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RESOLUTION AND THE ORIGINS OF STRUCTURAL REASONING:

EARLY PROOF-THEORETIC IDEAS OF HERTZ AND GENTZEN

PETER SCHROEDER-HEISTER∗

Abstract. In the 1920s, Paul Hertz (1881–1940) developed certain calculi based on struc-

tural rules only and established normal form results for proofs. It is shown that he anticipated

important techniques and results of general proof theory as well as of resolution theory, if the

latter is regarded as a part of structural proof theory. Furthermore, it is shown that Gentzen,

in his first paper of 1933, which heavily draws on Hertz, proves a normal form result which

corresponds to the completeness of propositional SLD-resolution in logic programming.

§1. Introduction: Structural reasoning. By structural reasoning we mean
reasoning in a sequent style system using structural rules only. Structural
rules do not refer to the internal composition of formulas by means of
logical connectives or quantifiers but only affect the way formulas appear
within sequents. If sequents are of the form Γ→ A, prominent structural
rules areWeakening and Cut:

Γ→ A

Γ, B → A
(Weakening)

Γ→ A A,∆→ B

Γ,∆→ B
(Cut).

If we encode the fact that proofs may start with identities of the formA→ A
bymeans of a rule without premisses, we have as a third prominent structural
rule

A→ A (Identity).

Identity,Weakening andCut are sufficient as structural rules, if only minimal
logic is considered, and if the antecedent of a sequent is a set (rather than
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a multiset, a sequence or a more sophisticated [e.g., binary] structure) of
formulas.
The terminological distinction between structural rules and rules for log-
ical connectives was drawn by Gentzen in his Investigations into Logical
Deduction (1934/1935), where he laid out the idea of a sequent calculus and
established the eliminability of Cut as its fundamental feature. However,
in certain areas structural rules play a role different from their functioning
as non-logical inferences within calculi of logic or arithmetic. One such
area is the treatment of resolution in terms of a sequent calculus based on
structural rules only; another one would be the consideration of rule-based
(production) systems in general. The view of structural reasoning as an
(albeit essential) part of logical reasoning should not conceal the fact that
it represents a subject in its own right. This is particularly important in the
light of modern developments such as logic programming.
The calculi developed by thePaulHertz1 in the 1920s are structural systems
in this independent sense. In the following we shall show that the normal
form theorems proved byHertz for these systems anticipate certain ideas and
techniques of general proof theory as well as of the theory of resolution, in
particular of logic programming (understood in a proof-theoretic setting).
We shall also place Gentzen’s first publication of 1933, which heavily draws
on Hertz’s ideas and results, in this context. It turns out that Gentzen
proves what in modern terminology can be described as the completeness of
propositional SLD-resolution. At the same time, this shows that structural
systems stood at the beginning of Gentzen’s intellectual development.
Two particular features of structural reasoning which go beyond Gentzen
style sequent calculi are the following:

Sequents may occur as assumptions.

and

Cut is an indispensable rule which cannot be eliminated.

The first feature normally implies the second one. Actually, Gentzen (1934/
1935) called his own sequent calculi, which allow cut elimination, “logistic”
calculi (and abbreviated them by LJ and LK) to characterize the fact that
they are assumption-free (pp. 184, 190 [Szabo-transl., pp. 75, 81 seq.]).2

Structural rules may be looked upon as axiomatizing a consequence rela-
tion in Tarski’s sense (for the finite case, of course). From this point of view,

1For biographical data on Hertz see Bernays (1969). For an overview of his life and work,
placing it in the logical and philosophical context of the time, as well as a bibliography of
Hertz’s writings, see Legris (1999). A concise sketch of Hertz’s contributions to logic is
Abrusci (1983).
2As Gentzen emphasizes, they share the property of being assumption-free with the cal-

culi considered in symbolic logic at that time. Gentzen’s term is reminiscent of “logistics”
(“Logistik”), as symbolic logic was called in Germany (see Carnap 1929).
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structural systems may be considered as providing a general framework of
consequence, in terms of which specific logical systems can be defined. This
indicates again that structural reasoning is a powerful tool which can be
investigated from a variety of aspects.

