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A b s t r a c t .  The logic of definitional reflection is extended with a theory of free 
equality. Based on this equality theory a sequent-style notion of the completion 
of a definition is motivated. Definitional reflection with free equality turns out 
to be equivalent to the completion in this sense. 

1 I n t r o d u c t i o n  

The principle of definitional reflection ([9, 18]) is an extension of a sequent-style 
in terpre ta t ion  of definitional clauses for atoms, allowing one to introduce an a tom on 
the left side of the sequent sign. For example,  if in proposi t ional  logic the  a tom a is 
defined by the three clauses 

a.r a 'r  a'r , 

then definitional reflection has the rule 

F, CI~-A F, C~F-A F, C3[-A 
F,a~-A 

as one of its instances. It is dual to the more usual rule for introducing an a tom a on 
the right side of the sequent sign, which has 

r~c1 F~C~ FFC3 
Ft-a FF-a FI-a 

as instances. Because of this symmet ry  we speak of ~)-left (19~-) and ~9-right ( t -~)  
rules, respectively, where D is the definition (=  finite set of definitional clauses) as- 
sumed to be given. (~-:D) and (:DF-) are a powerful extension of Gentzen-style sequent 
systems, which were originally designed for logically compound formulas, to systems 
which also include rules for atoms. 

In the given proposit ional example,  definitional reflection corresponds to Clark 's  [3] 
idea of database  completion. It is obvious tha t  the above rules express, in a sequent 
style fashion, the axiom 

a ~ C1VC2VC3, 
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which is the completed definition of a in Clark's sense. This suggests to examine in 
detail the exact relationship between definitional reflection with individual variables 
and the completion. Such an investigation would not only shed some light on deft- 
nitional reflection but also on the completion. In the case of an equivalence between 
definitional reflection and the completion we would obtain a direct computational  
interpretat ion of the completion, in so far as definitional reflection has such an inter- 
pretation. 

If variables are present, there are two variants of definitional reflection (see [18]): 
the local or logical version (g t - )  and the global or w-version (9t-) , , .  Given a finite 
set T~ of clauses of the form by=C, where b is an a tom and C a formula of first-order 
intuitionistic logic, then they can be formulated as 

( r e )  { r ,  CaF-A : a = ba for some b.r �9 9 }  

s aF-A 

and 

(9~)=  {r~,  Co'FAcr : a = mgu(a,  b) for some b.r E 9 }  

F, aF-A 

respectively, while the right-introduction rule for a toms is 

FFCa 
(F:D) ~ a ~ C  �9 :D 

in both cases. For (91-) we have to require a certain proviso ensuring its closure under 
substitution; for (9F)~, we just require that  variables in clauses b~=C are standardized 
apart  from those in s aF-A. It can be shown tha t  (gF-)~ is equal in power to (91-)+ 
(w), where (w) is the following rule: 

(w) {r~,  aahAo- : a = mgu(a,  b) for some b.r E 9 }  

F, a~A 

This rule expresses the idea that,  in order to show that  something holds, i t i s  sufficient 
to show that  all its closed substitution instances hold - -  an idea which is related to 
the w-rule in ari thmetic.  It can be realized by a finitary rule, since to prove FO, aOFAO 
for any ground substitution 0 we just need to prove FO, aOFAO for any substitution 
O, for which aO is defined, i.e., for which a can be inferred by a definitional clause. 
And all those 8 are specializations of the mgus cr computed in the premisses of (w) 
(see [181). (9~-)~ is called a "global" rule since it justifies an assertion about an a tom 
a by reference to all its instances. In contradistinction to that ,  ( g F )  is local since it 
just  refers to the way a itself rather than its instances are defined. 

The rule (gF )~  was proposed independently by Eriksson [5, 6] and Girard [8] in 
partially different contexts and under different names. As argued in [18], it has certain 
computat ional  deficiencies as compared to just (~1-). However, it will turn out that  
it is (DI-)~, rather  than (91--) which corresponds to the completion. 

