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Theories in the usual sense, as characterized by a language and a set of theo- 
rems in that language ("statement view"), are related to theories in the struc- 
turalist sense, in turn characterized by a set of potential models and a subset 
thereof as models ("non-statement view", J. Sneed, W. Stegmuller). It is shown 
that reductions of theories in the structuralist sense (that is, functions on struc- 
tures) give rise to so-called "representations" of theories in the statement sense 
and vice versa, where representations are understood as functions that map sen- 
tences of one theory into another theory. It is argued that commensurability 
between theories should be based on functions on open formulas and open terms 
so that reducibility does not necessarily imply commensurability. This is in ac- 
cordance with a central claim by Stegmuller on the compatibility of reducibility 
and incommensurability that has recently been challenged by D. Pearce. 

1. Introduction. It is a central claim within the structuralist approach 
to scientific theories as proposed by Sneed (1971) and further developed 
by Stegmuller (1973) that a theory T may be reducible to a theory T' even 
if T and T' are incommensurable in the sense of Kuhn. This thesis serves 
as an argument against the relativistic consequences to which Kuhn's ap- 
proach may lead: T's being reducible to T' provides a rational reason to 
prefer T' to T, even if T and T' cannot be compared using the concept 
of commensurability. In the following it will be referred to as "Stegmiiller's 
thesis" since it was Stegmuller who put most emphasis on it (see Stegmuller 
1973, 1986). 
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Unfortunately, the notions of commensurability and incommensurabil- 
ity, although widely used, are still far from having a clear meaning. How- 
ever, in spite of the vagueness and incoherencies in many discussions of 
"(in)commensurability", it seems to be generally accepted that these terms 
have something to do with whether and, if so, how the vocabulary and 
the statements of a theory T can be understood or represented in another 
theory T'. This means that, even if not yet made fully precise, "com- 
mensurability" and "incommensurability" are linguistic concepts that are 
based on the statement-view of theories. "Reducibility", in contrast, al- 
though often understood as relating statements as well, can be success- 
fully defined in a purely model-theoretic framework, as has been dem- 
onstrated in the structuralist school. This suggests: (1) investigating if this 
model-theoretic concept of reduction has some equivalent in the frame- 
work of the statement view; (2) looking to see if from this equivalent a 
satisfactory notion of commensurability can be obtained. 

The main purpose of this paper is to correlate the structuralist concept 
of reduction with a concept based on the statement view that we call 
"representation of theories". It will be shown that each model-theoretic 
reduction can be associated with a representation of a certain kind and 
vice versa. More precisely, we will distinguish between weak and strong 
concepts of reduction and representation and show that the weak and the 
strong concepts mutually correspond. The weak concept of reduction is 
the concept favored by Sneed and Stegmiiller, the strong one being a 
plausible sharpening of it. The weak concept of representation resembles 
Eberle's (1971) notion of a "representing function" in some respects, which 
in turn is closely related to Tarski's (1953) concept of the interpretability 
of theories. Roughly speaking, a weak representation of a theory in an- 
other is a mapping between the sentences of the theories that respects 
consequence and refutability and maps theorems to theorems. In con- 
tradistinction to Eberle and Tarski, however, we work with partial con- 
sequence as a restricted version of logical consequence, allowing for full 
logical consequence as a limiting case. A strong representation also re- 
spects non-consequence and maps non-theorems to non-theorems, and is 
thus related to what is sometimes discussed as "strong interpretability" 
(see Bonevac 1982). However, our notion of representation is not in- 
tended to capture immediately the idea of reduction as do the interpret- 
ability notions in the philosophy of science, but is understood as an in- 
dependent concept whose relationship to a model-theoretically defined 
concept of reduction is to be investigated. In our study, representations 
are considered to belong to the statement view, reductions to the non- 
statement view of theories. 

We chose the term "representation" for a linguistic mapping between 
theories in accordance with Eberle's (1971) terminology. Admittedly, 
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"'representation" has a different meaning in mathematics and also in some 
branches of philosophy of science (such as the theory of measurement). 
There it denotes a certain mapping between models of theories (see Suppes 
1957, chap. 12) and thus comes close to what we call "reduction" (fol- 
lowing the structuralists). However, other terms like "interpretation" or 
"translation" seemed inappropriate to us because of their unwanted con- 
notations. 

In the final section, we will extend our framework of representations 
of theories by defining commensurability functions between theories and 
thus the commensurability of theories through the existence of commen- 
surability functions. Roughly speaking, the difference between represen- 
tations and commensurability functions is that the latter also represent 
open formulas and open terms of one theory in another and not only 
sentences (= closed formulas). This is intended to capture the idea of a 
representation of concepts that is intuitively associated with "commen- 
surability", going beyond the mere representation of statements. Since 
reductions only give rise to representations and not necessarily to com- 
mensurability functions, it turns out that the close relationship between 
reductions and representations is no argument against Stegmiiller's thesis, 
if commensurability is understood in the way proposed. 

Underlying our investigation is the thesis that relating concepts of the 
non-statement view to those of the statement view can give us a clearer 
understanding of the model-theoretic concepts, both with respect to their 
logical strength and their philosophical adequacy. This means that even 
though the model-theoretic view might be closer to actual scientific prac- 
tice (Suppes), more capable of coping with the problem of theoretical 
terms (Sneed), and of greater value when reconstructing many of Kuhn's 
theses (Stegmiiller), linguistic concepts cannot be discarded in favor of 
model-theoretic ones without loss. In many cases they are understood 
more easily and directly than the model-theoretic concepts. It seems that 
our intuitions concerning linguistic conceptualizations are much more im- 
mediate and reliable than those concerning model-theoretic conditions. 
This is particularly true with respect to a notion like that of commensur- 
ability. Whereas the logical understanding of scientific progress-in- 
cluding the distinction between normal and revolutionary science-is well 
dealt with from the global perspective of the non-statement view, whether 
or not two theories are commensurable is an issue requiring explicit ref- 
erence to scientific terms. It is thus a local question more appropriately 
addressed within the statement view. This is in accordance with Feyer- 
abend's and Kuhn's original rendering of the (in)commensurability prob- 
lem. Although not explicitly considering formal languages, they pose it 
as a question concerning the preservation of meanings of scientific con- 
cepts and the deducibility of "old" laws in a "new" theory (Feyerabend 
1962; Kuhn 1962, p. lOif.). 
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That there is a close relationship between statement and non-statement 
view, is obvious. Although Sneed and Stegmiiller define "reduction" purely 
in terms of relations between sets of models, these sets must somehow 
be characterized linguistically when one wants to treat concrete examples. 
No formal system is necessary here: a mathematical characterization us- 
ing set-theoretic predicates as in Suppes (1957, chap. 12) is sufficient. 
This is what Stegmuller calls the "quasi-linguistic mode of speech" (1986, 
p. 24). But even when characterized in such an informal way, structures 
are eo ipso related to formal languages. A structure is nothing but a col- 
lection of domains, relations, functions, and individuals, which can be 
described by a certain similarity type containing information about the 
arity of relations, etc. This similarity type is at the same time the simi- 
larity type of a formal language having corresponding predicate, function 
and individual constants in its non-logical vocabulary. This language is 
often first-order, though this does not imply that the considered set of 
structures is first-order definable. Therefore, given the abstract model- 
theoretic conception of theory reduction, it is not surprising that under 
certain conditions it has an equivalent on the linguistic level. 

