
Definit ional Reflection and the Complet ion

Peter Schroeder-Heister *

Wilhelm-Schickard-Institut, Unlversit/i.t Tfibingen
Sand 13, 72076 Tiibingen, Germany

e-maih psh@logik.informatik.uni-t uebingen.de

A b s t r a c t . The logic of definitional reflection is extended with a theory of free
equality. Based on this equality theory a sequent-style notion of the completion
of a definition is motivated. Definitional reflection with free equality turns out
to be equivalent to the completion in this sense.

1 I n t r o d u c t i o n

The principle of definitional reflection ([9, 18]) is an extension of a sequent-style
in terpre ta t ion of definitional clauses for atoms, allowing one to introduce an a tom on
the left side of the sequent sign. For example, if in proposi t ional logic the a tom a is
defined by the three clauses

a.r a 'r a'r ,

then definitional reflection has the rule

F, CI~-A F, C~F-A F, C3[-A
F,a~-A

as one of its instances. It is dual to the more usual rule for introducing an a tom a on
the right side of the sequent sign, which has

r~c1 F~C~ FFC3
Ft-a FF-a FI-a

as instances. Because of this symmet ry we speak of ~)-left (19~-) and ~9-right (t -~)
rules, respectively, where D is the definition (= finite set of definitional clauses) as-
sumed to be given. (~-:D) and (:DF-) are a powerful extension of Gentzen-style sequent
systems, which were originally designed for logically compound formulas, to systems
which also include rules for atoms.

In the given proposit ional example, definitional reflection corresponds to Clark 's [3]
idea of database completion. It is obvious tha t the above rules express, in a sequent
style fashion, the axiom

a ~ C1VC2VC3,

* I would like to thank Roy Dyckhoff, Torkel Franz~n, an anonymous reviewer and espe-
cially Robert St/irk for many helpful comments and suggestions. - - This work was supported by
DFG grants Schr 275/8-1 and Schr 275/11-1, and by Esprit Basic Research Working Group 7232
(GENTZEN).

334

which is the completed definition of a in Clark's sense. This suggests to examine in
detail the exact relationship between definitional reflection with individual variables
and the completion. Such an investigation would not only shed some light on deft-
nitional reflection but also on the completion. In the case of an equivalence between
definitional reflection and the completion we would obtain a direct computational
interpretat ion of the completion, in so far as definitional reflection has such an inter-
pretation.

If variables are present, there are two variants of definitional reflection (see [18]):
the local or logical version (g t -) and the global or w-version (9t-) , , . Given a finite
set T~ of clauses of the form by=C, where b is an a tom and C a formula of first-order
intuitionistic logic, then they can be formulated as

(r e) { r , CaF-A : a = ba for some b.r �9 9 }

s aF-A

and

(9~)= {r~, Co'FAcr : a = mgu(a, b) for some b.r E 9 }

F, aF-A

respectively, while the right-introduction rule for a toms is

FFCa
(F:D) ~ a ~ C �9 :D

in both cases. For (91-) we have to require a certain proviso ensuring its closure under
substitution; for (9F)~, we just require that variables in clauses b~=C are standardized
apart from those in s aF-A. It can be shown tha t (gF-)~ is equal in power to (91-)+
(w), where (w) is the following rule:

(w) {r~, aahAo- : a = mgu(a, b) for some b.r E 9 }

F, a~A

This rule expresses the idea that, in order to show that something holds, i t i s sufficient
to show that all its closed substitution instances hold - - an idea which is related to
the w-rule in ari thmetic. It can be realized by a finitary rule, since to prove FO, aOFAO
for any ground substitution 0 we just need to prove FO, aOFAO for any substitution
O, for which aO is defined, i.e., for which a can be inferred by a definitional clause.
And all those 8 are specializations of the mgus cr computed in the premisses of (w)
(see [181). (9~-)~ is called a "global" rule since it justifies an assertion about an a tom
a by reference to all its instances. In contradistinction to that , (g F) is local since it
just refers to the way a itself rather than its instances are defined.

The rule (gF)~ was proposed independently by Eriksson [5, 6] and Girard [8] in
partially different contexts and under different names. As argued in [18], it has certain
computat ional deficiencies as compared to just (~1-). However, it will turn out that
it is (DI-)~, rather than (91--) which corresponds to the completion.

