
Hypothetical Reasoning and Definitional
Reflection in Logic Programming

Peter Schroeder-Heister *

Universit£t Tfibingen/SNS
Biesingerstr. 10, 7400 Tfibingen, Germany

This paper describes the logical and philosophical background of an extension of
logic programming which uses a general schema for introducing assumptions and
thus presents a new view of hypothetical reasoning. The detailed proof theory of
this system is given in [7], matters of implementation and control of the corre-
sponding programming language GCLA with detailed examples can be found in
[1, 2]. In Section I we consider the local rule-based approach to a notion of atomic
consequence as opposed to the global logical approach. Section 2 describes our
system and char~terises the inference schema of definitional reflection which is
central for our approach. In Section 3 we motivate the computational interpreta-
tion of this system. Finally, Section 4 relates our approach to the idea of logical
frameworks and the way elimination inferences for logical constants are treated
therein, and thus to the notions of logic and structure. It shows that from a
certain perspective, logical reasoning is nothing but a special case of reasoning
in our system.

1 L o c a l a n d g l o b a l c o n s e q u e n c e

If one poses an atom A as a query with respect to a definite Horn clause pro-
gram P, this is normally understood as asking whether there is a substitution
0 such that At? can be inferred from P, and for which substitutions this holds.
Symbolically, we may represent this as

(?O) P ~ AO, (1)

where ~ denotes first-order logical consequence. Because first-order logic is com-
plete, we may alternatively write

(?O) Pt-LAO, (2)

where ~-Z denotes derivability in some formalization of first-order logic. Expres-
sion (1) would represent a model-theoretic interpretation, (2) a proof-theoretic

* I would like to thank Michael Morreau for helpful suggestions.

328

interpretation of definite Horn clause programming. In both cases, the program
P is considered a collection of formulae of a certain form, viz.

(V)(A1A... AAnDA) (3)

for atoms A1, . . . ,An ,A , or some equivalent of it (here V denotes universal clo-
sure). We call this the clauses-as-formulae view of logic programs. Since program
clauses are considered hypotheses or axioms with respect to which something is
proved, we may also speak of the clauses-as-axioms view. If one wants to apply
proof-theoretic methods to prove, e.g., the soundness and completeness of SLD-
resolution, one might consider for L a system which is proof-theoretically easily
tractable such as Gentzen's sequent calculus L K or some appropriate subsystem
thereof. This is the way the theory of logic programming is presented in Beeson
[3] and completeness is proved.

It is then easy to extend logic programming to cover hypothetical queries
posing A with respect to a hypothesis H and asking for which substitution 0 the
atom A0 can be inferred from H0 with respect to P, symbolically

(?0) HO, PPLAO. (4)

The hypothesis H0 is simply put on the left side of the turnstile in addition
to the program P. Extensions of logic programing, which treat hypothetical
reasoning in that way, have been developed by Gabbay and Reyle [5], and, in a
sequent-style framework, by Miller [11] and Beeson [3].

We propose a different approach to hypothetical reasoning, considering a
program P to be a set of rules rather than a set of axioms. As rules, which may
be written as

A1, .. . ,A~=c,A (5)

instead of (3), clauses define themselves a notion of consequence t-p. According
to this clauses-as-rules view, instead of (2) we now interpret a query posing A
as asking

(?0) ~-pAO,

and instead of (4), a hypothetical query is now interpreted as asking

(?0) HeF-pAO. (6)

If we consider t-p to be a local notion of consequence and F-L to be a global one,
we may say that according to (4) program clauses are axioms with respect to a
global notion of consequence whereas according to (6) they are rules defining a
local notion of consequence. Concerning hypotheses, we may say that in (4) they
are formally treated in the same way as program clauses (namely as assumptions
with respect to global dedueibility), whereas in (6) they are treated differently
from clauses: The hypotheses as assumptions with respect to global deducibility,
and the program clauses as defining local deducibitity.