Our general claim is that the Sneed-Stegmiiller conception of scientific 
theories would gain much argumentative clarity and intuitive plausibility 
if the connection between linguistic and model-theoretic concepts were 
given more attention. D. Pearce was the first to investigate this connec- 
tion in relation to the structuralist view of science-. In his recent discussion 
with Balzer and Stegmiiller, Pearce (1982a, see also 1982b; and Tan 1986) 
argued that model-theoretically defined reducibility implies translatability 
and thus commensurability. Balzer (1985) defended Stegmiiller's thesis 
by calling into question the adequacy of Pearce's accounts of translation 
and of incommensurability. Stegmuller (1986) further developed some of 
Balzer's ideas together with an improved definition of commensurability. 
The present study intends to make the correspondence between concepts 
of the statement and non-statement views of theories more obvious than 
does Pearce's work. Pearce's notion of "translation" suffers from several 
defects. First, it is itself relativized to a reduction in the structuralist sense 
that is supposed to be given and thus mixes up from the very beginning 
the two views of theories. (So one may ask if it should be called "trans- 
lation" at all, as Balzer and Stegmiiller remarked.) Contrary to that, rep- 
resentations in our sense are independently defined linguistic concepts 
and are thus more genuine explications of the idea of "translation". Sec- 
ondly, Pearce's "translations" only concern languages and not theories. 
Nothing is required of how theorems of the reduced theory relate to the 
theorems of the reducing theory, a crucial aspect that seems to be over- 
looked by Balzer and Stegmuller. This is an additional point against the 
usefulness of this concept. Again, our representations also relate the theo- 
rems of the considered theories in a specific way. More precisely, we 
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distinguish representations of languages from representations of theories, 
the latter being the concept in which we are really interested. 

Our definition of commensurability is considerably different from Bal- 
zer's and Stegmiller's proposals in their replies to Pearce. In particular, 
we do not require commensurable concepts to be literally identical. Fur- 
thermore, whereas Balzer and Stegmuller work in Pearce's framework, 
which is based on reductions of theories in the model-theoretic sense, we 
do not use model-theoretic concepts in our account of "commensurabil- 
ity". We strictly confine ourselves to theories in the sense of the statement 
view and consider the meaning of the concepts of a scientific theory to 
be given internally by the theorems of the theory and not externally by 
their extensions in certain models. 

As regards our definition of reduction, we follow Pearce, Balzer and 
Stegmuller in formulating this structuralist notion in a very restricted ver- 
sion, since the refinements concerning theoretical versus non-theoretical 
concepts, special laws and constraints do not immediately have to do with 
the questions investigated here. 

The plan of this paper is as follows: in section 2 we present some 
preliminaries concerning notation and concepts used. In section 3 rep- 
resentations of first-order languages and related concepts are defined and 
basic properties are established. Section 4 extends these notions to rep- 
resentations of theories. In section 5 theories in the structuralist sense and 
reductions between them are defined. Section 6 then shows how a given 
reduction between theories in the structuralist sense can be used to define 
a corresponding representation between theories in the sense of the state- 
ment view and vice versa. In section 7 we discuss the strength and ad- 
equacy of our results in relation to Stegmuiller's thesis and propose a 
definition of commensurability. 

2. Formal Preliminaries. The Notion of Partial Consequence. Given 
a relation R C M X N, let Dom(R) {= x E M: (3y E N) xRy} and Ran(R) 

{ /y C N: (3x E M) xRy}, and for Ml C M let R(M1) = {y E N: (3x E 
M1) xRy}. R 1 denotes the converse of R. Note that for M1 C M, R(M1) 
is defined even if M1 is not a subset of Dom(R); more precisely, R(M1) 
= R(M1 n Dom(R)). This notation also applies to functions, which are 
considered to be special cases of relations. We do not distinguish between 
sets and classes and will often refer to "sets" of structures where classes 
are meant. 

We investigate first-order languages L and L', which differ only in their 
non-logical vocabulary. Intuitively, L is to be understood as the language 
of the reduced ("old") theory T and L' as the language of the reducing 
("new") theory T', although all our formal notions and theorems are in- 
dependent of this motivation. To simplify notation, we adopt the con- 
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vention that unprimed syntactical variables relate to L and primed syn- 
tactical variables to L'. For example, if E denotes a set of sentences in 
L, E' denotes a set of sentences in L', and so on. Thus we will explain 
our notation only for L; by this convention everything extends to L' mu- 
tatis mutandis. 

Except for a few places, where it is explicitly mentioned, the only 
logical sign of L and L' to which we will refer is negation m. (This is 
because negation is the only logical sign of the object-language for which 
a preservation property will be explicitly required.) All other logical signs 
(V9 31, 4,, X, &) are used metalinguistically. Sent(L) denotes the set of 
sentences (formulas without free variables) of L, E stands for arbitrary 
subsets of Sent(L), and cr (with and without indices) for elements of Sent(L) 
(that is, for sentences). Str(L) denotes the set of structures of the simi- 
larity type determined by the non-logical constants of L, S stands for 
subsets of Str(L), x and y for elements of Str(L) (that is, for structures). 
As usual, x l= u means that cr holds in x, and x = E that each element 
of E holds in x; in addition, S l= u means that cr holds in each element 
of S, and S k= E that each element of E holds in each element of S. 
E I= cr means that cr holds in all structures in which each element of E 
holds (that is, cr is a logical consequence of E). 

We can now introduce the notion of partial consequence with respect 
to a set of structures S: E u=s u means that u holds in all structures of S 
in which each element of E holds, that is, 

E ks Su (Vx E S)(x F E u x F v). (2.1) 

Obviously, logical consequence is a limiting case of partial consequence, 
where S = Str(L). It follows immediately from (2.1) that for any S, S* 
C Str(L), 

E U & S* 5 S > E F5* (X. 

Cr 1 S Cr means that both {uJ1 S Cr2 and {fo2} -S oI 
ThL(S) designates the set of all sentences of L which hold in each ele- 

ment of S, and, conversely, ModL(E) the set of all structures in which 
each element of E holds. If the reference to L or L' is obvious (for ex- 
ample, by the absence or presence of a prime in syntactical variables), 
we omit the subscript. (2.1) can now be reformulated as 

E ks fuf Mod(E) n S - cr. 

L expressing elementary equivalence, is then defined as 

X =L y < (VC)(X F UK < Y k 
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that is, 

X L y <* ThL({x}) ThL({y}) 

(where, again, subscripts are omitted if no confusion can arise). Let S= 
be the closure of S under-, that is, S= {y: (3x S)x -y}. 

Now suppose an arbitrary function f: Sent(L) -* Sent(L') is given. We 
define a restricted notion = of elementary equivalence with respect to 
f as 

x- f X (VU)(x' F f (u) X y' F f (u)). 

x' and y' are elementarily equivalent with respect to f if they cannot be 
distinguished by images under f. Let S'=f denote the closure of S' under 
- The following lemma follows immediately from the definitions. 

LEMMA 1. For all 1, E' and u, 

(i) EI [s E s U. 

GOi f (1) --SI f (U) <*f (E) [--S' _Yf (Uf) 

(instead of f(E) we could also write ,' n Ran(f)). v 

Each function f: Sent(L) -* Sent(L') induces a relation Rf C Str(L') x 
Str(L) which is defined as 

X'R fx X (Vu)(x' - f (u) < x - u), (2.2) 

where x F Str(L) and x' F Str(L'). Rf is called the associated relation 
between structures. The following is obvious: 

LEMMA 2. (i) Rf is invariant with respect to and - in the sense that 
for all x, y, x' and y': 

x = y 4> (x'RfxK<'x'Rfy) 

x I 
fY (x'Rfx X y'Rfx), 

(ii) Rf is unique on the right modulo -and on the left modulo = in 
the sense that for all x, y, x', y': 

(x'Rfx & x'Rf y) 4> x- y 

(x'R fx & y'R fx) 4> x' f . C1 

Thus Rf would become a partial one-one function if its arguments were 
equivalence classes under and =, instead of single structures. 

3. Language Representations. Basic Lemmas. We define representa- 
tions between languages quite generally, considering the possibility of 
partial consequence with respect to certain sets S and S' of structures 
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instead of full logical consequence. The usefulness of this approach will 
become obvious when we formulate an equivalent of reduction in terms 
of representations. By taking S and S' to be Str(L) and Str(L'), respec- 
tively, we obtain a non-relativized concept of representation as a limiting 
case. 