That (91--) does not express the idea of the completion can be seen as follows.
Suppose 9 consists of the rules

p(tl)C=q p(t2)C=q

335

for different closed terms tl and t2. Then from the completion of 7)

p(x)-+q

should follow. However, the sequent

p(x)1- q

cannot be derived from CDI -) (but from (7)1-),~). Therefore in the following by "defi-
nitional reflection" we always mean the system based on (7)1-)0, rather than CD1-).

Eriksson has presented (D1-)0, in such a way that it can be applied to higher order
logics as long as there are finite complete sets of unifiers to be considered in (7)1-)~,
instead of mgus) As usual with the completion, we confine ourselves to first-order
logic. In this sense the completion is less general than the more universal principle

Our results are limited in the sense that they establish an equivalence between the
completion of a definition and a declarative system based on definitional reflection,
but do not relate it to a computational interpretation of this system. In particular,
we do not relate the completion to negation as failure, which one would expect to
appear, at least in some disguised form, in such a computational interpretation. This
is basically due to the fact that the computational interpretation of (7)1-)o, is not
straightforward, a

The rest of this paper is divided as follows. In Section 2 we present a formal
system of intuitionistic logic with definitional reflection. Section 3 extends this system
with a sequent-style theory of free equality which is needed for the treatment of the
completion. Basic features of this theory (such as representation of unification and
invertibility of rules) are proved in some detail. In Section 4 a proof-theoretic version
of the completion of a definition is defined, and in Section 5 its equivalence with the
theory of definitional reflection plus free equality is established. Section 6 shows that
the definition of equality by an identity clause according to Eriksson and Girard is of
equal power as its characterization by the equality principles of Section 3. Section 7
relates the results obtained to substructural and other variants of the theory.

2 I n t u i t i o n i s t i c Logic w i t h Def in i t iona l R e f l e c t i o n

As our system with definitional reflection we here choose intuitionistic first-order
logic enlarged with principles (F7)) and (7)1-)~ for the introduction of an atom on
the right or left side of the sequent sign. We consider a language based on a fixed
(possibly infinite) set of n-ary function and predicate symbols (n > 0) and infinitely
many individual variables. We use x, y, z to stand for individual variables, f , g, h for
functions, r, s, t for terms, p, q for predicates, a, b, c for atoms, A, B, C for formulas
and F for multisets of formulas (all with and without primes and indices). Sequents
are written as P1-A, where notations like F1,F21-A or A,B, P1-C are understood in
the obvious way. Definitional clauses are of the form ar Given a definition 7:), the

1 Actually, he gives an even more general rule which also comprises (791-).
For example, definitional reflection is related to principles of pattern matching in constructive

type theory (see [4]).
a In this respect (791-)~ differs from (791-), for which a logic programming language exists (see [2]).

336

logic of definitional reflection over 79, called DR(79), is then given by the following
inference rules:

(1) al-a

(l-T) FT

(l-A) FII-A F2l-B
FI, F2I-AAB

Fl-A Fl-B
(l-V) FI-AVB FI-AVB

(l-~) F, AI-B
Fl- A---* B

(l-V) rl-A[y/x]
Fl-VxA y new

(l-3) rl-A[t/z]
FI-BxA

(l-79) rl-ca ar ~ 79

Fl- B
(Thin) F, AI-B

(_L) F, _LI-A

Fl-A
(Tl-) r, Tl-a

(^l-) r, A, Bl-C
F, AABF-C

(Vl-) F, Al-C F, Bl-C
F, AVBl-C

(...,l-) Fll-A F2, BI-C
F1, F2, A---* Bl-C

(W-) r,A[t/x]l-C
P, VzAI-C

(3l-) r,A[y/z]l-C
F, qxAI-C y new

(79l-)~ {ra, Cal-Aa : a = mgu(a, b) for some br e 79}
F, al- A

(Contr) F, A, Al-B
F, Al- B

In applications of (79l-)~ we always assume that variables are standardized apart, i.e.
variables in clauses are different from variables in the derivation we are constructing.
In general, when using substitutions, we always assume that they are defined, i.e.
that bound variables are appropriately renamed if necessary, when substitutions are
applied. (This could be achieved in the standard way by the syntactic division between
free and bound variables.) Obviously, the rule (Tl-) can be obtained by (Thin).
However, in order to make the following proofs independent of (Thin), we use it as
a primitive rule. It can easily be seen that the converse of (Tl-) is admissible, i.e.,
without harm we can add and delete T on the left of the sequent sign. The rule (_1.) is
derivable from (79l-)~ if we consider _L a 0-ary predicate not defined in 79. However, it
is useful to have _L as an explicit logical constant to keep the logic without definitional
clauses independent of the D-rules.