That  (91--) does not express the idea of the completion can be seen as follows. 
Suppose 9 consists of the rules 

p(tl)C=q p(t2)C=q 
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for different closed terms tl and t2. Then from the completion of 7) 

p(x)-+q 

should follow. However, the sequent 

p( x )1- q 

cannot be derived from CDI -)  (but from (7)1-),~). Therefore in the following by "defi- 
nitional reflection" we always mean the system based on (7)1-)0, rather than CD1-). 

Eriksson has presented (D1-)0, in such a way that  it can be applied to higher order 
logics as long as there are finite complete sets of unifiers to be considered in (7)1-)~, 
instead of mgus )  As usual with the completion, we confine ourselves to first-order 
logic. In this sense the completion is less general than the more universal principle 

Our results are limited in the sense that  they establish an equivalence between the 
completion of a definition and a declarative system based on definitional reflection, 
but  do not relate it to a computational interpretation of this system. In particular, 
we do not relate the completion to negation as failure, which one would expect to 
appear, at least in some disguised form, in such a computational interpretation. This 
is basically due to the fact that  the computational  interpretation of (7)1-)o, is not 
straightforward, a 

The rest of this paper is divided as follows. In Section 2 we present a formal 
system of intuitionistic logic with definitional reflection. Section 3 extends this system 
with a sequent-style theory of free equality which is needed for the treatment of the 
completion. Basic features of this theory (such as representation of unification and 
invertibility of rules) are proved in some detail. In Section 4 a proof-theoretic version 
of the completion of a definition is defined, and in Section 5 its equivalence with the 
theory of definitional reflection plus free equality is established. Section 6 shows that 
the definition of equality by an identity clause according to Eriksson and Girard is of 
equal power as its characterization by the equality principles of Section 3. Section 7 
relates the results obtained to substructural and other variants of the theory. 

2 I n t u i t i o n i s t i c  Logic  w i t h  Def in i t iona l  R e f l e c t i o n  

As our system with definitional reflection we here choose intuitionistic first-order 
logic enlarged with principles (F7)) and (7)1-)~ for the introduction of an atom on 
the right or left side of the sequent sign. We consider a language based on a fixed 
(possibly infinite) set of n-ary function and predicate symbols (n > 0) and infinitely 
many individual variables. We use x, y, z to stand for individual variables, f ,  g, h for 
functions, r, s, t for terms, p, q for predicates, a, b, c for atoms, A, B, C for formulas 
and F for multisets of formulas (all with and without primes and indices). Sequents 
are written as P1-A, where notations like F1,F21-A or A,B, P1-C are understood in 
the obvious way. Definitional clauses are of the form ar Given a definition 7:), the 

1 Actually, he gives an even more general rule which also comprises (791-). 
For example, definitional reflection is related to principles of pattern matching in constructive 

type theory (see [4]). 
a In this respect (791-)~ differs from (791-), for which a logic programming language exists (see [2]). 
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logic of definitional reflection over 79, called DR(79), is then given by the following 
inference rules: 