A weak representation of L in L' with respect to S and S' is a function 
f: Sent(L) -> Sent(L') for which, for all E and u, 

E- F= s '7 f (E-) Fs f (f) (3.1) 

and 

fQnu) =1 ks -f(u). (3.2) 

If (3.2), but instead of (3.1) its converse 

f (Y-) [-- s, f (ff) => y- E- Fs? (3.3) 

hold, we will speak of a conversely weak representation. If all three of 
(3.1), (3.2) and (3.3) hold, f is called a strong representation of L in L' 
with respect to S and S'. The concept of a conversely weak representation 
is mainly of technical relevance. It has been defined to enable us to dis- 
tinguish assertions for which proof only (3.3) is needed from those that 
require both (3.1) and its converse (3.3). An example for a weak rep- 
resentation is given in section 6 after Theorem 1. 

Apart from being based on partial consequence instead of full logical 
consequence, our notions of representations differ from Eberle's (1971) 
notion of a representing function and Tarski's (1953) notion of weak in- 
terpretability in at least two respects: 

(i) The syntactical form of sentences need not be respected by f, 
that is, a conjunction need not necessarily be transformed into a 
conjunction, a disjunction not necessarily into a disjunction, etc. 
From (3.1) and (3.2) it follows only that propositional connec- 
tives are respected modulo (partial) consequence. There is no 
reason in the present context to demand that, for example, con- 
junctions of the "old" theory become conjunctions of the "new"l 
theory. 

(ii) We only talk about sentences, not about formulas with free vari- 
ables. We do not necessarily expect a uniform mapping between 
formulas of L and L' to be definable. In particular, nothing is 
required of quantifiers. This is crucial for the relationship be- 
tween the existence of representations and commensurability and 
will be discussed in the final section. 
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It is easy to see that (3.1) and (3.2) imply that if f(s) is satisfiable in 
S' then E is satisfiable in S. Similarly, (3.3) and (3.2) imply that if E is 
satisfiable in S then f(E) is satisfiable in S'. Furthermore, it is obvious 
that a weak representation of L in L' with respect to S and S' is a weak 
representation with respect to any S* and S'* for which S* D S and S'* 
C S'. A conversely weak representation of L in L' with respect to S and 
S' is a conversely weak representation with respect to any S* and S' for 
which S* C S (it follows from (3.2) that we cannot arbitrarily choose a 
set of structures S'* D S'). 

We now turn, to study properties of the associated relation Rf between 
structures defined by (2.4) and give necessary and sufficient conditions 
forf's being a representation of a certain kind. 

LEMMA 3. Iff is a weak representation of L in L' with respect to S 
and S', then 

(i) (Vx' E S%'_)(Rf({x'}) = Mod({fu:x' k f(u)}) n s. ? 0), 
(ii) S' f C Dom(Rf), 

(iii) Rf(S') = Rf(S'_) C S_. 

Conversely, given anyf: Sent(L) -> Sent(L') and S' C Dom(Rf), then 
f is a weak representation of L in L' with respect to Rf(S') and S'; 
in fact, Rf(S') is the least set S closed under such thatf is a weak 
representation of L in L' with respect to S and S'. 

Proof. (i) Suppose x' E S' .f I If x'Rfx, then (Vu)(x' k f(u) => x k u) 
by the definition of Rf, which is the same as x l= {u: x' I= f (u)}. 
Hence, Rf({x'}) C Mod({lu:x' k f (u)}). If x k {lu:x' F f(u)}, then 
(Vu)(x' k f (u) => x k u). So in particular, (Vo)(x' k f(-u) => x 
-- eu). Since x' C S'_f, this implies by (3.2) and Lemma 1 (i), that 

(Vu)(x' k --f(u) => x k -TJO), and so (Vu)(x k u => x' k f(u)), 
from which the converse inclusion Mod({ :x' k f(u)}) C Rf({x'}) 
follows immediately. Next we show that Mod({u: x' k- f (u)}), that 
is Rf({x'}), is nonempty and contained in S-. From Lemma 2 (ii) we 
know that all the elements of Rf({x'}) are elementarily equivalent. 
Thus it suffices to show that {vu x' I= f(o-)} is satisfiable in S. But 
if {u: x' I= f(o)} is not satisfiable in S, then f({ju: x' k- f (u)}) is not 
satisfiable in S', contradicting the fact that x' satisfies f({f: x' I= 
f(o-)}) in S'=f, and consequently that some y' =- x' satisfies it in S'. 

(ii) and (iii) are immediate consequences of (i). 

Now suppose S' C Dom(Rf). Then for any x' E S' there is an x E 
Rf(S') such that for all u, x' I= f (u) iff x l= u. Thus x' I= f(1) implies 
x k , which in turn, supposing E FRf(S') u, implies that x k= u. 
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Therefore x' I= f(r), showing thatf(E) f, f (ir) and thus (3.1). Sim- 
ilarly, x' k ft(-l) iff x k mr iff not x l= o iff not x' k f (r) iff x' 
k -f(o-). This proves (3.2). That Rf(S') is least, follows from (iii). O 

Lemma 3 implies that a weak representation f of L in L' with respect 
to S and S' is one with respect to Rf(S') and S' (and thus also one with 
respect to any S* D Rf(S') and S'). Because the parameter S can always 
be replaced by Rf(S'), it is, unlike S', rather unspecific forf. 

LEMMA 4. If f is a conversely weak representation of L in L' with 
respect to S and S', then 

(i) (Vx E S=)(R 71({x}) Mod({f(Qi):x l= cr}) n S', 0), 
(ii) S= C Ran(Rf), 

(iii) R7-1(S) = Rj-'(S ) C S'%. 

Conversely, given anyf: Sent(L) -7 Sent(L') and S C Ran(Rf), then 
f is a conversely weak representation of L in L' with respect to S and 
R'-'(S); in fact, R'- (S) is the least set S' closed under -f such that 
f is a conversely weak representation of L in L' with respect to S and 
cs '. 

Proof. (i) Suppose x E S=. Since {r :x l= u} is satisfiable in S. and 
thus in S, f ({r: x l= u}) is satisfiable in S'. Thus Mod({f(u: x l= a}) 
n S'_ is nonempty. If x' I= {f(u): x l= u} and x' E S',f, then (Vo)(x 

u f xz k f (u)). Thus in particular, (Vu)(x l= 4r> x' I= fk-v)) 
therefore by (3.2), (Vol)(x # ma C x' 1 -(f(u)), and hence (Vor)(x' 
I= f(u-) 4 x k a-). Thus we have proved 0 =, Mod({f(-) :x k u-}) 
n St c R7-1({x}). Now suppose x'Rfx. Then (Vo)(x u => x' 4 = 

f(o)) by the definition of Rf, that is, x k {Jf(o):x u o4. Hence 
R71'({x}) C Mod({f(u): x k a}). That Rf71({x}) C S'_f follows from 
the fact that R7-1 ({x}) contains an element of S'5f and that, by Lemma 
2 (ii), all the elements of Ra1 ({x}) are elementarily equivalent with 
respect to f. 

(ii) and (iii) are immediate consequences of (i). 

Now suppose S C Ran(Rf). Then for any x E S, there is x' E 

Ri- '(S) such that for all uo, x F u iff x' k f(o). Thus x F E implies 
x' k f(E) which in turn, supposing f(E) kRp '(S)f(0), implies that x' 
k f (u). Therefore x k cr, showing that E o= s and thus (3.3). (3.2) 
is then proved as in the previous lemma. That R7-1(S) is least, fol- 
lows from (iii). o 
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Lemma 4 implies that a conversely weak representation f of L in L' 
with respect to S and S' is one with respect to S and Rj l(S) (and thus 
also one with respect to S and any S'* such that S' D S'* D Rf 1(S))- 
Because the parameter S' can always be replaced by Rf '(S), it is, unlike 
S, rather unspecific for f. 