Instead of having thinning and contraction as primitive rules, we could built them
implicitly into the other rules in the well-known way. In particular, in order to guar-
antee contraction, (79l-)~ would have to be formulated with Pa, aa, Cal-Aa ra ther
than Fa, Cal-A(r in the premiss set. However, this way of proceeding would make
comparison with substructural variants of the theory more difficult (see Section 7).
The contraction-free version is particularly interesting for definitional reflection, since
it permits full cut elimination, whereas the system with contraction does not (the
standard counterexample uses 79 = {p.C=p--~.L}, see [17, 18]). By "cut" we mean the

337

rule

F1F-A r2, A}-B
(C u t) r~, r2~-B '

which is not part of D R (D) .
In the following, we will sometimes write applications of (Z)[-)~ as

{ r z . Ciai~-Aiai}i
F, a}-A

Here {...}i expresses that for each program clause we have a premiss of the form
indicated, where ai = mgu(a, bi) for the i-th program clause bir and where this
premiss is missing if there is no such mgu. If q is a substitution then [t/x]q and or[t/x]
denote the composition of the substitution [t/x] with a and vice versa.

3 Free E q u a l i t y

In order to formulate rules for the completion of a definition, we need a sequent-style
theory of free equality on the domain generated by the function symbols (including
individual constants) of our language. As such we use the very elegant cut-free formal-
ization by $ahlin, Franz~n & Haridi [16]. When added to D R (D) , equality cuts (i.e.,
cuts with equations as cut formulas) can still be eliminated, although the cut rule is
not admissible in general. Eliminability of equality cuts is crucial for the equivalence
of definitional reflection and the completion. Therefore it is not sufficient for us just
to add the axioms of Clark's [3] equality theory to D R (D) .

In this section we prove central rnetatheoretic properties of the sequent system for
free equality in some detail. 4 Apart from the purposes of the present paper, this is
justified by the general interest this system has for the proof-theoretic t reatment of
unification and logic programming.

We enlarge our language with a binary predicate - for equality and postulate the
following system E of inference rules:

Ft-A
r,x== A

, , , , rttlzl~-A[ttx] r[tlx]}-A[tlz]
�9 tept) ~ = _ t , ~ t=x, Ft-A provided x does not occur in t

(~) f (t l , . . . , tn) - -g(t l ' , . . . , t , /) , Ft-A provided f and g are distinct (m, n > 0)

(occ) z=t , Ft-A t=x, F~-A provided x is a proper subterm of t

tx =tl' , . �9 �9 tn- t~ ' , FF A
(inj) f (t l , . . . , t ,) = f (t x ' , . . . , t , ') , FFA (n > O)

4 These properties are mentioned by Sahlin et aL in [16] but, due to their purposes being
different, not proven syntactically. - Somewhat loosely, we continue to speak about free equality as
characterized by the following system. Sahlin et aL speak of "quasi-free" identity, since the property
of being freely generated is not first-order.

338

Here the label "(Repl)" stands for "replacement", "(inj)" for "injectivity" of func-
tions, and "(occ)" should remind one of the "occurs check" in unification. DRE(:D) is
the system obtained from DR(D) by adding the equality theory E, and by restricting
(Thin) and (Contr) to the case where A is not an equality formula. The reason for
this restriction is that we want to prove that thinning and contraction for equality
formulas:

rt-A P, s - t , s=tt-A
(Thin-) p, s-t~-A (Contr-) r, s=_t~-A

are both admissible in DRECD) - a result, which pertains to substructural versions
of the system, in which thinning and/or contraction are not available as primitive
rules.

E is exactly the system for equality proposed in [16], with the exception that we
have formulated (i-m) without implicit thinning and have added (-F) . Although it is
easy to see that the freeness axioms of Clark's equality theory [3, p. 304] are derivable
in E, it is not immediately obvious that the basic principles of general equality hold,
in particular the general replacement rule

r[t/z]~-A[t/x] r[t/x]~-A[t/=]
(Repl)' s . t , r[sl=l~-A[s/z] t - s , r[sl=]~-A[s/z]

without any restriction on t and s (see [11, 13, 15]). For that we need closure un-
der substitution (Lemma 2 below). First we show that E is a theory of first-order
unification.