(1) al-a 

(l-T) FT 

(l-A) FII-A F2l-B 
FI, F2I-AAB 

Fl-A Fl-B 
(l-V) FI-AVB FI-AVB 

(l-~) F, AI-B 
Fl- A---* B 

(l-V) rl-A[y/x] 
Fl-VxA y new 

(l-3) rl-A[t/z] 
FI-BxA 

(l-79) rl-ca ar ~ 79 

Fl- B 
(Thin) F, AI-B 

(_L) F, _LI-A 

Fl-A 
(Tl-) r, Tl-a 

(^l-) r, A, Bl-C 
F, AABF-C 

(Vl-) F, Al-C F, Bl-C 
F, AVBl-C 

(...,l-) Fll-A F2, BI-C 
F1, F2, A---* Bl-C 

(W-) r,A[t/x]l-C 
P, VzAI-C 

(3l-) r,A[y/z]l-C 
F, qxAI-C y new 

(79l-)~ {ra,  Cal-Aa : a = mgu(a, b) for some br e 79} 
F, al- A 

(Contr) F, A, Al-B 
F, Al- B 

In applications of (79l-)~ we always assume that variables are standardized apart, i.e. 
variables in clauses are different from variables in the derivation we are constructing. 
In general, when using substitutions, we always assume that they are defined, i.e. 
that bound variables are appropriately renamed if necessary, when substitutions are 
applied. (This could be achieved in the standard way by the syntactic division between 
free and bound variables.) Obviously, the rule (Tl-) can be obtained by (Thin). 
However, in order to make the following proofs independent of (Thin), we use it as 
a primitive rule. It can easily be seen that the converse of (Tl-) is admissible, i.e., 
without harm we can add and delete T on the left of the sequent sign. The rule (_1.) is 
derivable from (79l-)~ if we consider _L a 0-ary predicate not defined in 79. However, it 
is useful to have _L as an explicit logical constant to keep the logic without definitional 
clauses independent of the D-rules. 

Instead of having thinning and contraction as primitive rules, we could built them 
implicitly into the other rules in the well-known way. In particular, in order to guar- 
antee contraction, (79l-)~ would have to be formulated with Pa, aa, Cal-Aa ra ther  
than Fa, Cal-A(r in the premiss set. However, this way of proceeding would make 
comparison with substructural variants of the theory more difficult (see Section 7). 
The contraction-free version is particularly interesting for definitional reflection, since 
it permits full cut elimination, whereas the system with contraction does not (the 
standard counterexample uses 79 = {p.C=p--~.L}, see [17, 18]). By "cut" we mean the 
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rule 

F1F-A r2, A}-B 
( C u t )  r~, r2~-B ' 

which is not part of D R ( D ) .  
In the following, we will sometimes write applications of (Z)[-)~ as 

{ r z .  Ciai~-Aiai}i 
F, a}-A 

Here {...}i expresses that  for each program clause we have a premiss of the form 
indicated, where ai = mgu(a,  bi) for the i-th program clause bir and where this 
premiss is missing if there is no such mgu. If q is a substitution then [t/x]q and or[t/x] 
denote the composition of the substitution [t/x] with a and vice versa. 

3 Free  E q u a l i t y  

In order to formulate rules for the completion of a definition, we need a sequent-style 
theory of free equality on the domain generated by the function symbols (including 
individual constants) of our language. As such we use the very elegant cut-free formal- 
ization by $ahlin, Franz~n & Haridi [16]. When added to D R ( D ) ,  equality cuts (i.e., 
cuts with equations as cut formulas) can still be eliminated, although the cut rule is 
not admissible in general. Eliminability of equality cuts is crucial for the equivalence 
of definitional reflection and the completion. Therefore it is not sufficient for us just 
to add the axioms of Clark's [3] equality theory to D R ( D ) .  

In this section we prove central rnetatheoretic properties of the sequent system for 
free equality in some detail. 4 Apart from the purposes of the present paper, this is 
justified by the general interest this system has for the proof-theoretic t reatment  of 
unification and logic programming. 

We enlarge our language with a binary predicate - for equality and postulate the 
following system E of inference rules: 

Ft-A 
r,x== A 

, ,  , ,  rttlzl~-A[ttx] r[tlx]}-A[tlz] 
�9 tept) ~ = _ t , ~  t=x,  Ft-A provided x does not occur in t 

(~) f ( t l , . . . ,  tn ) - -g( t l ' , . . . ,  t , / ) ,  Ft-A provided f and g are distinct (m, n > 0) 

(occ) z=t ,  Ft-A t=x,  F~-A provided x is a proper subterm of t 

tx =tl' ,  . �9 �9 tn- t~ ' ,  FF A 
( inj)  f ( t l , . . . ,  t , ) = f ( t x ' , . . . ,  t , ' ) ,  FFA (n > O) 

4 These properties are mentioned by Sahlin et aL in [16] but, due to their purposes being 
different, not proven syntactically. - Somewhat loosely, we continue to speak about free equality as 
characterized by the following system. Sahlin et aL speak of "quasi-free" identity, since the property 
of being freely generated is not first-order. 
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Here the label "(Repl)" stands for "replacement", "(inj)" for "injectivity" of func- 
tions, and "(occ)" should remind one of the "occurs check" in unification. DRE(:D) is 
the system obtained from DR(D)  by adding the equality theory E, and by restricting 
(Thin) and (Contr) to the case where A is not an equality formula. The reason for 
this restriction is that we want to prove that thinning and contraction for equality 
formulas: 

rt-A P, s - t ,  s=tt-A 
(Thin-) p, s-t~-A (Contr-) r, s=_t~-A 

are both admissible in DRECD ) -  a result, which pertains to substructural versions 
of the system, in which thinning and/or contraction are not available as primitive 
rules. 