Remark. The proofs of Lemma 3 and Lemma 4 are not completely 
parallel. The proof of Lemma 3 (i) contains the demonstration that 
Mod({o :x' I= f(o-)}) C S=. The corresponding assertion for Lemma 
4 (i), namely that Mod({fl():x l= u}) C S' . does not necessarily 
hold, since {f(u-): x k u} may have models that are not elementarily 
equivalent with respect tof, unless we extend (3.2) by dropping the 
restriction to S' and take full logical consequence instead. We have 
only that R-' ({x}) = Mod({f() :x l= u} U hf'(u) :x V- - }) 5 

9f' 

LEMMA 5. If f is a strong representation of L in L' with respect to S 
and S', all assertions of Lemmas 3 and 4 hold and in addition 

(i) Rf(S') -S_ 

(ii) Rf- 1(S_) -S%~' a 

Conversely, given anyf: Sent(L) -> Sent(L'), S C Ran(Rf) and S' C 
Dom(Rf) such that (i) and (ii) hold, then f is a strong representation 
of L in L' with respect to S and S'. 

Proof. Immediately from Lemma 3 (iii) and Lemma 4 (iii). a 

There follow some results aboutf relative to any subrelation of Rf. The 
main result is the following. 

LEMMA 6. Givenf: Sent(L) -- Sent(L') and R C Str(L') x Str(L) such 
that R C Rf; then f is a strong representation of L in L' with respect 
to S = Ran(R) and S' = Dom(R), a weak representation with respect 
to any S O Ran(R) and S' C Dom(R), and a conversely weak rep- 
resentation with respect to any S C Ran(R) and S' = Dom(R). 

Proof. Let S be Ran(R) and S' be Dom(R). Then by Lemma 2 (ii) we 
have Rf(S'=f) = S. and R 1 (S_) = S', from which the assertion 
follows by Lemma 5. 0 

In particular, each f: Sent(L) -> Sent(L') is a strong representation of 
L in L' with respect to S -Ran(Rf) and S' -Dom(Rf), a weak repre- 
sentation with respect to any S D Ran(Rf) and S' C Dom(Rf), and a 
conversely weak representation with respect to any S C Ran(Rf) and S' 
= Dom(Rf). 
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Next we can characterize Dom(Rf) and Ran(Rf) by certain maximality 
conditions. 

LEMMA 7. Take f: Sent(L) -> Sent(L'). Then Dom(Rf) is the maximal 
set of structures S' for which there is S such that f is a weak rep- 
resentation of L in L' with respect to S and S'. Correspondingly, 
Ran(Rf) is the maximal set of structures S for which there is S' such 
thatf is a conversely weak representation of L in L' with respect to 
S and S'. 

Proof. That Doni(Rf) and Ran(Rf) are maximal was shown in Lemmas 
3 (ii) and 4 (ii). That sets S for the weak representation and S' for 
the conversely weak representation exist, with the required proper- 
ties, follows immediately from Lemma 6. 0 

Finally, we state a result by Feferman, whose importance for the pres- 
ent context was first pointed out by Pearce (see his 1982a, 1982b). We 
present it not in its full generality but only as far as is necessary for our 
purposes. For languages L and L', whose non-logical vocabularies are 
disjoint, a relation R C Str(L') x Str(L) is called projectively definable 
if there is a common extension L* of L and L' by additional non-logical 
constants and a set F of sentences of L*, such that 

x'Rx X: (3z*)[x',x,z*] 1= F. 

Here z* stands for a tuple of elements for which [x',x,z*], that is, the 
structure composed of the elements of x', x and z*, is a structure for L*. 

LEMMA 8. Let R C Str(L') x Str(L) be given. Suppose the non-logical 
vocabularies of L' and L are disjoint and R is projectively definable. 
Suppose furthermore that R is unique on the right modulo--, that 
is, for all x, y, x': 

(x'Rx & x'Ry) : x- y. 

Then there is a function f: Sent(L) -> Sent(L') such that R C Rf. 

Proof. See Feferman (1974). aI 

This assertion is actually a straightforward consequence of the inter- 
polation lemma for first-order logic. Feferman proved it in the general 
setting of abstract model theory by supposing only that L and L' fulfill 
an abstract interpolation property, not that they are first-order languages. 

4. Representations of Theories. Based on the notion of representations 
of languages we can define representations of theories. Theories are 
understood as pairs (L,O) consisting of a language L and a set of sen- 
tences 0 of L, called the theorems of the theory. This is the standard 
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notion of "theory", as used, for example, in mathematical logic, called 
by the structuralists the statement view. (The non-statement view will be 
considered in the next section.) 

Representations of theories will be defined as representations of the 
corresponding languages with certain additional properties. Let T = (L,O) 
and T' -(L',O') be theories where 0 C Sent(L) and 0' C Sent(L'). A 
function f: Sent(L) -- Sent(L') is called a weak representation of T in T' 
with respect to S and S' iff f is a weak representation of L in L' with 
respect to S and S' and 

f(0) CO'. (4.1) 

f is a conversely weak representation of T in T' with respect to S and S' 
ifff is a conversely weak representation of L in L' with respect to S and 
S' and 

f(0) D 0t nRan(f). (4.2) 

f is a strong representation of T in T' with respect to S and S' iff f is a 
strong representation of L in L' with respect to S and S' and 

f(0) = 0' n Ran(f). (4.3) 

Again, conversely weak representations of theories have a mainly tech- 
nical significance. 

Note that we have required nothing of the sets of theorems 0 and 0', 
not even that they be deductively closed. Thus we use "theorem" in a 
very wide sense. In principle it is possible to consider the axioms of a 
theory to be "theorems" in our sense (as, for example, in the example 
given in section 6 after Theorem 1). In many cases, however, it would 
then be difficult to establish a reduction between theories, since according 
to (4.1) axioms of T would have to be transformned into axioms of T', 
and not only into consequences of axioms. 

(4.1) says thatf maps theorems of the "old" theory to theorems of the 
"new" theory, and (4.3) that no non-theorem of the "old" theory is mapped 
onto a theorem of the "new" theory. These seem to be quite natural re- 
constructions of the idea of a "translation" between theories that not only 
concerns their languages but also their theorems. It might be added that 
our condition (4.1) has some similarity with Eberle's (1971) notion of 
the preservation of the consequences of a theory and with Tarski's (1953) 
notion of the interpretability of theories (see also Bonevac 1982). 

5. Reductions of Theories. Next we consider theories with respect to 
the non-statement view and its notion of reduction. As mentioned in the 
introduction, we follow Pearce (1982a), Balzer (1985) and Stegmiiller 
(1986, chap. 10) in working with notions of theory and reduction that are 
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strongly simplified versions of the original concepts as developed in detail 
in, for example, Sneed (1971); Mayr (1976); and Stegmiiller (1986, chap. 
4). In particular, the notions of theoretical and non-theoretical concepts 
are kept distinctly apart. 

A theory Tm is now taken to be a pair (Mp,M), where Mp is a set of 
structures and M a subset of Mp. The subscript "m" expresses the fact 
that we are dealing with a theory which, in the non-statement sense, is 
defined by sets of models and not by languages and sets of theorems as 
were the theories T in the previous section. It is assumed that all structures 
in MP are of the same similarity type. Thus there is a first-order language 
L of this similarity type such that Mp C Str(L). The elements of Mp are 
also called "potential models" and represent those structures which are 
considered to be the potential range of application of the theory. The 
choice of Mp instead of the whole of Str(L) represents the fact that in 
physical theories one usually disregards certain structures from the very 
beginning, for example, those in which relations and functions fail to 
have the appropriate mathematical properties. Mp is to be distinguished 
from the set I of intended applications of a theory which is also considered 
by the structuralists, but not in our restricted framework. This set further 
delimits the range of a theory by pragmatically and paradigmatically se- 
lecting certain physical structures. M represents the set of models of the 
theory, that is, those structures to which the theory is correctly applicable. 
Note, however, that in the structuralist framework, one abstracts from the 
way M is specified. For example, M need not be defined as the set of 
models of a certain set of first-order sentences. (For examples see Stegmuiller 
1986.) 