L e m m a 1 (Unification lemma) In E the following rules are derivable:

FabAa
(0 s,-tl,.,.,s.-t.,rF-A i /~ solves the system of equations {s l - t l , . . . , s ,~ , tn}

(ii) s l=t l , , . . , s , - t , , Ft-A if the system {Sl"tl,..., Sn'tn} is not solvable.

P r o o f Slightly differently from the usual presentation (see e.g. [14, 20]), Herbrand's
rules for solving a multiset S = {sl=tl , . . . ,s,,=t=} of equations can be described as
follows. We consider transformations between pairs (S I a), where a is a substitution,
which are determined by the following transitions:

(===, S l y) , (s I , ,)

(f (r l , . . . , r ,) = f (, ' , ' , . . . , r , ') , S I ~) , (r l - - r l ' , . . . , r . -=- - r , ' ,S I a)

(=--t, S l ~) ----' (S[tl=l l~[t /=]) ~ does not occur in t (t=x, S l ,,) ~ (S[tlx] l a[t/z]) jpr~ x

(. _> 0)

Then by comparison with the usual transitions it can easily be seen that a is an mgu
solving S if and only if there is a derivation

(SLY) - - - , . . . - - , (~ I , ,) . s

5 The difference from the usual procedure is that we "store" equations in solved form as substi-
tutions in the right component of the pair. This avoids the repetition of an unsolved equation x---t
in the usual rule { z - - t } U S ~ { z - t } U S[t /z] , which logically corresponds to contraction.

339

Now for each step (S]a) ~ (S '] a ') the rule

S', Fa'b Aa'
S, F ab Aa

is a primitive rule in E - - either (--F), (in j) or (Repl). Therefore from

(S I 0) , . . . , (0 1 ~)

we obtain a derivation

FabAa

s , r~-A

in E. Furthermore, S is not solvable if and only if any derivation

(s I o) - - * . . .

ends at a stage (S' I a ') such that any equation in S' has the form x - t with x occurring
as a proper subterm in t, or the form f (r l , . . . , rn) -g (r l ' , . . . , rm') (m, n > O) with g
distinct from f . Since by (~) and (occ) we have S', Faq-Aa' in these cases, we obtain
a derivation of S, Fi-A in E.

L e m m a 2 (Substitution lemma) DRE(T)) is closed under substitution, i.e., if rF A
is derivable in D R E (D) , then so is FOFAO for any substitution O.

P r o o f We proceed by induction on the length of derivations and consider the last
step of the given derivation of FFA.

Apart from (occ), rules without premisses are closed under substitution. In the
case of (occ) we observe that xO and tO are not unifiable, if x occurs as a proper
subterm of t, so that we can apply Lemma 1 (ii).

In all cases of rules with premisses except (7:)1-)~, and (Repl), we apply the induction
hypothesis to the premiss(es).

In the case

{r' ai, CiaiF Aa~)~
(z)~)~ ,

F', ai-A

where F is F I,a and a~ = mgu(a,b~) for the i-th clause b~r in 7:) if there is a
unifier - - otherwise the i-th premiss is missing - - we proceed as follows. Suppose
alI = mgu(aO, hi). Then Oai' is a unifier of a and bl (since variables are standardized
apart), so Ocr/= aiOi for some 0i. By induction hypothesis we obtain

F' a~Oi, C~a~Oib A~riO~, i.e., F'Oai ~, CiOai% AOai' ,

from which by (T)t-)~

F'O, aOl"AO

follows.

340

In the case

r'[tlxl~-A[t/x]
L ~tePt) ,

where F is z--t, F', we can assume that xO and tO are unifiable (otherwise the assertion
holds by Lemma i (ii)). Suppose cr = mgu(zO, tO). Then by induction hypothesis we
derive

F'[t / z]OaF A[t / x]Oa,

which is the same as

F'OaI-AOa,

since x is not in t. By Lemma 1 (i) we obtain

xO-tO, F'OI-AO.

C o r o l l a r y 1 The rules (Repl)' and (Thin =) are admissible.

A rule is called invertible, if its inverse is admissible, i.e., if the derivability of its
conclusion implies the derivability of each of its premisses. As a generalized inverse
of (_1-) we consider the rule

tl=_tl,. . . , t,==.t,, FFA
(--e-)v rt-A

L e m m a 8 (Invertibility lemma) (i) The rule (-~-)~ is admissible in DRE(79) .
(ii} All equality rules with premisses, i.e., (-F), (Repl) and (inj) are invertible

in D R E (V) .

P r o o f (i): Induction on the length of derivations.