E is exactly the system for equality proposed in [16], with the exception that we 
have formulated (i-m) without implicit thinning and have added ( -F ) .  Although it is 
easy to see that  the freeness axioms of Clark's equality theory [3, p. 304] are derivable 
in E, it is not immediately obvious that the basic principles of general equality hold, 
in particular the general replacement rule 

r[t/z]~-A[t/x] r[t/x]~-A[t/=] 
(Repl)' s . t ,  r[sl=l~-A[s/z] t - s ,  r[sl=]~-A[s/z] 

without any restriction on t and s (see [11, 13, 15]). For that we need closure un- 
der substitution (Lemma 2 below). First we show that E is a theory of first-order 
unification. 

L e m m a  1 (Unification lemma) In E the following rules are derivable: 

FabAa 
(0 s,-tl,.,.,s.-t.,rF-A i /~ solves the system of equations {s l - t l , . . . , s ,~ , tn}  

(ii) s l=t l , , . . ,  s , - t , ,  Ft-A if the system {Sl"tl,..., Sn'tn} is not solvable. 

P r o o f  Slightly differently from the usual presentation (see e.g. [14, 20]), Herbrand's 
rules for solving a multiset S = {sl=tl , . . .  ,s,,=t=} of equations can be described as 
follows. We consider transformations between pairs (S I a), where a is a substitution, 
which are determined by the following transitions: 

(===, S l y )  , ( s  I , , )  

( f ( r l , . . . , r , ) = f ( , ' , ' , . . . , r , ' ) , S  I ~) , ( r l - - r l '  , . . . , r . -=- - r , ' ,S I a) 

(=--t, S l ~ )  ----' (S[tl=l l~[t /=])  ~ does not occur in t (t=x, S l ,,) ~ (S[tlx] l a[t/z]) jpr~ x 

( .  _> 0) 

Then by comparison with the usual transitions it can easily be seen that a is an mgu 
solving S if and only if there is a derivation 

(SLY)  - - - ,  . . .  - - ,  ( ~  I , , ) .  s 

5 The difference from the usual procedure is that we "store" equations in solved form as substi- 
tutions in the right component of the pair. This avoids the repetition of an unsolved equation x---t 
in the usual rule { z - - t }  U S ~ { z - t }  U S[t /z] ,  which logically corresponds to contraction. 



339 

Now for each step (S ]a )  ~ (S ' ]  a ')  the rule 

S', Fa'b Aa' 
S, F ab Aa 

is a primitive rule in E - -  either (--F), (in j)  or (Repl). Therefore from 

( S I 0 )  , . . .  , ( 0 1 ~ )  

we obtain a derivation 

FabAa 

s ,  r~-A 

in E. Furthermore, S is not solvable if and only if any derivation 

(s I o) - - *  . . .  

ends at a stage (S'  I a ' )  such that  any equation in S'  has the form x - t  with x occurring 
as a proper subterm in t, or the form f ( r l , . . . ,  rn ) -g ( r l ' , . . . ,  rm') (m, n > O) with g 
distinct from f .  Since by (~) and (occ) we have S', Faq-Aa' in these cases, we obtain 
a derivation of S, Fi-A in E. 

L e m m a  2 (Substitution lemma) DRE(T))  is closed under substitution, i.e., if rF A 
is derivable in D R E ( D ) ,  then so is FOFAO for any substitution O. 

P r o o f  We proceed by induction on the length of derivations and consider the last 
step of the given derivation of FFA. 

Apart from (occ), rules without premisses are closed under substitution. In the 
case of (occ) we observe that  xO and tO are not unifiable, if x occurs as a proper 
subterm of t, so that  we can apply Lemma 1 (ii). 

In all cases of rules with premisses except (7:)1-)~, and (Repl), we apply the induction 
hypothesis to the premiss(es). 