Unter a certain interpretation of F-p (see below), these two approaches are
intertranslatable:

• . . , P~z (derivability f r o m P in L) (7)

329

and
...~-p... (derivability in P) (8)

are equivalent (if rules of the form (5) are appropriately translated into formulae
of the form (3) and vice versa). From this point of view, the difference between
the clauses-as-axioms view and the clauses-as-rules view is analogous to that
between Hilbert-style and Gentzen-style formalizations of logic, now appearing
at the level of atoms rather than logical constants. The (global) derivability
from P in L corresponds to the derivability from logical axioms using only the
global rule of modus ponens (in the propositional case), whereas the (local)
derivability in P corresponds to the derivability using logical rules which are
specific for every logical constant. This leads to an important shift in perspective
on logic programming, corresponding to the conceptual shift from Hilbert- to
Gentzen-style calculi. In particular, it allows one to prove standard results of
the theory of logic programming (such as the completeness of SLD-resotution)
in a straightforward way, since derivations in the sense of t-p are closely related
to SLD-derivations (such a proof is given in [7]).

Proof-theoretically, this means that logic programming basically belongs to
the theory of atomic systems. According to this view logic programming is, liter-
ally speaking, not logic programming but programming with atomic rules. These
rules can be translated into logical language, but this translation is conceptually
secondary.

2 Definitional reflection

However, we propose an even stronger reading of Fp, according to which

. . . ,Pt-L. . .

and
• . . } - p . . .

are no longer equivalent. This reading is based on a definitional view of logic
programs. We look upon the clauses of a program as definitions of their heads.
In contradistinction to program clauses, assumptions appearing to the left of the
turnstile are not considered as contributing anything to the meaning of atoms.
Whereas as a definition the program fixes the "world" one is dealing with in a
particular context, assumptions are just hypotheses about what is the case in
this world without changing it.

This idea will be captured by defining a consequence relation Fp by means
of a sequent calculus. 1 The definitional reading of programs is determined by
a specific inference schema of definitional reflection. This schema allows one to
assume an atom A by reference to the program rules defining (= permitting
to infer) A. If one uses this schema with respect to A, one refers in a specific

1 Here "consequence relation" is not understood in Tarski's sense but quite unspecifi-
cally as a relation between assumptions and assertions.

330

way to what the program (definition) says about A and not to anything else we
assume about A. For example, suppose B=#A is the only program rule by means
of which A can be inferred, and we have derived

B---~A, BbC,

then by definitional reflection we may pass to

B--*A, AFC.

If there is no such program sule, we cannot perform this step, although the
assumption B---~A seems to say the same about A as does the program rule
B=t,A (the precise inference schemata for definitional reflection and for --* are
given below). The basic difference is that as a program rule B=~A is considered
as defining A whereas as an assumption B ~ A is not so considered, and the
inference schema of definitional reflection only refers to the definitional aspects
(the meaning) of A.

The (local) consequence relation bp generated by the program P is formally
defined as follows:

We use A, B, C for atoms, F and G for implicationM formulae built up from
atoms by means of implication --~ (including atoms as a limiting case), and X,
Y, Z for finite sets of implicational formulae. All letters may have subcripts. A
sequent has the form

XF-F,

a clause or program rule the form

X =~A.

Expressions like X, Y b F or X, F::c,A are understood in the obvious way. A pro-
gram P is a finite set of clauses. We write XF'pF to express that the sequent
X F F is derivable in the sequent calculus with respect to a fixed program P.

The sequent system has the following three program-independent inference
schemata:

(I) X, AbA

X, FII-F2
X -F F2

X -F1 X, F2 -F
X , F1---* F~F F

These inference schemata constitute a Gentzen sequent-style implicational cal-
culus. One also could give schemata for other operators such as conjunction or
universal quantification. For simplicity (as regards the computational interpre-
tation of the system) we restrict ourselves to implication. These operators need
not be read as logical constants in the narrower sense, since they can be used
in bodies of rules to define logical constants. We would rather prefer to speak

331

of "structural" operators or connectives as opposed to logical ones. So we call
--* a "structural implication" to be distinguished from "logical implication" D.
The reason for introducing --. at all is that implications in the bodies of rules
strongly increase the expressive power of logic programming, especially in con-
nection with definitional reflection. Without --* one would lose the power that
one has in logical rules which allow discharge of assumptions. (For the relation-
ship between logic programming and logical rules and generally between rules
and structure see §4 below.)