(ii): (=1-): Follows from (i).

(Repl): From x=t, D-A we obtain

t - t , r[tl=l~A[t/=l

by Lemma 2, and

r[t/x]~-A[t/x]

by (-+)'.

(in j): The derivation

f (t l , . . . , t , ,)=f (h ' , . . , , t , ')F- f (h , . . . , t n)= f (h ' , . . . , t,,') (I)

341

has to be transformed into

(l-_--)
l- f (q ' , . . . , t , ')=_ f (t l ' , . . . , t , ') (Repl) ' (n times)

t l=tx ' , . . . , t,=_t,'l- f (t l , . . . , t,)==_f(q ', . . . , t , ')

All other rules without premisses are treated in an obvious way. The rules with
premisses are permutable with (in j) .

C o r o l l a r y 2 The following rules are admissible in D R E C D) :

(i) s ~ = t ~ , . . . , s , - t , , F l - A i r a solves the sys tem of equations { s x - t a , . . . , s , = t , }
Fal- A a

50 (co.tr--)

P r o o f (i): In Lemma 1 (i) we have shown that the converse of this rule is derivable
in E by means of (=l-), (in j) and (Repl) . So we just have to apply the previous
lemma.
(ii): If s and t are not unifiable, then s - t , F F B is derivable by Lemma 1 (ii). If
a = m g u (s , t) , then tr solves the multiset { s - t , s - t } as well as the multiset { s - t } .
Therefore from (i) we obtain Fal -Ba , from which by Lemma 1 (i) we derive s=_t, Fl-B.

L e m m a 4 (Admissibility of equality cut) The rule

F l - s - t P, s=-tl-A
(C~t-) rl-A

is admissible in DRE(:D).

P r o o f by induction on the length of the derivation of the left premiss of the cut.
We consider the rule applied in the last step of this derivation.
If it is (I) , then the second premiss is already the conclusion.
If it is (l-=), then we apply (-l-)~ (which by Lemma 3 (i) is admissible) to the right
premiss, deleting t - t in its antecedens.
If it is any other rule without premiss, then the conclusion of the cut is an application
of this rule as well.
If it is (Repl) or (Dl-)~, then we apply Lemma 2 to the right premiss of the cut and
apply the induction hypothesis.
In all other cases we can move the cut one step up and apply the induction hypothesis.
(Note that (I-D) cannot have have an equality as its conclusion.)

4 T h e C o m p l e t i o n o f D

Unlike clauses, which define particular instances of a predicate p, the completed defi-
nition of p in Clark's [3] sense is uniform in the arguments of p. In our Gentzen-style
framework we capture this idea as follows. Suppose the clauses for p in 79 are

p(t, , , . . . , t ,m) ~ C,

p (t , , , . . . , t , , ,) <= C , .

342

Then we define the following Right- and Left-introduction rules for p�88

Fl~- t l - taa . . . F,,Ft,~=ti,~a F~-Cicr
(Fp) r , , . . . , r , , r e p (t , , . . . , t ,) 1 < i < n

(pl-) {F, t l - t { 1 , . . . , t,~-t{,,, C~-A: 1 < i < n} provided the variables in
F , p (t l , . . . , t,,)b-A til, Ci are not free in ti, F, A

If p is not defined (i.e., n = 0), then there is no (Fp), and (p~-) is

F,p(t x , . . . , t,~)FA "

By C O M P (T)) we denote DRE(T)) with (I-T)) and (T)~-)~ being replaced with (F-p)
and (pF) for all predicates p occurring in T).

Now let Cp be the following formula, which according to Clark [3] expresses the
completed definition of the predicate p:

(VXl . . . xm) (p (x l , . . . , x ,~) ~ ((3ffl)(Xa = t]l A . . . A x,n = tim A C1)
V

V
(3~,)(=1 = t,1 A . . . A x~ = t ,~ A C,))

where ffi contains the variables free in the i-th clause for p. If n = 0, then Cp is

(Vz, . . . z ,~)(p(za, . . . , z,~) +-* _L), i.e., (Vzi . . . x ,~)- .p(x l , . . . , x,~).

Then we can easily derive Cp in COMP(T)) . Conversely, in the presence of cut, we
can derive (Fp) and (p~-) using Cp as an axiom.