In the case 

{r'  ai, CiaiF Aa~)~ 
( z)~ )~ , 

F', ai-A 

where F is F I,a and a~ = mgu(a,b~) for the i-th clause b~r in 7:) if there is a 
unifier - -  otherwise the i-th premiss is missing - -  we proceed as follows. Suppose 
alI = mgu(aO, hi). Then Oai' is a unifier of a and bl (since variables are standardized 
apart), so Ocr/= aiOi for some 0i. By induction hypothesis we obtain 

F' a~Oi, C~a~Oib A~riO~, i.e., F'Oai ~, CiOai% AOai' , 

from which by (T)t-)~ 

F'O, aOl"AO 

follows. 
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In the case 

r'[tlxl~-A[t/x] . . . .  
L ~tePt ) , 

where F is z--t, F', we can assume that  xO and tO are unifiable (otherwise the assertion 
holds by Lemma  i (ii)). Suppose cr = mgu(zO, tO). Then by induction hypothesis we 
derive 

F'[t / z]OaF A[t / x]Oa, 

which is the same as 

F'OaI-AOa, 

since x is not in t. By Lemma 1 (i) we obtain 

xO-tO, F'OI-AO. 

C o r o l l a r y  1 The rules (Repl)' and (Thin =) are admissible. 

A rule is called invertible, if its inverse is admissible, i.e., if the derivability of its 
conclusion implies the derivability of each of its premisses. As a generalized inverse 
of (_1-) we consider the rule 

tl=_tl,. . . , t,==.t,, FFA 
(--e-)v rt-A 

L e m m a  8 (Invertibility lemma) (i) The rule (-~-)~ is admissible in DRE(79) .  
(ii} All equality rules with premisses, i.e., ( -F),  (Repl) and (inj) are invertible 

in D R E ( V ) .  

P r o o f  (i): Induction on the length of derivations. 

(ii): (=1-): Follows from (i). 

(Repl): From x=t, D-A we obtain 

t - t ,  r[tl=l~A[t/=l 

by Lemma  2, and 

r[t/x]~-A[t/x] 

by (-+)'. 

(in j): The derivation 

f ( t l , . . . ,  t , , )=f (h ' , . . , , t , ' )F- f (h , . . . ,  t n )= f (h ' , . . . ,  t,,') (I) 
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has to be transformed into 

(l-_--) 
l- f ( q ' , . . . ,  t , ' )=_ f ( t l ' , . . . ,  t , ' )  (Repl) '  (n times) 

t l=tx ' ,  . . . , t,=_t,'l- f (  t l ,  . . . , t,)==_f(q ', . . . , t , ' )  

All other rules without premisses are treated in an obvious way. The rules with 
premisses are permutable with (in j ) .  

C o r o l l a r y  2 The following rules are admissible in D R E C D  ) : 

(i) s ~ = t ~ , . . . , s , - t , , F l - A  i r a  solves the sys tem of  equations { s x - t a , . . . , s , = t , }  
Fal- A a  

50 (co.tr--) 

P r o o f  (i): In Lemma 1 (i) we have shown that  the converse of this rule is derivable 
in E by means of (=l-), ( in j )  and (Repl) .  So we just have to apply the previous 
lemma. 
(ii): If s and t are not unifiable, then s - t ,  F F B  is derivable by Lemma 1 (ii). If 
a = m g u ( s , t ) ,  then tr solves the multiset { s - t ,  s - t }  as well as the multiset { s - t } .  
Therefore from (i) we obtain Fal -Ba ,  from which by Lemma 1 (i) we derive s=_t, Fl-B. 

L e m m a  4 (Admissibility of equality cut) The rule 

F l - s - t  P, s=-tl-A 
(C~t-) rl-A 

is admissible in DRE(:D).  