There are two schemata referring to the program P. The first one is the
following:

(t-P) (Xt-Ftr)FeY
X~-Acr

for any clause Y:2zA in P. It simply says that from a substitution instance of
the premisses of a clause one may pass over to the corresponding substitution
instance of its conclusion, i.e., it expresses closure under program rules. Since
we look at programs as definitions, it may be called the schema of definitional
closure. It is what one would normally expect as a schema for rule application.
We use the label "(F-P)", since it operates on the right side of the turnstile.

The schema of definitional reflection (PF-), which is characteristic of our
approach to hypothetical reasoning, permits the introduction of an atom on the
left side of the turnstile. It is a natural counterpart of the schema of closure
under program rules and is defined as follows: Let for any atom A,

Dp(A) := {For: A = B~ for a clause Y=~.B in P}.

Here Dp(A) is to be read as "the definiens of A according to P" . Then

(P~') (X, Z~-F)zeDp(a) provided De(A t) = (Dp(A)) r for all substitutions T
X, AFF

This inference schema can informally be read as follows: If F follows from X
and the definiens of A, then F follows from X and A itself. It may be motivated
in the following way: Since P is considered a definition, the clauses Y=~B in P
whose heads have A as a substitution instance (i.e., A = B a for some ~r), define
A. The Yq in DR(A) then exhaust all possibilities of inferring A according to
the program and thus represent the "meaning" of A. Therefore everything one
obtains from every Y(~ is obtained from A itself.

The proviso for the application of (PP) is an invariance condition. What
should not happen is that by further specializing A by means of substitution
the definiens of A is enlarged. This guarantees that the inference schema (P~-)
is dosed under substitution.

The schema (P~-) is a natural counterpart of the schema (PP) and thus fits
in a very natural way into the schemata of Right- and Left- introductions in
sequent style systems. To give a deeper understanding of this duality it might
be useful to formulate (F-P) and (Pt-) in natural deduction style as introduction
and elimination schemata for A. The schema (FP) then reads

(A - I) Ya Y=t,B E P and A = Bo"

332

and (Pt-) reads

(A - E)
A

E P and A = B a

F

where (F or) meansthat therearederivat ionsofFfromYaforeveryycr

fulfilling the given condition. It is obvious that this inference schema is modelled
according to the schema of V-elimination in natural deduction. It is furthermore
obvious that (A - I) and (A - E) represent introduction and elimination schemata
for an atom A and not for the predicate p, if A is p(t) for some term t. The minor
premisses of (A - E) may change completely if one changes from p(t) to some
p(¢'), if ¢' is not a substitution instance of t. Thus (A - E) is not specific for
p but for the whole atom p(t). This makes our schema differ fundamentally
from Martin-Lbfs elimination principle for predicates in his theory of iterated
inductive definitions ([10]), where the minor premisses are only dependent on the
predicate being eliminated and not on a particular instance thereof. In this sense
our principle of definitional reflection is local and not a global induction principle
as Martin-Lbf's. It is more closely related to Lorenzen's inversion principle (see
[9, 8]). 2 Obviously the natural deduction schema (A - E) is not very useful from
a computational point of view (i.e., for backward reasoning), since the major
premiss A does not occur below the line.

To illustrate (Pb) by an example, consider the following propositional pro-
gram as an example: P = {p~s, q~s}. Then we have the following derivation:

p,q--,rbp r,p,q--*rF-r q,p--~rl-q r,q,p--~rbr (-+b)
p, p--*r, q--.rbr (--*b) q, p--*r, q--*rl-r

s, p--+r, q--,rbr
(P~),

which corresponds to V-elimination if s is pVq. (For the relationship of the schema
of definitional reflection to elimination inferences in natural deduction see §4.)

Another example: Let _l_ be a 0-ary predicate which in P is given no defini-
tion, i.e., there is no clause with head l in P (otherwise P is arbitrary). Then
D R (l) -- 0, thus the set of premisses of (PI-) is empty, so that we can trivially
derive

X, .I_~-F

for any X and F. This means that we have an intrinsic notion of falsity built
into the system with the ex/also quodlibet as its characteristic feature.

2 If the set DR(A) is just a singleton {Y~r}, the schema (PI-) actually allows to invert
the clause Y=~B (with Ba = A) in the sense that AbYa becomes derivable.