It is not difficult to check that all results proved in the previous section for
DRE(T)) also hold for C O M P C D). In fact, the proofs become simpler since it is
immediately obvious that (pl-) is closed under substi tution and can be permuted with
(Repl), because no unifiers are involved. However, we do not have to spell out proofs
since these results are a consequence of what follows. We only need Lemma 1, which,
as an assertion about derivability in E, Mso holds for C O M P (T)) .

5 D e f i n i t i o n a l R e f l e c t i o n a n d t h e C o m p l e t i o n

The main result of this paper is the equivalence of DRE(T)) and C O M P (T)) . It is
almost a corollary of what we have proved in Section 3.

T h e o r e m 1 Each primitive rule of C O M P (D) is admissible in DRECD), and each
primitive rule of DRE(T)) is derivable in C O M P (T)).

P r o o f We have to consider (FT)), (T)~-)~, (I-p) and (pF). The rest is identical in the
two systems.

(i) (bp) is admissible in DRE(T)).

343

F~-C~a

Fl~-tl=tii a . . . Fmbtm=tima

(~-T))
r t - p (t , ~ , . . . , t , m a) (R e p l) '

t l = t a a , . . . , tm=---tima, F}-p(ta, . . . , tin) (Cut--)
r , , . . . , rm, rl-p(tl,. . . , tin)

(ii) (p}-) is admissible in DRE(T)).

If { t l=ta , . . . , tm=t lm} is not solvable, then p(t l , . . . , tin) and p(tia,. . . , t lm) are not
unifiable. Otherwise, let ai be such a unifier. Then we obtain

f F, t1=_ta,..., tm=t~m, Ci}'A !
- - - - - Corollary 2 (i)

..~. rai, CwiI-Aal Si (T)~-),,
r , p (t , , . . . ,tm)FA

(iii) (f-T))is derivable in GOMP(T)) .

Let a be p(t i l , . . . , tim).

f - t , ia-t i , a (F-) . . . Ftima-t,,~a (F--) FF-Cia
Fbaa

(iv) (T)F)o, is derivable in COMP(T)) .

Let a be p(t , , . . . , t ,~) . If al = rngu(p(t l , . . . , tm),p(ta, . . . , t i ,~)) , then al solves the
equation system { t l -~ ta , . . . , t ,~ t im} . Therefore we have

Fa~, C~aiFAcri Lemmal~
F, ta=t; i , �9 �9 tm=t~m, CIF-A Ji

I', a~- A (pb)

6 D e f i n e d E q u a l i t y

Instead of formulating a separate theory of free equality one may treat equality directly
in the framework of DR(/)) . As has been proposed independently by Eriksson [5] and
Girard [8], we can define equality by extending a definition 7) with the single clause

z=zC=T .

By "7:) =" we denote 7) enlarged with this equality clause. Then we can show that
DR(T) =) is as powerful as DRE(T)) .

L e m m a 5 (i) The rule (inj) is admissible in DR(7)=) ,
D R E (V) is derivable in DR(T)-) .
(ii) Every rule of DR(T) =-) is derivable in DRE(T)) .

while any other rule of

P r o o f (i) For (f---) and (-~-) this is obvious (we have to use (~-T) and (T~-)). For
(Repl) we use (T~-) and the fact that { t / x , t / z } is an mgu of x=_t and z~-z. For

344

(~) and (occ) we use that neither f (t a , . . . , t ,) = g (t l ' , . . . , t , #) (f and g distinct) nor
z=_t (z proper subterm of t) unifies with z=_z. For (inj) we argue as follows. If
f (t l , . . . , t,) and f (q ' , . . . , t ,) are not unifiable, then the conclusion of (in j) holds by
(D-F)~ anyway. Otherwise, for a unifier tr, from q=ta ' , . . . , t,--t, ' , FFA we obtain
q ~ - - q ' a , . . . , t , a = t , ' a , raI-Atr, since D R (D -) is closed under substitution. Since the
rule (=F)Vcan easily be shown admissible in DR(D=), we obtain Fal--Aa, from which
by (TF) and (~D--'I-),~ the desired result f (t x , . . . , t ,) = f (t l ' , . . . , t , '), F~A follows.
(ii) We use (3-}--) and Lemma 1.

R e m a r k Instead of using the clause z=--z~T for equality, one can of course regard
the following rules, which are obtained from this clause, as an equality theory of its
own (see [81):

I 'aFAa
~t--t s - t , FI-------A if a = mgu(s, t) s--t, F~----------A if s and t are not unifiable

As a consequence of Lemma 5 we obtain the following theorem.