P r o o f  by induction on the length of the derivation of the left premiss of the cut. 
We consider the rule applied in the last step of this derivation. 
If it is (I) ,  then the second premiss is already the conclusion. 
If it is (l-=), then we apply (-l-)~ (which by Lemma 3 (i) is admissible) to the right 
premiss, deleting t - t  in its antecedens. 
If it is any other rule without premiss, then the conclusion of the cut is an application 
of this rule as well. 
If it is (Repl )  or (Dl-)~, then we apply Lemma 2 to the right premiss of the cut and 
apply the induction hypothesis. 
In all other cases we can move the cut one step up and apply the induction hypothesis. 
(Note that  (I-D) cannot have have an equality as its conclusion.) 

4 T h e  C o m p l e t i o n  o f  D 

Unlike clauses, which define particular instances of a predicate p, the completed defi- 
nition of p in Clark's [3] sense is uniform in the arguments of p. In our Gentzen-style 
framework we capture this idea as follows. Suppose the clauses for p in 79 are 

p(t, , , . . . , t ,m) ~ C, 

p ( t , , , . . . , t , , , )  <= C , .  
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Then we define the following Right- and Left-introduction rules for p�88 

Fl~- t l - taa  . . .  F,,Ft,~=ti,~a F~-Cicr 
(Fp) r , , . . . , r , , r e p ( t , , . . .  , t , )  1 < i < n 

(pl-) {F, t l - t { 1 , . . . ,  t,~-t{,,,  C~-A: 1 < i < n} provided the variables in 
F , p ( t l , . . . ,  t,,)b-A til, Ci are not free in ti, F, A 

If p is not defined (i.e., n = 0), then there is no (Fp), and (p~-) is 

F,p( t x , . . . ,  t,~)FA " 

By C O M P ( T ) )  we denote DRE(T))  with (I-T)) and (T)~-)~ being replaced with (F-p) 
and (pF) for all predicates p occurring in T). 

Now let Cp be the following formula, which according to Clark [3] expresses the 
completed definition of the predicate p: 

(VXl . . . xm) (p (x l , . . . , x ,~ )  ~ ((3ffl)(Xa = t]l A . . .  A x,n = tim A C1) 
V 

V 
(3~,)(=1 = t,1 A . . .  A x~ = t ,~  A C,) )  

where ffi contains the variables free in the i-th clause for p. If n = 0, then Cp is 

(Vz, . . .  z ,~)(p(za, . . . ,  z,~) +-* _L), i.e., (Vzi . . .  x ,~)- .p(x l , . . . ,  x,~).  

Then we can easily derive Cp in COMP(T) ) .  Conversely, in the presence of cut, we 
can derive (Fp) and (p~-) using Cp as an axiom. 

It is not difficult to check that  all results proved in the previous section for 
DRE(T))  also hold for C O M P C D  ). In fact, the proofs become simpler since it is 
immediately obvious that  (pl-) is closed under substi tution and can be permuted with 
(Repl), because no unifiers are involved. However, we do not have to spell out proofs 
since these results are a consequence of what follows. We only need Lemma  1, which, 
as an assertion about derivability in E, Mso holds for C O M P ( T ) ) .  

5 D e f i n i t i o n a l  R e f l e c t i o n  a n d  t h e  C o m p l e t i o n  

The  main result of this paper is the equivalence of DRE(T) )  and C O M P ( T ) ) .  It is 
almost a corollary of what we have proved in Section 3. 

T h e o r e m  1 Each primitive rule of C O M P  (D) is admissible in DRECD),  and each 
primitive rule of DRE(T))  is derivable in C O M P  (T)). 

P r o o f  We have to consider (FT)), (T)~-)~, (I-p) and (pF). The rest is identical in the 
two systems. 
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F~-C~a 

Fl~-tl=tii a . . .  Fmbtm=tima 

(~-T)) 
r t - p ( t ,  ~ ,  . . . , t , m a )  ( R e p l ) '  

t l = t a a , . . . ,  tm=---tima, F}-p(ta, . . . ,  tin) (Cut--) 
r , , . . . ,  rm, rl-p(tl,. . . ,  tin) 

(ii) (p}-) is admissible in DRE(T)).  

If { t l=ta , . . . , tm=t lm}  is not solvable, then p( t l , . . . ,  tin) and p(tia,. . . , t lm) are not 
unifiable. Otherwise, let ai be such a unifier. Then we obtain 

f F, t1=_ta,..., tm=t~m, Ci}'A ! 
- - - - -  Corollary 2 (i) 

..~. rai, CwiI-Aal Si (T)~-),, 
r , p ( t , , . . .  ,tm)FA 

(iii) (f-T))is derivable in GOMP(T)) .  