Given two theories Tm = (Mp,M) and Tm' = (Mp',M'), let L and L' be 
first-order languages corresponding to the similarity types of Mp and Mp', 
respectively. Then we define a weak reduction of Tm to Tm' as a relation 
R C Mp' X Mp such that 

Ran(R) = Mp (5.1) 

(Vx' E Dom(R))(Vx,y E MP)((x'Rx & x'Ry) =>x L Y) (5.2) 

R(M') C M. (5.3) 

Condition (5.2) expresses the fact that R is a function if one considers 
equivalence classes with respect to elementary equivalence instead of sin- 
gle structures in Mp. In the structuralist literature one usually finds the 
stronger condition that R is a function from a subset of Mp' onto Mp, but 
the weaker condition (5.2) seems quite natural. (5.1) expresses the idea 
that in order to reduce Tm to Tm', there must for each potential application 
of Tm be at least one corresponding potential application of Tm' (perhaps 
more, since Tm' may be more differentiated than Tm and, from the view- 
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point of Tm', one may look at one potential application of Tm in different 
ways, that is, conceive them as different potential applications). Condi- 
tion (5.3) says that R transforms each model of Tm' in the domain of R 
into a model of Tm 

We speak of a conversely weak reduction of Tm to Tm' if (5.1), (5.2) 
and the converse of (5.3), 

M C R(M') (5.4) 

hold. (5.4) says that with each model of the "old" theory a corresponding 
model of the "new" theory is associated via R. A strong reduction of Tm 
to Tm' is defined as a reduction that is both weak and conversely weak, 
that is, for which (5.1), (5.2) and 

R(M') = M (5.5) 

hold. 
Our distinction between weak and strong reduction does not agree with 

similar distinctions in Sneed (1971) and Stegmuiller (1986). The concept 
of reduction favored by Sneed and Stegmiiller corresponds to our notion 
of a weak reduction. Our notions of a conversely weak and of a strong 
reduction partly correspond to notions discussed by Mayr (1976) and found 
by him to be more adequate. However, we do not want to continue any 
detailed discussion as to the most appropriate notion of reduction. We 
hope that we are at least considering some important candidates. For an 
overview of the proposals made in the structuralist literature, see Rott 
(1987). An example of a weak reduction is mentioned in section 6 aft&r 
Theorem 2. 

6. Relating Reductions and Representations. The Central Theo- 
rems. The main result of this section will be that a weak, conversely 
weak or strong representation of a theory T in a theory T' with respect 
to sets of structures S and S' induces a weak, conversely weak or strong 
reduction, respectively, of a theory Tm to a theory Tm' where the theories 
in the non-statement sense Tm and Tm' correspond to the theories in the 
statement sense T and T' in a canonical way. Conversely, under certain 
assumptions each weak, conversely weak or strong reduction of a theory 
Tm to a theory Tm' induces a weak, conversely weak or strong represen- 
tation, respectively, of a theory T in a theory T' with respect to sets of 
structures S and S', where T, S and T', S' are obtained from the respective 
theories Tm and Tm' in a canonical way. As regards Stegmuiller's thesis, 
this converse direction is even more important. Our central theorems fol- 
low straightforwardly from two lemmas that do not even require the 
framework of representations of languages but that are related to repre- 
sentations of theories in an obvious way. 
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LEMMA 9. Given a functionf: Sent(L) -* Sent(L') and a set S' C Str(L'). 
Then: 

(i) f(E) C E' : Rf(Mod(E' n Ran(f)) n s') C Mod(E) n Rf(S'). 
(ii) f(E) D ,' n Ran(f) : R (Mod(E' n Ran(f)) n s') D Mod(E) 

n R/S'). 
(iii) f(E) = ', n Ran(f) => R,XMod(E, n Ran(f)) n s,) =Mod(E) 

n Rf(S'). 

Proof. (i): If x' E Mod(E> n Ran(f)) n S', then x' I ,' n Ran(f), 
and so, by the assumption, x' # f(E). Hence by definition of Rf for 
each x such that x'R1x, x l= , that is, x E Mod(E) n Rf(S'). 

(ii) If x E Rf(S'), then there is a corresponding x' E S' such that 
x'R1x. If furthermore x E Mod(E), that is, x l= , then by def- 
inition of Rf, x' #=f(E). Thus by assumption, x' I -' ln Ran(f), 
which means that x E Mod(E> n Ran(f)) n s'. 

(iii) follows from (i) and (ii). D 

Under certain conditions concerning E, E' and S' even the converses 
of the clauses of this lemma can be proved. However, such results will 
not be used later on. 

LEMMA 10. Givenf: Sent(L) -* Sent(L') and R C Str(L') x Str(L) such 
that R C Rf, let M and M' be arbitrary sets of structures of L and 
L', respectively. Then: 

(i) R(M') C M > f(Th(M)) C Th(M' n Dom(R)). 
(ii) R(M') D M > f(Th(M)) D Th(M' n Dom(R)) n Ran(f). 

(iii) R(M')-M => f(Th(M)) = Th(M' n Dom(R)) n Ran(f). 

Proof. (i) if Cr E Th(M), then M l= r. Thus, assuming that R(M') C 
M, R(M') # r. Hence, since R C Rf, M' n Dom(R) # f(c). (Note 
that M' # f(Cr) does not necessarily hold since M' need not be com- 
pletely contained in Dom(R).) This means that f(c) E Th(M' n 
Dom(R)). 

(ii) Iff (cr) E Th(M' rf Dom(R)), then M' n Dom(R) I= f(c). Thus, 
since R C Rf, R(M') # cr, by the definition of Rf. Hence, as- 
suming that M C R(M'), M l= r. Thus Cr E Th(M). 

(iii) is an immediate consequence of (i) and (ii). i 

Now we can prove our two main theorems. 

THEOREM 1. Given theories T = (L,O) and T' = (L',O') and a function 
f: Sent(L) -> Sent(L'), let Tm and Tm' denote theories (in the non- 
statement sense) (Mp,M) and (M,',M'), respectively, where Mp and 
Mp' are as stated in the clauses below and where M and M' are de- 
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fined depending on Mp and MP' as 

M = Mod(o) n Mp M' - Mod(O' n Ran(f)) n Mp'. 

(i) Suppose f is a weak representation of T in T' with respect to S 
and S'. Let 

MP/D S't p Rf( R = Rf n (S' x Mp). 

Then R is a weak reduction of Tm to Tm', where MpC S, 
(ii) Suppose f is a conversely weak representation of T in T' with 

respect to S and S'. Let 

MP' D R_'(S) MP = S_ R = Rf n (Rf '(S) x Mp). 

Then R is a conversely weak reduction of Tm to Tm', where Dom(R) 
c- S C f' 

(iii) Suppose f is a strong representation or T in T' with respect to S 
and S'. Let 

MP,D SI= Mp = S= R = Rf n (s'= x Mp) 

Then R is a strong reduction of Tm to Tm', where Dom(R) = 

SIf and Mp = S=- 

Proof. In all three cases, M C Mp and M' C MP',so Tm and Tm' are 
theories in the non-statement sense; furthermore, (5.2) holds by Lemma 
2 (ii). 

(i) It is easy to see that Ran(R) MP, so (5.1) is verified. Since 
by definition we have 

R(M') = R(Mod(O ' n Ran(f)) n Mp,') 

= Rf(Mod(O' n Ran(f)) n S') 

and 

M =Mod(o) n Rf(S'), 

and since f(O) C 0' by assumption, we obtain by Lemma 9 (i) 
R(M') C M, that is, (5.3). Mp C S= holds by Lemma 3 (iii). 

