propositions in the
pure implication calculus.

Then the sequent \-t(a => b) fails finitely as can be seen in the following
way: Yt{a=>b) has {\-t(a)—*t(b)} as its only successor (according to (iv)).
\-t(a)—>t(b) has {t(a)\-t{b)} as its only successor (according to (ii)). The
only successor of t{a)\-t(b) is {\-t(b)} (according to (v)). The sequent H(b),
however, has no successor. The corresponding derivation in D(P) showing
that \-t(az>b) is false, which according to Theorem 3.1 exists, runs as
follows:

t(b)\-±

t(a 3 b) \- X

654/ Logic Programming

If we add the rule t(x)^>t(x) to the program P, yielding an extended
program P', the situation changes. Although f(a =>b) is not true according
to P' (and thus 'fails' extensionally), it is not false according to P', i.e.
t(a ID b) h 1 is not derivable in D{P). This is due to the fact that t(b), though
false according to P, is not false according to P'. Whereas in P the atom t(b)
was not given any 'introduction rule', in P' it is given one (namely the
instance t(b)^>t{b) of the program rule t(x)^>t(x)), so that it is no longer
considered completely meaningless. This shows that falsity in our sense
represents an intensional notion of negation which expresses something like
'falsity by definition'.

5. Discussion and examples

The main purpose of this paper was to treat logic programming from a
proof-theoretic point of view. We discussed the declarative reading of a
program in proof-theoretic terms by means of sequent systems. Then, we
gave an operational interpretation in terms of linear derivations. Since we
have not dealt here with algorithms for constructing linear derivations and
their complexity, we may speak of a static operational model describing the
structure of the general search space. Finally, we have established connec-
tions between the declarative semantics and the operational model, again, in
a proof-theoretic context.

From a declarative point of view, the extension of logic programming
discussed in Part II gives an interpretation of hypothetical reasoning based
on a definitional reading of programs. In the static operational model this
extension gives rise to new points where substitutions are computed: we may
bind variables in assumptions. A single goal is a sequent

XYA

with two sides: conclusion (succedent) A and assumptions (antecedent) X.
For each of these sides there is a schema ((KP) and (PY)), which, in the
operational interpretation, requires the computation of bindings to variables
((YP)L and (PY)L). The schema (/) for initial sequents, which can be viewed
as establishing a communication link between the two sides, also leads
computationally (i.e. as (I)L) to bindings.

This means that the structure of queries is rather rich. Since we may ask
hypothetical queries, we do not have to rely on any facts in the given
program (see example 1 below). We can also make a distinction between
asking for bindings in the conclusion of a sequent like

p\-q(x)

(for which t does q(t) follow from p in the given program?), and asking for

Logic Programming / 655

bindings in the assumptions of a sequent like

q(x)\-p

(for which t does p follow from q{t) in the given program?). Here we mean
genuine bindings which are obtained by directly evaluating q(x) and are not
communicated by the other side of the sequent via the schema (/) or come in
through the evaluation of other sequents of the goal to which the sequent in
question belongs. A special case is to ask for bindings in negative queries

q(x) \- _L

This means that even in the case of definite Horn clause programs
(without—> in bodies of clauses), we have a real extension of the reasoning
mechanism as compared to 'standard' definite Horn clause programming. By
using —> in bodies of clauses (generalized Horn clause programs) we have a
further extension of expressive power.

It is clear that this type of extension is not obtained for free when it comes
to dynamical aspects of the operational model, i.e. when we also consider
questions concerning the actual construction of linear derivations in time.
We have added many new choicepoints to the well-known search space for
definite Horn clauses based on the resolution rule. This makes the
procedural part of our approach much more complex. If one thinks of logic
programming as a purely declarative activity, i.e. the writing of a definition
with a logical reading in mind, then one might perhaps argue that the
increased complexity due to the (Ph) schema essentially means to switch
from programming to theorem proving. If, on the other hand, one is
prepared to follow the present practice of logic programming and view
procedural matters (such as search strategies, etc.) as part of the program-
ming activity itself and not just as implementation issues, then the added
complexity is not only a burden to be handled in one way or the other, but it
also opens up new possibilities for a systematic view of control matters. The
reason for this is that the added complexity is mainly introduced via a
schema dual to the resolution rule, i.e. a rule, which, like the resolution
rule, works on atomic formulae. This means that the complexity of the
search space is not just a more or less chaotic mess centred around only one
pole, the resolution rule, but that there is a natural duality in the structure
centred around two poles: the resolution rule and its dual.