Let a be p( t i l , . . . ,  tim). 

f - t , ia-t i ,  a (F-)  . . .  Ftima-t,,~a (F--) FF-Cia 
Fbaa 

(iv) (T)F)o, is derivable in COMP(T) ) .  

Let a be p(t , , . . . , t ,~) .  If al = rngu(p(t l , . . . , tm),p( ta, . . . , t i ,~)) ,  then al solves the 
equation system { t l -~ ta , . . . , t ,~ t im} .  Therefore we have 

Fa~, C~aiFAcri Lemmal~ 
F, ta=t; i ,  �9 �9 tm=t~m, CIF-A Ji 

I', a~- A (pb ) 

6 D e f i n e d  E q u a l i t y  

Instead of formulating a separate theory of free equality one may treat  equality directly 
in the framework of DR( / ) ) .  As has been proposed independently by Eriksson [5] and 
Girard [8], we can define equality by extending a definition 7) with the single clause 

z=zC=T . 

By "7:) =" we denote 7) enlarged with this equality clause. Then we can show that  
DR(T) =) is as powerful as DRE(T)) .  

L e m m a  5 (i) The rule (inj) is admissible in DR(7)=) ,  
D R E ( V )  is derivable in DR(T)- ) .  
(ii) Every rule of DR(T) =-) is derivable in DRE(T)) .  

while any other rule of 

P r o o f  (i) For (f---) and (-~-) this is obvious (we have to use (~-T) and (T~-)). For 
(Repl) we use (T~-) and the fact that  { t / x , t / z }  is an mgu of x=_t and z~-z. For 
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(~) and (occ) we use that neither f ( t a , . . . , t , ) = g ( t l ' , . . . , t , # )  ( f  and g distinct) nor 
z=_t (z proper subterm of t) unifies with z=_z. For (inj) we argue as follows. If 
f ( t l , . . . ,  t,) and f ( q ' , . . . , t , )  are not unifiable, then the conclusion of (in j) holds by 
(D-F)~ anyway. Otherwise, for a unifier tr, from q=ta ' , . . . ,  t,--t, ' ,  FFA we obtain 
q ~ - - q ' a , . . . ,  t , a = t , ' a ,  raI-Atr, since D R ( D - )  is closed under substitution. Since the 
rule (=F)Vcan easily be shown admissible in DR(D=),  we obtain Fal--Aa, from which 
by (TF) and (~D--'I-),~ the desired result f ( t x , . . . ,  t , ) = f ( t l ' , . . . ,  t , '),  F~A follows. 
(ii) We use (3-}--) and Lemma 1. 

R e m a r k  Instead of using the clause z=--z~T for equality, one can of course regard 
the following rules, which are obtained from this clause, as an equality theory of its 
own (see [81): 

I 'aFAa 
~t--t s - t ,  FI-------A if a = mgu(s, t) s--t, F~----------A if s and t are not unifiable 

As a consequence of Lemma 5 we obtain the following theorem. 

T h e o r e m  2 COMP(~D) and DR(Z) =) are equivalent in the sense that each rule of 
one system is admissible in the other one. 

Thus we obtain a computational interpretation of CO MP (D )  in so far as DR(D ~) 
has a computational interpretation. However, as remarked in [18], this computational 
interpretation of DR(D) (and therefore DR(D=),  which is a special case thereof) 
does not go very far, since variables in a sequent FI-A, which is to be evaluated by 
(2~'-),o, are understood universally rather than existentially. It is not an easy task 
at all to combine this feature with the idea of computing answer substitutions, since 
in DR(Z)) we do not have lifting (permutability of substitution and computation) in 
the usual sense (see [6] for a presentation of some difficulties). This is due to the fact 
that with respect to computation (FD) and (D~-)~, are not completely dual to each 
other. Loosely speaking, the left side of the turnstile corresponds to negative goals 
and the right side to positive goals in traditional logic programming. Actually, in some 
sense (~DI-),~ corresponds to the negation by failure rule, whereas (I-D) corresponds 
to ordinary resolution. This relationship has to be elaborated in subsequent work. 