333

If one takes away from the system the schema (Pk-) one obtains a system
which is extensionally equivalent to the system QN-Prolog of Gabbay & Reyle
[5], and to a certain subsystem of systems by Miller and by Beeson ([11, 3]).
Conceptually, however, it is still different from them, since they are all based
on the clauses-as-formulae view. It is the clauses-as-rules view and its differ-
ent treatment of assumptions and programs, which makes definitional reflection
possible and thus the full symmetry in the inference schemata of the sequent
calculus.

3 Computational interpretation

We now give a computational interpretation of the sequent system we have
described so far. This computational interpretation may be viewed as an oper-
ational semantics of a programming language. A description of such a language
GCLA is given in [1, 2].

A goal is defined to be a finite set of sequents. Goals are denoted by capital
Greek letters A, F, 27,/7. We say that 27 is valid with respect to the program P
if for each sequent XF'F in ~7, X F p F holds. When proving a goal 57 as a query
with respect to P, we ask for substitutions 0 such that 270 is valid with respect to
P. In the following, we describe in abstract terms a method of how to compute,
given 57, substitutions 0 such that ,UO is valid with respect to P. This method
is partly based on a generalization of SLD-resolution. The abstract description
is given by an inductive definition of the relation "or is computable for 27 with
respect to P" , in short: (27, or, P) or (27, ~} (since P is assumed to be fixed).a We
give this inductive definition in terms of a formal system; i.e., if one has derived
(27, or) in this system, this is to mean that g is computable for 27 with respect
to P. We throughout use the fact that the inference schemata of the sequent
calculus introduced in the previous section are closed under substitution.

In the following we state inference schemata and give in each ease an intuitive
motivation telling why the schema reflects a computation step with respect to
the consequence relation Fp. In each case, a step

(27i,
(27,,

corresponds to a computation step leading from a goal 272 to a subsequent goal
271, expressing that if ~r: is computable for the goal 271 then or2 is computable
for the goal 272. In steps where no bindings to variables are created during
computation, cq equals g2. If a substitution g is computed at that step, then ~2 is
¢~1. This corresponds to the fact that during evaluation of a query, substitutions
are created stepwise and are then composed.

Axioms are of the form

3 The third component P may be important for a concrete programming language,
where one allows one to change the program P in addition to adding or deleting
assumptions. This is actuMly the case in GCLA.

334

for any substitution a.
Motivation: If the goal is empty then for any substitution ~, nothing needs to
be computed, so every substitution is correct.

The remaining inference schemata correspond to those given for the relation
[-p:

(~r, O) i f Act = Bo'.
(~ 0 {X, A~-B}, ~0}

Motivation: Suppose the sequent X, AbB occurs as a subgoal of the considered
goal £7 0 {X,A~'B}, and A unifies with B. This means that by applying the
substitution ~r to the goal £7 0 {X, AbB} one obtains £:a 0 {Xer, Ac~'A~}. Since
X~, AabAa can be obtained by (I), one may omit this sequent from the goal and
continue with £7a as the subsequent goal. Therefore, if some 0 is computable for
the subsequent goal Zkr, a0 is computable for the original goal Z: 0 {X, AbB},
since ~ is the additional substitution computed at this step.

(Z U {X, FlhF2}, O)

(~ 0 {X~-FI---~F2}, O)

0 {x, F F eF}, e)

Motivation: Obvious from (~'-0 and (---d-). No substitution is computed at
these steps.

(,Ua U {Xcrhr~r : F E Y}, O) i f Y=~A is in P and Act = Bet
(X' 0 {XhB}, aO)

Motivation: Suppose X~'B occurs as a subgoal of the considered goal Z7 0
{XF-B} and B unifies with the head A of a program clause YzaA. Then by
applying the substitution ~r to this goal one obtains ,Ua 0 {XcrbAcr}. Since the
sequent XaFAa can be obtained from {X~rF-Fa : F E Y} by (hP) , one may
replace it by {Xab'Fa : F E Y} and continue with ~ U {XahFa : F E Y} as
the subsequent goal. Therefore, if 0 is computable for this subsequent goM, ¢0 is
computable for the original goM, since ¢ is the additionM substitution computed
at this step.