Based on these ideas, two experimental programming languages, GCLA I
(see [1]) and GCLA II (see [2]), have been designed and implemented.
GCLA I is based on a fixed search order, corresponding to PROLOG'S
depth first search, with a set of primitive control operators added.
Experiments with GCLA I have shown that one needs a more flexible
machinery for the control part than just a set of primitive operators without
internal structure. GCLA II is designed with the aim of providing more

656/Logic Programming .

flexible control tools. The general control mechanism introduced in GCLA
II can be specified in terms of partial inductive definitions over a suitable
universe of sequents, i.e. the control part has a declarative interpretation in
the given framework.

If one takes away the (Fh)-schema and its associated evaluation principle
{P\-)L, then our system corresponds extensionally to subsystems of Beeson
[3], Gabbay and Reyle [5,6] and Miller [15], who also use iterated
implications as assumptions (called 'hereditary Harrop formulas' by Miller).
By this correspondence, we mean that programs and queries can be
translated into each other and yield the same answer substitutions. So there
is a common core in present proof-theoretic approaches to logic
programming that can be described by reference to iterated implications in
clause bodies. In Beeson's approach it is part of a specific approach to
theorem proving, in Gabbay's and Reyle's it is extended to systems including
classical logic by means of a new inference principle ('restart rule') and in
Miller's system higher-order quantification is used, lntensionally, however,
there is still a fundamental difference between these approaches and ours,
even with respect to this common core (i.e. without (P\-)), since they
translate clauses into formulae and treat them as assumptions, whereas we
keep them conceptually separate from assumptions (even if technically this
difference comes to bear only in the context of the definitional approach
with (Ph)).

Although in this paper we have basically relied on the structural principles
of intuitionistic logic, our approach also permits a computational treatment
of logics with restricted structural postulates ('substructural logics' like
relevant logics, BCK logic, linear logic, Lambek calculus) which are
receiving increasing attention in logic and computer science. Since the
restrictions on structural postulates have to do with the structuring of
assumptions, our approach with hypothetical queries represents a natural
framework for considering such systems. Furthermore, it turns out that a
schema like (P\-) is a natural way to gain the power of logical elimination
inferences (or left-introduction inferences) in such systems (see [21]). While
in intuitionistic logic, it is in principle possible to formulate elimination
inferences as specific program rules such as, e.g.,

this is not viable in certain substructural logics, since there the assumptions
being discharged (t(p) and t(q) in the above example) may be embedded in
heavily structured contexts. So, from the viewpoint of modelling logics in a
uniform way, (Ph) is fundamental, since it allows us to incorporate a wide
area of logic into logic programming (see [20]). According to our
definitional view, logic programming contains the computational treatment
of logic itself in the sense that the introduction rules contain the computa-

Logic Programming / 657

tionally basic semantic content and thus form the database of logical
reasoning.

We conclude by giving three examples that illustrate the functioning of
our approach in an elementary way. The first example gives a simple
illustration of the duality between (\-P) and (Ph). Consider the following
program:

symptom{b) => disease{a)

symptom{d),disease(c)^>symptom{b)

If we pose the query

symptom(b) \- disease(x)

then, using the (I-P) schema, we obtain

symptom(b) \- symptom(b)

binding JC to fl. This means that by observing the symptom b we know by
means of the first program rule that a is a possible disease.

If, on the other hand, we pose the query

symptom(x)\-disease(c)

any attempt to use the (hP)-schema will fail, but using (P\-) we obtain

symptom(d),disease(c) \- disease(c)

binding JC to fc. This means that the symptom to look for to detect the
disease c is the symptom b.