(ii) By Lemma 4 (ii) we have that S C Ran(Rf). Thus R/(R7'(S)) 
S_-= MP, which implies that Ran(R) = MP, that is, (5.1) is 

verified. Furthermore we have 

R(M') = R(Mod(O' n Ran(f)) n Mp,') 

- Rf(Mod(0' n Ran(f)) n R-'(S)) 
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and 

M = Mod(o) n s& -Mod(o) n Rf(Rf71(S)). 

Sincef(O) D 0' n Ran(f) by assumption, we obtain by Lemma 
9 (ii) R(M') O M, that is, (5.4). Dom(R) C S'_f holds by Lemma 
4 (iii). 

(iii) This follows from (i) and (ii) by use of Lemma 5 and Lemma 
9 (iii). o 

Theorem 1 says that representations of the various kinds induce cor- 
responding reductions. The parameters of the induced reduction, in par- 
ticular Dom(R) and Mp = Ran(R)(Mp' is an arbitrary superset of Dom(R)), 
are canonically related to the parameters of the given representation f of 
L in L' with respect to S and S'. In case (i) S' defines Dom(R), and Rf(S') 
(which, as remarked after Lemma 3, is more specific for f than S itself), 
defines Mp. In case (ii), S= defines Mp, and Rj-'(S) (which, as remarked 
after Lemma 4, is more specific for f than S' itself), defines Dom(R). In 
case (iii), Dom(R) and Mp are directly defined by the parameters S and 
S' of the representation, namely, as S'_f and S_. 

It remains to show that M and M' were chosen in a canonical way. For 
M this is obvious. We did not choose Mod(o) but its intersection with 
Mp in order to guarantee that M C Mp. As for M', one may ask why 
Mod(O') n Mp' was not taken instead of Mod(O' n Ran(f)) n Mp'. The 
reason is that O'\Ran(f) is completely unspecific as to the representation 
f. Any (weak, conversely weak, strong) representation of (L,0) in (L',O') 
with respect to S and S' is also one of (L,0) in (L' ,o n Ran(f)). The 
subset of theorems of T' outside Ran(f) can be changed arbitrarily with- 
out changing the character of the representation. 

A simple mathematical example for the application of Theorem 1, which 
is related to elementary examples used in the theory of measurement, may 
be given as follows. Let L and L' be first-order languages with identity 
where L has the binary predicate letter "<" and L' the binary predicate 
letters "<"' and "I" as non-logical constants. Let f associate with each 
sentence cr of L the sentence cr' of L' which results from cr by replacing 
"<" by "<"' and the identity sign "=" by "I". Let S' be the set of those 
structures (A,<',hI,) of L' with domain A and relations <', and IS corre- 
sponding to the relation symbols "<"' and "I" in L', such that IS is an 
equivalence relation and <', is invariant with respect to IS, that is, 

a<'fb&bIc a<'SC, and 

a <'sb & aIc c <'Cb. 
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Then f is a weak representation of L in L' with respect to Str(L) and S'. 
Obviously, Rf(S') = Str(L), since for each x (A,<,) E Str(L), we have 
x'Rfx for x' = (A,<s,Is) E S', where Is is the set of all pairs (a,a) for 
a E A. Let 0 contain formulas formally expressing in L that "<" is 
asymmmetric, transitive and connected (that is, u = w V u < w V w < 
u, for u and w being individual variables and V being the disjunction sign 
of the object-language), and O' be the corresponding formulas expressing 
in L' that "<"' is asymmetric, transitive and connected with respect to 
I (that is, ulw V u <' w V w <' u). Obviously, f(0) - 0' = o0 n 
Ran(f), so thatf is a weak representation of the theory (L,0) in the theory 
(L,O') with respect to Str(L) and S'. Then according to Theorem 1 (i), 
Rf is a weak reduction of Tm = (Str(L),Mod(O)) to (S',Mod(0') n s'). 
Using the terminology of Suppes and Zinnes (1963, pp. 23-26), Mod(o) 
is the class of all series and, due to the choice of S', Mod(O') n s' the 
class of all quasi-series. Therefore we have obtained a model-theoretic 
reduction of the theory of series to that of quasi-series. 

THEOREM 2. Given theories in the non-statement sense Tm = (Mp, m) 

and Tm,' (Mp',M'), and a relation R C Mp' X Mp; define theories 
in the statement sense T = (L,0) and T' = (L',O') as follows. Let 
L and L' be first-order languages of the similarity types of Mp and 
Mp', respectively, such that the non-logical vocabularies of L and L' 
are disjoint. Let 0 and 0' be defined as 

0 - Th(M) O' = Th(M' n Dom(R)). 

Suppose R is projectively definable. 

(i) If R is a weak reduction of Tm to Tm', then there is a weak 
representation of T in T' with respect to any S and S' such that 
S D Mp and S' C Dom(R). 

(ii) If R is a conversely weak reduction of Tm to Tm', then there is 
a conversely weak representation of T in T' with respect to any 
S such that S C Mp and to S' = Dom(R). 

(iii) If R is a strong reduction of Tm to Tm', then there is a strong 
representation of T in T' with respect to S = Mp and S' = Dom(R). 

Proof. It is obvious that T and T' are theories in the statement sense. 
Since we have assumed that the non-logical vocabularies of L and 
L' are disjoint and R is projectively definable, and because (5.2) is 
supposed to hold for all three kinds of reductions, we can apply Lemma 
8, obtaining an f: Sent(L) -> Sent(L') such that R C Rf. Lemma 6 
then implies that we have representations of the language L in L' 
with respect to S and S' of the appropriate kinds (remember that by 
(5.1), Ran(R) Mp). That they are representations of the theory T 
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in T' of the corresponding kinds follows immediately from the clauses 
of Lemma 10. 0I 

Theorem 2 says that under certain conditions, especially projective de- 
finability, representations can be obtained from reductions. That the choice 
of 0, 0', S and S' is canonical can be seen as follows. The choice of 0 
is completely natural. To take 0' as Th(M' n Dom(R)) instead of Th(M') 
is justified since the notions of reduction of Tm to Tm' are completely 
unspecific as to Mp'\Dom(R) and M'\Dom(R). A (weak, conversely weak, 
strong) reduction of Tm to Tm' is at the same time one of (Mp,M) to 

(Mp' n Dom(R), M' n Dom(R)). What falls outside the intersection with 
Dom(R) can be chosen in an arbitrary way. Note that 0 and 0', as de- 
fined in Theorem 2, are deductively closed in the usual sense although 
this is not required by our notion of a theory. S and S' can always be 
chosen as Mp and Dom(R), that is, as those sets of structures that are 
actually related by R, and may therefore be considered to contain the 
essential structures to be compared by the reduction. 

The standard example of a reduction in the model-theoretic sense is 
the reduction of classical rigid body mechanics to classical particle me- 
chanics as treated in Adams (1959) and Sneed (1971, chap. 7). It is based 
on the idea that a rigid body may be considered a set of particles with 
the property that the distance between any two particles does not change 
over time. Following Sneed, a weak reduction relation R between the two 
theories can be defined. Pearce (1982b) was able to show that R fulfills 
certain conditions that imply the assumptions of Theorem 2. Thus a weak 
representation of corresponding theories in the statement sense can be 
obtained in this case. 