T h e o r e m 2 COMP(~D) and DR(Z) =) are equivalent in the sense that each rule of
one system is admissible in the other one.

Thus we obtain a computational interpretation of CO MP (D) in so far as DR(D ~)
has a computational interpretation. However, as remarked in [18], this computational
interpretation of DR(D) (and therefore DR(D=), which is a special case thereof)
does not go very far, since variables in a sequent FI-A, which is to be evaluated by
(2~'-),o, are understood universally rather than existentially. It is not an easy task
at all to combine this feature with the idea of computing answer substitutions, since
in DR(Z)) we do not have lifting (permutability of substitution and computation) in
the usual sense (see [6] for a presentation of some difficulties). This is due to the fact
that with respect to computation (FD) and (D~-)~, are not completely dual to each
other. Loosely speaking, the left side of the turnstile corresponds to negative goals
and the right side to positive goals in traditional logic programming. Actually, in some
sense (~DI-),~ corresponds to the negation by failure rule, whereas (I-D) corresponds
to ordinary resolution. This relationship has to be elaborated in subsequent work.

7 Final Remarks

Substructural Logics

Logics with restricted structural rules (substructural logics) are particularly inter-
esting in combination with definitional reflection. The logic DR(/:)) does not enjoy
eliminability of cut in general whereas the contraction-free variant does (see [17]). It
can easily be checked that all results and proofs in Sections 3 to 6 are independent
of whether in the underlying logic DR(Z)) contraction or thinning or both of them
are lacking. This is because in the equality extension DRECD) we have restricted the
rules of thinning and contraction to formulas which are not equalities. Instead we have
shown that for equalities both thinning and contraction are admissible independently
of their availability for arbitrary formulas. Furthermore, we have formulated the rules

345

for T and ^ in the multiplicative way in Girard's [7] sense (his notation would be 1
and | respectively). The addition of additive truth and additive conjunction does
not cause any change in the proofs.

Our proof of cut elimination for the contraction-free case [17] can easily be ex-
tended to the system with equality. We just apply the reductions given in the cut
elimination proof and eliminate equality cuts according to Lemma 4 whenever we en-
counter such cuts. We only have to check that the number of applications of (29F)o,,
which is one of the induction parameters of the cut elimination proof, is not increased
by the elimination of equality cuts, which is easily done.

Multiple Succedent Logics

Allowing for more than one formula in the succedent of a sequent does not change the
results obtained. This is because both the equality rules and (291-),, (which produce
substitutions even in the parametric parts of an inference rule) essentially operate
on the left side of a sequent, so that all the basic lemmas of Section 3 remain valid.
Therefore neither for classical logic (system DRE(29) with multiple succedents) nor
for substructural logics (multiple succedent with additional multiplicative constants
for falsity and disjunction) we have to deal with cases which crucially differ from what
we have already considered.

Restricted Initial Sequents

Kreuger [12] has argued that a system, in which the rule

(I) aFa

is restricted to specific atoms a, is more appropriate for definitional reflection than
a system with unrestricted (I). Actually, cut elimination holds for certain ways of
restricting (I), even when contraction is present (see [19]). In any case the rule

(I-=) r = s F r - s

is derivable (due to (F=) and the admissibility of (Repl)').
Nothing of what we have proved in the previous sections hinges upon having (1 =)

as a primitive rather than derived rule of inference. Similar to the contraction-free
case, the cut elimination proof for the system with restricted (I) can be carried over
to the system with equality.

Jffger ~ StErk's Approach

In their proof-theoretic interpretation of PROLOG's negation-as-failure rule, Js
& Sts [10] use a system which can be described as a multiple succedent variant of
our COMPCD) with negation as a primitive constant (rather than implication and
absurdity), and an axiomatic rather than a rule-based theory of free equality (which,
therefore, is not cut-free). Actually, Sts [21] system with "quantifier-free program
rules" comes closest to COMP(29). Based on a four-valued semantics, according to
which a sequent expresses that either the antecedent is false or the succedent is true,
Js & Sts reject (I). By a method different from ours [17], they prove that cuts

346

with formulas, which are not equalities, can be eliminated (see [10]). This method
can easily be adapted to the contraction-free case and carried over to our system. The
difference in principle between their approach and ours concerns research goals. J/~ger
& St~rk basically want to understand SLDNF resolution by proof-theoretic means,
whereas we are interested in definitional reflection as a fundamental proof-theoretic
principle in systems like DR(~D).