The second example gives a demonstration of the use of implications in
the body of clauses:

odd{x) =̂> even(s(x))

even(x)—> 1 => odd(x)

Consider the query

even(s(Q)) \-1

Then, using (Ph), we obtain

odd(0) h ±

Using (Ph) once again we obtain

even(0)-+ l\-±

Splitting the implication on the left we get

\-even(0)

658/ Logic Programming

and

both of which succeed. So the answer is 'yes'.
The final example concerns function definition (see [1], [2], [4]). Consider

the program

s(min{x, y))3>min(s(x), s(y))
(min(x, y)^>z)-+s(z)^>s(min(x, y))

The first three clauses of the program can be read as an equational definition
of the min-function, the last one as a scheme for computation inside the
successor constructor. It may be read as: 's(z) is the value of s(min(x, y)), if
min(x, y) computes to z'. Of course, in the context of function definition,
the double arrow '=> for 'is the value of is somewhat awkward. By reversing
sides of rules and replacing '=>' with ' = ', one would obtain a more standard
formulation.

By asking queries like

min{n, m)\-x

we can now compute the value of min{n, m). Such computations rely heavily
on the (P\-) schema, which takes care of all the basic computation steps, as
the following example of a linear derivation computing min(2, 1) shows:

({oi-
({min(l,

({hmm(l,
({(mm(l, C

({s(m,

<

0)
0)

»)-

(0,0)
{{nx},{x/i})
s(z)\-x},{z/0}{x/l})
\-z,s(z)\-x}, {z/0}{x/l})
^z,s(z)Vx), {Z/0}{JC/1})

*z)-+s(z)\-x}, {z/0}{x/l})
1, 0))\-x}, {Z/0}{JC/1}>

Here ' 1 ' stands for \y(0)' and '2' for ls(s(0))\ The substitution {z/O}{x/l} is
computed by the linear derivation, where the part {z/0} is only internally
used and {x/1} answers the query. (The internal substitutions obtained by
unifying antecedents with heads of program clauses in applications of (Pl-)z.
are not shown.)

Two logical points must be mentioned. Firstly, the last clause of the
program should properly be formulated with universal quantification over

Logic Programming / 659

the body in a way like

Ylz({min(x, y)^>z)^>s(z))^>s(min(x, y))

However, this poses no specific problem, since this clause is only used in
connection with (PI-), and evaluation of universal quantification on the left
side of sequents can just be carried out by omitting the universal quantifier,
as implicitly done in the example derivation. Secondly, the logic of the
intended computations here cannot allow for contraction. (This also is
implicitly followed in the example derivation.) So, writing functional
programs in the present context gives a good example of the necessity of
analysing substructural parts of the logic considered here.

Obviously, this example of function definition also provides new aspects
for the issue of logic programming versus functional programming.

Acknowledgments
Completion of Part II was supported by DFG-grant Schr 275/6-1 to Peter
Schroeder-Heister. We should like to thank Venkat Ajjanagadde for helpful
comments.

References
[1] M. Aronsson, L.-H. Eriksson, A. Garedal, L. Hallnas and P. Olin (1990). The

programming language GCLA: a definitional approach to logic programming, New
Generation Computing, 4, 381-404.

[2] M. Aronsson, L.-H. Eriksson, L. Hallnas and P. Kreuger (1991). A survey of GCLA: a
definitional approach to logic programming. In P. Schroeder-Heister, (ed.), Extensions
of Logic Programming: International Workshop, Tubingen, FRG, December 1989,
Proceedings. Springer Lecture Notes in Artificial Intelligence, 475: Berlin.

[3] M. Beeson (1991). Some applications of Gentzen's proof theory in automated
deduction. In P. Schroeder-Heister, (ed.), Extensions of Logic Programming:
International Workshop, Tubingen, FRG, December 1989, Proceedings, Springer Lec-
ture Notes in Artificial Intelligence, 475: Berlin.