7. Commensurability and Stegmuller's Thesis. We have shown that 
under certain conditions, representations and reductions of theories can 
be transformed into each other. As regards Stegmuiller's thesis ("redu- 
cibility is compatible with incommensurability"), the transition from re- 
ductions to representations, as expressed by Theorem 2, is of specific 
importance. More precisely, since the concept of reduction favored by 
Stegmuller corresponds to what we call a weak reduction, Theorem 2 (i) 
is the crucial assertion which says, in particular, that from a weak re- 
duction R of a theory Tm in the non-statement sense to a theory Tm' there 
can be obtained a weak representation of a corresponding theory T in the 
statement sense to a theory T' with respect to the sets of structures MP 
and Dom(R). This would immediately refute Stegmuiller's thesis if first, 
the conditions under which Theorem 2 holds were always fulfilled for 
weak reductions, and if secondly, a weak representation (with respect to 
the indicated sets of structures) always made theories commensurable. 
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We do not want to tackle the first question in detail here. Theorem 2 
mainly depends on Lemma 8, which assumes that R is projectively de- 
finable, and whose proof essentially uses the interpolation theorem, which 
is valid in the framework of first-order logic that we have assumed 
throughout this paper. In his reply to Pearce (1982a), Balzer (1985) ar- 
gued that all relevant theories use at least second-order logic, for which 
the interpolation theorem is not available. However, even if Balzer is 
right in his claim that most or all of the important theories are of second 
or higher order (better arguments for this thesis than his own can be found 
in Shapiro 1985), this does not necessarily refute the applicability of Lemma 
8. What is required there is only that the reduction relation R be projec- 
tively definable in a first-order language, not that all sets making up the 
theories considered be definable in that way. It may well be that the re- 
duction relation R between theories Tm, (M=,M) and Tm' = (Mp',M') is 
projectively definable in a first-order language (and therefore also Mp, 
being equal to Ran(R)), even though Mp', M and M' are sets that are 
definable only in second-order logic. Pearce (1982b) gives arguments that 
in central cases R is first-order definable. In the previous section we have 
at no place assumed that certain sets of structures can be characterized 
by sets of first-order sentences. The disjointness of the non-logical vo- 
cabularies of L and L' that is also required in Lemma 8 presents no prob- 
lem to us, since we may achieve it by re-labeling constants. However, it 
is a problem for Balzer and Stegmuller who base their commensurability 
concept on the identity of symbols (see below). 

As regards the second point, we must give a definition of commen- 
surability and show how it is related to the notions of representation. We 
shall now give such a definition, indeed, many, interrelated definitions. 
Our proposals are based on two ideas both of which make commensur- 
ability differ from representability: 

(i) Commensurability concerns scientific concepts and not only 
statements, "concept" here understood as comprising functions 
as well (we avoid speaking of "scientific terms" because of the 
possible confusion with the logical usage of "term" as opposed 
to "formula"). In logical terminology this means that predicate 
constants or, more generally, open formulas, and function con- 
stants or, more generally, open terms of one theory must be given 
a meaning from the viewpoint of another theory. For example, 
we not only want to say that an atomic sentence ul of T which 
has the form P(tj) is to be understood as u1' in T', U2 of the form 
P(t2) as U2' and U3 of the form P(t3) as U3', but more specifically 
something like the following: To P(v) as an open formula of T 
with individual variable v there should correspond an open for- 
mula A'(v') of T' with individual variable v' in such a way that 
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the sentences P(tI), P(t2) and P(t3) are related to sentences A'(tl'), 
A'(t2') and A'(t31) for certain closed terms tl', t2' and t3'. That is, 
applications of one and the same P to different arguments in T 
should be related to applications of one and the same formula 
A(v) to different arguments in T'. In general, correspondence of 
sentences should be a consequence of correspondence of (perhaps 
open) formulas and (perhaps open) terms. 

(ii) Commensurability may be partial. It should make sense to speak, 
for example, of {P1,. .,P,}-commensurability of theories for 
certain distinguished predicate letters P1, . . ., P,P expressing that 
the specific constants P1, . . ., P, but not necessarily all con- 
stants of one theory can be understood from the viewpoint of 
another. Full commensurability with respect to all non-logical 
constants of a theory is just a limiting case. 

The idea of commensurability as a correspondence of open formulas 
and terms ("term-for-term correspondence" in the terminology of the phi- 
losophy of science) also seems to underlie Balzer's (1985) and Stegmiuller's 
(1986) proposals. However, they arrive at definitions of commensura- 
bility and incommensurability that are different from ours. In particular, 
Balzer's and Stegmuiller's definitions of commensurability are relativized 
to reductions, and their definitions of incommensurability contain a quan- 
tification over all reduction functions between the theories considered. 
Thus they presuppose the structuralist concept of reduction whereas we 
define commensurability and incommensurability in a framework based 
purely on the statement view, not presupposing any concept of reduction 
to be given. Furthermore, Balzer's and Stegmuiller's basic idea is that 
commensurable theories must contain literally equal constants that have 
the same extensions. Such a procedure has the awkward consequence that 
if, for example, T' results from T by re-lettering the non-logical constants, 
then T' and T are incommensurable, although they are in a plausible sense 
(namely, modulo re-naming of constants) the same theories. (This has 
also been pointed out by Pearce (1986) in his recent rejoinder to Balzer 
and Stegmiuller.) Finally, Balzer's and Stegmuiller's proposals contain some 
technical deficiencies (for example, they contain no condition on how to 
handle substitutions in open formulas or terms like (7.1) and (7.3) below). 

In the following definitions, we continue to work within our framework 
of partial consequence, which we developed in order to have a notion of 
representation that exactly corresponds to the model-theoretic notion of 
reduction. However, if one reads the following as an attempt to define 
"commensurability" independently of its relationship to model-theoretic 
reductions, one may well skip the reference to S and S' in reading, or, 
in what comes to the same thing, consider S to be Str(L) and S' to be 
Str(L'). 

Our central concept will be that of a commensurability function F from 
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a theory T to a theory T' which intuitively means that F makes concepts 
of T understandable in T' by giving them an analogue in T'. Symmetric 
notions of the commensurability of theories T and T' can then easily be 
defined. It seems to us, however, that one usually has an asymmetric 
notion in mind even if one speaks of the (in)commensurability of T and 
T'. For example, when one discusses the question of whether Newtonian 
physics and the general theory of relativity are commensurable or not, 
one asks whether the central concepts of the Newtonian theory can be 
understood in the modem theory, not the converse question, or the two 
together. 

Let X be a set of non-logical constants of L, that is, of predicate, func- 
tion and individual constants of L. Let Term(L) and Fml(L) be the sets 
of terms and formulas, respectively of L, and let Term(L,X), Fml(L,X) 
and Sent(L,X) be the sets of terms, formulas and sentences, respectively, 
of L that contain no constants beyond those in X. Of course, L must be 
a language with identity if it contains function constants. Let Var(L) be 
the set of individual variables of L. We use +, v and t, with and without 
indices, as syntactical variables for elements of Fml(L), Var(L) and Term(L), 
respectively. Let ot(v/t) denote the result of substituting t for v in an 
expression a, provided t is free for v in a, and otherwise a. As before, 
primed characters denote corresponding objects of L'. Let F be a function 

F: Fml(L,X) U Term(L,X) U Var(L) 

-* Fml(L') U Term(L') U Var(L') 

such that 

F(Fml(L,X)) C Fml(L') 

F(Term(L,X)) C Term(L') 

F(Var(L)) C Var(L'). 

Let sets of structures S C Str(L) and S' C Str(L') be specified. Let ks 
and Ks, now be understood as relating formulas rather than only sentences 
in the obvious way. For all + E Fml(L,X) and t, tl, t2 E Term(L,X) let 
the following conditions be fulfilled: 

F((+(vlt)) A F-s, F((+)(F(v)IF(t)) (7.1) 

F(t1 = t2) =j Ks, F(tl) = F(t2) (7.2) 

Thes, F(t(vftl)) = F(t)(F(v)aF(t&)). Fm(3) 

Then, if for all (P C Fml(L,X) and (+ E Fml(L,X), 

4_ 
|- 

s _~ :: F\ IP 
/- 

sI F (/ (7.4 
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and 

F(7+)-I l= s? mF(+) ~~~~~~~(7.*5) 

hold, F is called a weak X-commensurability function from L to L' with 
respect to S and S'. If instead of (7.4) its converse 

F (4?))- s F5 F(() :: ID Fs (> (7.6) 

holds, we speak of a conversely weak X-commensurability function, and 
if all three of (7.4), (7.5) and (7.6) hold, of a strong X-commensurability 
function from L to L' with respect to S and S'. 