(~r U {Y ,X~bFa : Y e Dp(AcT)},O) i f Dp(A~-) = (Dp(Acr))r for all r
(Z' 0 {A, XbF}, ~0)

If the proviso (i.e., Dp(A~v) = (Dp(Acr))r for all v) is fulfilled for ~, we also
say that ~ is A-sufficient.
Motivation: Suppose A, Xb'F occurs as a subgoM of the considered goal £7 (J
{A, XhF} and a is A-sufficient. Then by applying the substitution a to this
goal one obtains ,Us 0 {A~r, XcrbFcr}. Since a is A-sufficient, the proviso for
the application of (PF-) with respect to Aa is fulfilled, i.e., Act, XeF-Fa can be
obtained from {Y, X a b F a : Y E Dp(Aer)} by (P~-). Thus we may replace it by
{Y, XcrF-F~r : Y E Dp(Acr)} and continue with £7~rU{Y, Xa~'F~r : Y E Dp(Aa)}

335

as the subsequent goal. Therefore, if 0 is computable for this subsequent goal,
g8 is computable for the original goal, since ~r is the additional substitution
computed at this step.

If one considers only definite Horn clause programs, i.e., programs with only
atoms in bodies of clauses, and allows only goals of the form {FAx,. . . ,bAn},
then one only needs (t-P) and the corresponding schema in the definition of
computability (and axioms (0, ~), of course). This corresponds exactly to SLD-
resolution, showing that computability in our sense extends SLD-resolution in a
certain way. In our case bindings are created at two new places: In the evaluation
of (I) and of (Pt-). In the case of (I) this is just unification of the succedent
with one antecedent of a sequent. In the case of (Pt-) it means the computation
of an A-sufficient substitution. A feasible algorithm for the computation of A-
sufficient substitutions is decribed in [7]. It must be noted, however, that there
is no unique minimal (that is, most general) A-sufficient substitution for every
A.

It can be shown that computability is sound and complete in the following
s e n s e :

Completeness of computability: For any substitution ~, zU~r is valid with respect
to P iff there is a r which assigns the same terms to variables occurring in Z as

and which is computable for ,U with respect to P.

The proof (see [7]) proceeds by stepwise comparing the inductive definitions
of k'p and of computability with respect ot P. Since the inference schemata in
these inductive definitions can be completely separated, it also contains proofs of
the completeness of standard SLD-resolution for definite Horn clause programs
and of an extended notion of computability for the system without (PF). Of
course, this is only the abstract, nondeterministic notion of completeness, as it
is normally considered in the theory of logic programming. 4

4 D e f i n i t i o n a l R e f l e c t i o n a n d S t r u c t u r a l F r a m e w o r k s

It was basic for the described approach to logic programming that programs as
sets of rules are conceptually kept apart from inference schemata handling these
rules. In this way certain inferences, particularly definitional reflection (P~-),
can specifically refer to these rules as a separate sort of objects. This makes
our approach differ from proof-theoretic approaches where program clauses are
treated as special initial sequents or as sets of assumption formulae.

The conceptuM division between rules and inference schemata is fundamental
for the idea of structural frameworks, too. A structural framework (see [15]) is
characterized by a concept of "rule" and a set of inference schemata that describe
which inferences can be performed given a database of rules. Following Gentzen's
terminology, these inference schemata are called "structural", since they do not
contain logical content. When dealing with logics, the logical content is given

4 For soundness and completeness results of the notion of falsity in our systems with
respect to finite failure see [7].

336

through the database of rules. However, the inference schemata of a structural
framework go much beyond what Gentzen called "structural". They do not only
regulate the way formulae in a sequent may be associated (such as Thinning or
Contraction), but also the way rules are treated. Furthermore, they may contain
schemata concerning a sort (or sorts) of implication which is then not considered
logical but structural implication, i.e., some analogue to logical implication at
the struturat level (corresponding to the comma, which is a structural analogue
of logical conjunction at the structural level, i.e., a structural conjunction). They
may also contain a structural generalization corresponding to universal quantifi-
cation in logic. So a structural framework is a kind of "structural logic" which
particularly describes the handling of a database of rules. Therefore the picture
is the following:

Principles for structural conjunction
and implication

Principles for handling the database

whereas in Gentzen's approach we have

[t Oatabase of rules I

Principles for structural conjunction

Principles for logical constants

In Gentzen the content which is now in the database is part of specific inference
schemata dealing with logical constants.