Conclusion

The equivalence between DR(D) and the completion of a definition in the presence of
equality indicates the declarative strength of (:D~-)~. However, computationally, the
system for definitional reflection based on (7:)1--) is preferable to the system DR(D)
(which is based on (:D~-),~), since it permits the computation of bindings to variables
independent of their (positive or negative) position in hypothetical queries. This
feature is exploited in the programming language GCLA [1, 2].

References

1. Aronsson, M., GCLA: The Design, Use, and Implementation of a Program De-
velopment System. Ph.D. thesis, University of Stockholm 1993.

2. Aronsson, M., Eriksson, L.-H., Gs A., Halln~s, L. & Olin, P. The pro-
gramming language GCLA: A definitional approach to logic programming. New
Generation Computing, 4 (1990), 381-404.

3. Clark, K. L. Negation as failure. In: Gallaire, H. & Minker, J. (Eds.), Logic and
Data Bases, New York 1978, 293-322.

. Coquand, T. Pattern matching with dependent types. In: Workshop on Logical
Frameworks, Bdstad 1992, Proceedings, available by ftp from ftp.cs.chalmers.se
as/pub/cs/reports/haast i.92/procSS.

5. Eriksson, L.-H. A finitary version of the calculus of partial inductive definitions.
In: Eriksson, L.-H., Hallngs, L. & Schroeder-Heister, P. (Eds.), Eztensions of
Logic Programming. Second International Workshop, ELP-91, Stockholm, Jan-
uary 1991, Proceedings. Springer LNCS, Vol. 596, Berlin 1992, 89-134.

6. Eriksson, L.-H. Finitary Partial Inductive Definitions and General Logic. Ph.D.
thesis, Royal Institute of Technology, Stockholm 1993.

7. Girard, J.-Y. Linear logic. Theoretical Computer Science, 50 (1987), 1-102.

8. Girard, J.-Y. A fixpoint theorem for linear logic. In: P. Lincoln (Ed.), Linear
Logic Mailing List, linear@cs.stanford.edu, 5 February 1992 (Reply: ibid., 19
February 1992).

9. Halln~s, L. & Schroeder-Heister, P. A proof-theoretic approach to logic program-
ming. I. Clauses as rules. Journal of Logic and Computation, 1 (1990), 261-283;
II. Programs as definitions, ibid. 1 (1991), 635-660. Originally published as SICS
Research Report 88005, 1988.

347

10. Js G. & St~rk, R. F. A proof-theoretic framework for logic programming. In:
S. Buss (Ed.), Handbook of Proof Theory (forthcoming).

11. Kanger, S. A simplified proof method for elementary logic. In: Braffort, P. ~z
Hirschberg, D. (Eds.), Computer Programming and Formal Systems, Amsterdam
1963, 87-94.

12. Kreuger, P. Axioms in definitional calculi. This volume.

13. Lifshits, V.A. Normal form for deductions in predicate calculus with equality and
functional symbols. In: Slisenko, A.O. (Ed.), Studies in Constructive Mathemat-
ics and Mathematical Logic I, New York 1969, 21-23.

14. Martelli, A. & Montanari, U. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4 (1982), 259-282.

15. Richter, M.M. Logikkalkiile. Teubner, Stuttgart 1978.

16. Sahlin, D., Franz~n, T. & Haridi, S. An intuitionistic predicate logic theorem
prover. Journal of Logic and Computation 2 (1992), 619-656.

17. Schroeder-Heister, P. Cut-elimination in logics with definitional reflection. In:
D. Pearce $z H. Wansing (Eds.), Nonclassical Logics and Information Process-
ing. International Workshop, Berlin 1990, Proceedings. Springer LNCS, Vol. 619,
Berlin 1992, 146-171.

18. Schroeder-Heister, P. Rules of definitional reflection. In: 8th Annual IEEE Sym-
posium on Logic in Computer Science (Montreal 1993). IEEE Computer Society
Press, Los Alamitos 1993, 222-232.

19. Schroeder-Heister, P. Cut elimination for logics with definitional reflection and
restricted initial sequents. Manuscript, available by ftp as /pub/LS/resini from
gopher.informatik.uni-tuebingen.de.

20. Snyder, W. A Proof Theory for General Unification. Birkhs Basel 1991.

21. St/~rk, R. F. Cut-property and negation as failure. Technical report, Institut f/ir
Informatik und angewandte Mathematik, Universits Bern, 1992 (available by
ftp as/pub/staerk/cut from ftp.cis.uni-muenchen.de).