The conditions (7.1), (7.2) and (7.3) express the idea that scientific 
concepts, that is, predicate, function and individual constants, must be 
mapped to formulas, terms and individual constants, and not only sen- 
tences to sentences. (7.4), (7.5) and (7.6) are just the conditions we had 
before for representations, but now for formulas instead of sentences. If 
one is only interested in what we call a weak X-commensurability function 
and wants to work without partial consequence, then one may use the 
compactness of the first-order consequence relation # and replace (7.4) 
by 

F(4)1 A 4)2) A k- F(4)1) A F(k2) 

where "A" is the conjunction sign of the object language. Furthermore, 
it would then suffice to require (7.1) for atomic formulas 4) and add 

F(A v4)) l= A; F(v)F(@) 

as a condition for the universal quantifier "A" of the object language. 
This would yield a definition of "commensurability function" which sim- 
ply requires that F distributes over substitution in atomic formulas and 
over the logical constants. Thus, apart from the relativization to X, it 
comes very close to Tarski's (1953) notion of weak interpretability. 

The concept of a theory in the statement-sense need not be changed 
since theorems that are open formulas may be identified with their uni- 
versal closures, and therefore sets of theorems can as before be consid- 
ered to be sets of sentences. Thus given theories T = (L,O) and T' = 
(L ,') , we call F a weak [conversely weak, strong] X-commensurability 
function from T to T' with respect to S and S', whenever F is a weak 
[conversely weak, strong] X-commensurability function from L to L' with 
respect to S and S' and F(O) C O' [F(0) D 0' n Ran(F), F(O) = 0' 
n Ran(F)]. 

Remember that F(O) contains all sentences F(Qf) for u E 0 n Dom(F), 
that is, "F(O)9 is a meaningful expression even if 0 is not fully contained 
in the domain of F. In particular, F(O) is empty if each sentence in 0 
contains at least one non-logical constant that is not in X, that is, if 0 n 
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Fml(L,X) = 0. In such a case, F is a weak X-commensurability function 
by trivial reasons. This is not counterintuitive. If all theorems of T mix 
constants from X with constants outside X, no separate assertion is made 
in T about the elements of X, so what is said in T about the elements of 
X alone (namely nothing) can trivially be understood from the viewpoint 
of T'. What is implicitly said in T about X, in the sense that constants 
outside X are involved, can be understood in T' only through a Y-com- 
mensurability function for some Y D X that contains these additional con- 
stants. It is quite plausible that, for example, if the theorems of T char- 
acterize the predicate constant PI only together with the constants P2 and 
P3, then a {Pl,P2,P3}-commensurability function is required to give PI 
(and at the same time P2 and P3) an analogue in T'. By similar reasons, 
if an X-commensurability function F1 and a Y-commensurability function 
F2 are given, then an X U Y-commensurability function need not nec- 
essarily exist. It may well be that F1 transforms those theorems of T that 
only involve constants from X and F2 those theorems that only involve 
constants from Y without there being an F that transforms those theorems 
that involve constants from both X and Y. If one wants to avoid such 
consequences, one has to work with "full" commensurability functions 
only, that is, with X-commensurability functions where X contains the 
whole non-logical vocabulary of L. We do not see any possibility of de- 
fining a concept of commensurability that on the one hand is restricted 
to a specific non-logical constant P but on the other hand respects the 
full meaning of P in a theory T even if in T this meaning of P is only 
implicitly determined together with the meanings of other constants. 

When we describe it as the task of an X-commensurability function to 
represent in T' the meaning that a constant from X has in T, "meaning" 
is understood as something that is specified by the theorems of T, that 
is, by certain laws that hold of this constant. In other words, we rely on 
the statement view of theories when dealing with commensurability (see 
section 1 above). This makes our proposal strongly differ from Balzer's 
and Stegmiiller's who refer to extensions in models as the meanings of 
non-logical constants and require equality of extensions in related models 
as the central criterion of commensurability (see section 1 above). Our 
rendering of "meaning" as something that is purely internal to a theory 
seems to us to be narrower to the notion of commensurability as used, 
for example, in discussions in the context of Feyerabend's and Kuhn's 
writings (see Feyerabend 1962, p. 74ff.; Kuhn 1962, pp. 102 and 128f.). 
There the question was always whether or not certain conceptual frame- 
works can be related to each other, and not whether extensions of con- 
cepts (which are external to the theories in which the concepts are embed- 
ded) are the same. (Feyerabend and Kuhn would probably even deny that 
we can speak of extensions of scientific concepts independent of theo- 
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ries.) The fact that Balzer and Stegmuller base their notion of commen- 
surability on the equality of extensions of constants in different theories 
seems to us to be due to the fact that they consider commensurability 
only in the context of model-theoretic reduction. 

In order to relate representations to commensurability functions, we 
define the following: We say that a weak [conversely weak, strong] X- 
commensurability function F from T to T' with respect to S and S' is an 
extension of a weak [conversely weak, strong] representation of T in T' 
with respect to S and S', if F|Sent(L) = f Sent(L,X), where the vertical bar 
expresses the restriction of the domains of F and f to the indicated sets. 
If X contains the whole non-logical vocabulary of L, this means the same 
as F Sent(L) = f. It is obvious that a weak [conversely weak, strong] rep- 
resentation f of T in T' with respect to S and S' cannot necessarily be 
extended to a weak [conversely weak, strong] commensurability function 
F from T to T' with respect to S and S', since, if f is given, nothing is 
known about open formulas and open terms. This holds especially if f 
results by Theorem 2 from a reduction. If the assumptions of Lemma 8 
are fulfilled, a reduction gives rise to a representation, but not necessarily 
to an X-commensurability function, however X may be chosen. Stegmuiller's 
thesis that reduction does not imply commensurability is fully confirmed 
by the given reasoning, provided one accepts our definition of "X-com- 
mensurability function" as an appropriate approach to the notion of "com- 
mensurability". This does not, of course, preclude that by strengthening 
the conditions for reductions (for example, by adding certain specific model- 
theoretic requirements), commensurability functions may be obtained from 
reductions (see van Benthem and Pearce 1984). 

To complete our definitions, we say what commensurability as distin- 
guished from commensurability functions should mean. For simplicity, 
we omit the specifications "weak", "conversely weak", and "strong" and 
also skip the reference to S and S'. It is clear how by use of these ad- 
ditional specifications different concepts of commensurability can be ob- 
tained. We define: T is X-commensurable in T' if there is an X-com- 
mensurability function from T to T'. T is fully commensurable in T' if T 
is X-commensurable in T', where X comprises all the non-logical con- 
stants of L. Similarly, a symmetric concept of commensurability can be 
defined: If X and X' are sets of non-logical constants of L and L', re- 
spectively, then T and T' are called (X,X')-commensurable, if T is X- 
commensurable in T' and T' is X'-commensurable in T. T and T' are fully 
commensurable if T is fully commensurable in T' and T' is fully com- 
mensurable in T. One can obtain weaker notions of X-commensurability 
if one only requires that there be an X-commensurability function from 
T to a consistent extension of T'. According to this approach, T and T' 
are already commensurable with respect to certain concepts of T, if the 
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theorems of T' do not exclude that these concepts have analogues in the 
framework of T', although T' may still be too weak to characterize these 
analogues sufficiently. (This proposal seems to correspond to the view 
expressed in Feyerabend 1962, p. 74-76.) 

Various concepts of non-commensurability can be obtained by negating 
the corresponding notions of commensurability. However, non-commen- 
surability need not mean incommensurability. Intuitively, incommensur- 
ability means non-commensurability in the presence of a certain relat- 
edness of theories. Theories that have "nothing to do with each other" 
are non-commensurable, but not incommensurable. To give this relat- 
edness of theories a precise rendering is still a desideratum in the phi- 
losophy of science. 
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