[4] D. Fredholm (1990). On function definitions I. Basic notions and primitive recursive
function definitions. Lie. thesis, Department of Computer Science, University of
Goteborg and Chalmers University of Technology.

[5] D. M. Gabbay (1985). N-PROLOG: an extenstion of PROLOG with hypothetical
implication. II. Logical fundations, and negation as failure, Journal of Logic
Programming, 2, 251-283.

[6] D. M. Gabbay and U. Reyle (1984). N-PROLOG: an extension of PROLOG with
hypothetical implications. I., Journal of Logic Programming, 1, 319-355.

[7] G. Gentzen (1935). Untersuchungen iiber das logische SchlieBen, Mathematische
Zeitschrift, 39, 176-210, 405-431.

[8] L. Hallnas (1987a). A note on the logic of a logic program. In Proceedings of the
Workshop on Programming Logic, PMG-R 37, University of Goteborg and Chalmers
University of Technology.

[9] L. Hallnas (1987b). A note on non-monotonic reasoning. In Proceedings of the 1987
Workshop on the Frame Problem, Morgan Kaufmann Publ., Los Altos.

660 / Logic Programming

[10] L. Hallnas (1991). Partial inductive definitions, Theoretical Computer Science (in press).
[11] S. Kanger (1963). A simplified proof method for elementary logic. In P. Braffort and D.

Hirschberg, (eds.), Computer Programming and Formal Systems (Amsterdam: North-
Holland).

[12] K. Kunen (1987). Negation in logic programming, Journal of Logic Programming, 4,
281-308.

[13] P. Lorenzen (1955). Einfiihrung in die operative Logik und Mathematik (Berlin: Springer).
[14] P. Martin-Lof (1985). On the meanings of the logical constants and the justifications of

the logical laws. In Atti degli Incontri di Logica Matematica, Vol. 2, Scuola di
Specializzazione in Logica Matematica, Dipartimento di Matematica, Universita di
Siena.

[15] D. Miller (1990). Abstractions in Logic Programs. In P. Odifreddi, (ed.), Logic and
Computer Science (New York: Academic Press).

[16] D. Prawitz (1974). On the idea of a general proof theory, Synthese, 27, 63-77.
[17] D. Prawitz (1979). Proofs and the meaning and completeness of the logical constants. In

J. Hintkka et al. (eds.), Essays on Mathematical and Philosophical Logic (Dordrecht:
Reidel).

[18] P. Schroeder-Heister (1984a). A natural extension of natural deduction, Journal of
Symbolic Logic, 49, 1284-1300.

[19] P. Schroeder-Heister (1984b). Generalized rules for quantifiers and the completeness of
the intuitionistic operators &, v, 3 , 1 , V, 3. In W. Oberschelp et al., (eds.)
Computation and Proof Theory, Proceedings of the Logic Colloquim held in Aachen,
1983. Part II. Springer Lecture Notes in Mathematics, 1104: Berlin.

[20] P. Schroeder-Heister (1990). Hypothetical reasoning and definitional reflection in logic
programming. In P. Schroeder-Heister, (ed.) Extensions of Logic Programming:
International Workshop, Tubingen, FRG, December 1989, Proceedings. Springer Lec-
ture Notes in Artificial Intelligence, 475: Berlin.

[21] P. Schroeder-Heister (1991). Structural frameworks, substructural logics, and the role of
elimination inferences. In G. Huet and G. Plotkin, (eds.), Logical Frameworks.
Cambridge University Press.

[22] P. Schroeder-Heister (1987). Structural Frameworks with Higher-Level Rules: Proof-
Theoretic Investigations. Habilitationsschrift, Universitat Konstanz.

[23] P. Suppes (1957). Introduction to Logic (London: Van Nostrand).
[24] R. Harper, F. Honsell and G. Plotkin (1987). A framework for defining logics.

Proceedings of the 2nd Annual Symposium on Logic in Computer Science, Ithaca, N.Y.
IEEE Computer Science Press, Washington, D.C., 1987, pp. 28-46.

Received October 1990