Structural frameworks are particularly well-suited for the treatment of logics
with restricted structural postulates. In permitting different families of conjunc-
tion-like connectives with different structural postulates assumed for them they
are similar to Belnap's display logic (see [4]). However, the consideration of
structural implication(s) in combination with the treatment of databases of rules
which may contain such structural implications in their bodies extends this ap-
proach considerably. It allows us a uniform treatment of logical constants in
varying structural environments (see [12]).

More important in the present context, however, is that this approach is
entirely independent of whether the content of the database is logical or not. It
works for specific logical rules as well as for rules dealing with atoms. Moreover,
it can be made plausible that the inference schema (PI-) of definitional reflection
is a reasonable ingredient of a structural framework which is not specific for the
reasoning with atoms, but treats logically compound formulae as well. In this
sense the sequent calculus presented in §2 represents a structural framework.

To demonstrate this universal character of our system let us use it as a
structural framework for intuitionistic propositional logic, taking as the database
the following introduction rules for propositional operators:

p~ q=:~pAq p=~pVq q=~pVq p--~q:--~pDq.

337

Here p and q are variables for formulae built up from certain sentential letters
by means of the operators A, V, D and ±. (Remember that --* is a structural
implication to be distinguished from D.) These formulae are viewed as atoms
in the sense of the sequent calculus of §2 - we just consider the propositional
operators as functors transforming atoms into atoms, without requiring that
atoms start with predicates. It is then obvious that by using (FP) the following
inference schemata can be derived:

Xt"p Xt-q Xt"p X~-q Xt-p--+q
Xl-pAq Xt-pYq Xl-pVq XFpDq '

where the last one is interadmissible with

X, pl-q
XkpDq "

By using (Pt-) the following inference schemata are immediately obtained:

X,p,q~'F X,pI-F X, qbF X,p-.-.qt-F
X, pAqFF X,pVqkF X, pDqI-F '

where the last one is interadmissible with

Xt-p X, q~-F
X, pDqbF

Together with the fact that
X b ±

XFF
is admissible (one has again to use (PF), if X~'± is an axiom), this yields with
-~p as pD-k an intuitionistic sequent calculus.

Its remarkable feature is that it was obtained by just taking a database of in-
troduction rules, which by (kP) generated the right-introduction inferences and
by (PF) the left-introduction inferences. A natural deduction version with elim-
ination inferences instead of left-introduction inferences can also be obtained:

X~pAq Y,p, qbF ZbpVq Y, pt-F Y, qt-F Z~-pDq Y,p-.~qt"F
Y, X~-F Y, Xt-F Y, Xt-F

Here the first schema is equivalent to

and the third one to

X[-pAq Xt--pAq
XI-p Xkq

Xl'-pDq Ykp
Y, Xbq

This shows that the schema of definitional reflection is very closely related to
the uniform pattern for elimination inferences for natural deduction proposed in
[13]. However, whereas there a general metalinguistic schema was proposed to
generate explicit rules like

pV q , p~v, q~r=#v

338

pDq, (p--*q)--+r=~r,

(Pt-) works at the object level, so that elimination inferences are intrinsically
available. This seems to be a good explication of Gentzen's dictum that "the
introductions represent, as it were, the 'definitions' of the symbols concerned,
and the eliminations are no more, in the final analysis, than the consequences
of these definitions" ([6]). Our definitional reading of logic programming may be
viewed as a generalization of Gentzen's definitional view of logical introduction
rules. It expresses the computational reading of logic according to which intro-
duction rules are the computationally basic production rules whereas elimination
inferences just make explicit what is contained in the introduction rules read as
definitions.

Apart from that, consideration of systems with weaker structural postulates
suggests that this is the only way to deal with elimination inferences. As shown
in [12], explicit rules like those just mentioned for V or D do not work in that
context. This has to do with the fact that assumptions discharged in elimination
inferences may be embedded in an arbitrary structural context and cannot in
general be moved out if certain structural postulates (such as Exchange or Thin-
ning) are not available. An intrinsic schema like (PF) seems to be the only way of
treating these logics in a structural framework and obtaining a uniform picture
of them. This supports definitional reflection from a completely different point
of view. Definitional reflection is a principle that is neither specific to logic nor to
logic programming but applies to the whole area of a computational approach to
inference and hypothetical reasoning - logical or extra-logical. This view extends
to all structural postulates, not just to definitional reflection. Any framework
with restricted structural postulates naturally gives a declarative semantics of
a logic programming language. Properly understood, it is not just a framework
for, e.g., contraction-free, linear or relevant logic, but for any database of rules
(see [12]).