7 Final Remarks  

Substructural Logics 

Logics with restricted structural rules (substructural logics) are particularly inter- 
esting in combination with definitional reflection. The logic DR(/:)) does not enjoy 
eliminability of cut in general whereas the contraction-free variant does (see [17]). It 
can easily be checked that all results and proofs in Sections 3 to 6 are independent 
of whether in the underlying logic DR(Z)) contraction or thinning or both of them 
are lacking. This is because in the equality extension DRECD ) we have restricted the 
rules of thinning and contraction to formulas which are not equalities. Instead we have 
shown that for equalities both thinning and contraction are admissible independently 
of their availability for arbitrary formulas. Furthermore, we have formulated the rules 
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for T and ^ in the multiplicative way in Girard's [7] sense (his notation would be 1 
and | respectively). The addition of additive truth and additive conjunction does 
not cause any change in the proofs. 

Our proof of cut elimination for the contraction-free case [17] can easily be ex- 
tended to the system with equality. We just apply the reductions given in the cut 
elimination proof and eliminate equality cuts according to Lemma 4 whenever we en- 
counter such cuts. We only have to check that the number of applications of (29F)o,, 
which is one of the induction parameters of the cut elimination proof, is not increased 
by the elimination of equality cuts, which is easily done. 

Multiple Succedent Logics 

Allowing for more than one formula in the succedent of a sequent does not change the 
results obtained. This is because both the equality rules and (291-),, (which produce 
substitutions even in the parametric parts of an inference rule) essentially operate 
on the left side of a sequent, so that all the basic lemmas of Section 3 remain valid. 
Therefore neither for classical logic (system DRE(29) with multiple succedents) nor 
for substructural logics (multiple succedent with additional multiplicative constants 
for falsity and disjunction) we have to deal with cases which crucially differ from what 
we have already considered. 

Restricted Initial Sequents 

Kreuger [12] has argued that a system, in which the rule 

(I) aFa 

is restricted to specific atoms a, is more appropriate for definitional reflection than 
a system with unrestricted (I). Actually, cut elimination holds for certain ways of 
restricting (I),  even when contraction is present (see [19]). In any case the rule 

(I-=) r = s F r - s  

is derivable (due to (F=) and the admissibility of (Repl)'). 
Nothing of what we have proved in the previous sections hinges upon having (1 = ) 

as a primitive rather than derived rule of inference. Similar to the contraction-free 
case, the cut elimination proof for the system with restricted (I)  can be carried over 
to the system with equality. 

Jffger ~ StErk's Approach 

In their proof-theoretic interpretation of PROLOG's negation-as-failure rule, Js 
& Sts [10] use a system which can be described as a multiple succedent variant of 
our COMPCD ) with negation as a primitive constant (rather than implication and 
absurdity), and an axiomatic rather than a rule-based theory of free equality (which, 
therefore, is not cut-free). Actually, Sts [21] system with "quantifier-free program 
rules" comes closest to COMP(29).  Based on a four-valued semantics, according to 
which a sequent expresses that either the antecedent is false or the succedent is true, 
Js & Sts reject (I).  By a method different from ours [17], they prove that cuts 



346 

with formulas, which are not equalities, can be eliminated (see [10]). This method 
can easily be adapted to the contraction-free case and carried over to our system. The 
difference in principle between their approach and ours concerns research goals. J/~ger 
& St~rk basically want to understand SLDNF resolution by proof-theoretic means, 
whereas we are interested in definitional reflection as a fundamental proof-theoretic 
principle in systems like DR(~D). 

Conclusion 

The equivalence between DR(D) and the completion of a definition in the presence of 
equality indicates the declarative strength of (:D~-)~. However, computationally, the 
system for definitional reflection based on (7:)1--) is preferable to the system DR(D) 
(which is based on (:D~-),~), since it permits the computation of bindings to variables 
independent of their (positive or negative) position in hypothetical queries. This 
feature is exploited in the programming language GCLA [1, 2]. 
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