It should be mentioned that when generalizing structural frameworks to per-
mit arbitrary databases of rules one loses Cut as a general principle. ~ Cut holds,
if rules are restricted in such a way that they obey certain well-foundedness
principles. This is the case for introduction rules for logical operators where
only subformulae of the conclusion occur in the premisses. It is also the case if
the database is a definite Horn clause program (i.e., without -* in the premiss of
a rule), but it may fail, if one goes beyond that. The reason is that, when (struc-
tural) implication is available, the premiss of a program rule may be of higher
complexity than its conclusion, which destroys induction over the complexity
of the Cut-formula. However, this should not to be seen as a disadvantage, but
as reflecting the generality of our approach. That Cut holds is a property of
programs that one is lucky to obtain in many cases, and not a restriction on
permissible programs which has to be checked in advance.

5 If one takes a natural deduction version of the structural framework, with (A - E)
instead of (PF) (see ~2) and Modus Ponens instead of (--.t-) (or a corresponding
formulation in sequent-style natural deduction), one loses normalizability.

339

1. Aronsson, M., Eriksson, L.-H., G~redal, A., Halln~s, L. & Olin, P. The program-
ming language GCLA: A definitional approach to logic programming. New Gen-
eration Computing, 7 (1990), 381-404.

2. Aronsson, M., Eriksson, L.-H., Hallnas, L. & Kreuger, P. A survey of GCLA: A
definitional approach to logic programming (this volume).

3. Beeson, M. Some applications of Gentzen's proof theory in automated deduction
(this volume).

4. Belnap, N. D. Display logic. Journal o] Philosophical Logic, 11 (1982), 375-417.
5. Gabbay, D.M. & Reyle, U. N-PROLOG: An extension of PROLOG with hypo-

thetical imphcations: I., Journal o] Logic Programming, 1 (1984), 319-355.
6. Gentzen, G. Untersuchungen fiber das logische Schhet~en. Mathematische Zeit-

schrift, 39 (1935), 176-210, 405-431, English translation in: M.E. Szabo (ed.), The
Collected Papers of Gerhard Gentzen, Amsterdam: North Holland, 1969, 68-131.

7. Halln~, L. & Schroeder-Heister, P. A proof-theoretic approach to logic program-
ming. SICS Research Report, no. 88005, 1988. To appear in revised form in Journal
of Logic and Computation.
Hermes, I-I: Zum Inversionsprinzip der operativen Logik. In: A. I,ieyting (ed.),
Constructivity in Mathematics, Amsterdam: North-Holland, 1961, 62-68.
Lorenzen, P. Ein]iihrung in die operative Logik und Matheraatik, Berlin: Springer,
1955.
Martin-LSf, P. Hauptsatz for the intuitionistic theory of iterated inductive def-
initions. In: J. E. Fenstad (ed.), Proceedings of the Second Scandinavian Logic
Symposium, Amsterdam: North Holland, 1971, 179-216.
Miller, D. A theory of modules for logic programming. In: Proceedings o] the 1986
Symposium on Logic Programming (Salt Lake City Utah), IEEE Computer Society
Press, Washington, 1986.
Schroeder-Heister, P. The role of elimination inferences in a structural framework.
In: G. Huet (ed.), Proceedings of the Esprit BRA Logical Frameworks Worksh.op,
Sophia Antipolis 1990.
Schroeder-Heister, P. A natural extension Of natural deduction. Journal of Sym-
bolic Logic, 49 (1984), 1284-1300.
Schroeder-Heister, P. Logic programming with weak structural rules. In prepara-
tion.
Schroeder-Heister, P. Structural Frameworks with Higher-Level Rules: Proo]-
Theoretic Investigations. Habilitationsschrift. Universitgt Konstanz, 1987.

8.

9.

10.

11.

12.

13.

14.

15.