§2. Propositional resolution. We recapitulate some notions from resolu-
tion theory in a proof-theoretic setting.3 We consider the fragment of propo-
sitional resolution which deals with clauses of the form

A1, . . . , An → A,

because only those are relevant in the context of Hertz’s and Gentzen’s
contributions. In the terminologyof resolution, these are clauseswith exactly
one positive literal. In the terminology of logic programming, they have the
formof definite program clauses. In the followingwe simply speak of clauses.
The Ai ’s and A are taken from a finite or denumerably infinite domain E

of atomic expressions, called atoms. The body A1, . . . , An is considered to
be a set. Using Γ and ∆ for sets of atoms, notations such as Γ,∆→ A or
Γ, B → A are understood in the usual way as standing for Γ ∪ ∆→ A or
Γ ∪ {B} → A, respectively. Clauses are denoted by S, S ′, S1, S2, . . . etc.
A derivation of S from S1, . . . , Sn is a treelike structure of clauses such
that (i) top clauses are either identities A→ A or occur among S1, . . . , Sn,
(ii) the bottom clause is S, and (iii) the clauses below the top clauses are
generated by the rules of Cut andWeakening. If there is such a derivation,
we write S1, . . . , Sn `S. In the propositional case, which we are considering
here, the resolution rule is just the cut rule. IdentitiesA→ A are only needed
to generate trivial clauses of the form Γ, A→ A.
A derivation of S from S1, . . . , Sn is called a proper resolution derivation of
S from S1, . . . , Sn, if it only uses Cut (and neither Identity norWeakening).
Moreover, we assume that in applications of Cut, A does not occur in ∆,
i.e., the cut formula is removed from the body of the right premiss.4 A
derivation of S from S1, . . . , Sn is then called a resolution derivation of S
from S1, . . . , Sn, if it is either (i) an identityA→ A or (ii) a proper resolution
derivation or (iii) a derivation of the form (i) or (ii) followed by one or
more applications of Weakening. This means, a resolution derivation uses
Weakening only at the end. If there is such a resolution derivation, we write

S1, . . . , Sn `RES S.

3We do not rely on a particular presentation. An overview of resolution in the standard
(disjunction-based) framework is given in Leitsch (1997). The classical reference for the
theory of logic programming is Lloyd (1987).
4The literature on resolution is not uniform with respect to this requirement. In the

presence ofWeakening, this strict formulation of Cut is equivalent to the more relaxed one,
where A is allowed to occur in ∆. The strict form, which we adopt here, has the advantage
of fully separating Cut fromWeakening. Both Hertz and Gentzen adopt the strict form (see
the corresponding remarks in the next section).
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Let “|=” denote logical consequence in (classical or intuitionistic) proposi-
tional logic, where clauses A1, . . . , An → A are given their natural reading
as formulas A1& . . .&An⊃A. Then the completeness theorem of resolution
theory says

S1, . . . , Sn `RES S iff S1, . . . , Sn |= S.

A special form of resolution which is of interest in the following is SLD-
resolution. A proper SLD-derivation is a proper resolution derivation whose
tree has the following form:5
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c
@@ `

`
`
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`
`
`
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As for resolution derivations, an SLD-derivation is obtained by (possibly)
applying Weakening to an identity or to the end clause of a proper SLD-
derivation. We write

S1, . . . , Sn `SLD S,

if there is an SLD-derivation of S from S1, . . . , Sn. Again we have as a
theorem:

S1, . . . , Sn `SLD S iff S1, . . . , Sn |= S.

This means that for definite clauses, SLD-resolution is as strong as full
resolution.
It should be emphasized that we are dealing here with the resolution
calculus as a formal system and not with the resolution method, which is a
refutation procedure for clauses based on the resolution calculus. Therefore
we do not terminologically distinguish goal clauses from other clauses.6

§3. Hertz’s and Gentzen’s structural systems. In a series of articles, Hertz
proposed structural inference systems and proved results about them. We
shall mainly rely on his 1929 paper, which presents the most mature versions
of his systems, taking into account certain crucial issues from the 1923 and
19287 papers. In his first publication of 1933, Gentzen presents a modified
version of Hertz’s system.

5In treatments of input resolution and SLD-resolution the input clauses usually occur on
the right rather than on the left in the derivation tree . This is just a notational variant due
to a converse ordering of the premisses of Cut, which comes with the writing of program
clauses as A← Γ.
6We would have to represent them by A1, . . . , An →⊥, where ⊥ is a distinguished atom

denoting absurdity.
7This paper was written when the 1929 paper had already been submitted.
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Besides a propositional version, on which he puts the primary emphasis,
Hertz (1929) also presents a system with variables and predicate symbols.
This will be dealt with in section 6 below. In the present section we present
Hertz’s and Gentzen’s propositional systems. Sections 4 and 5 deal with the
results obtained by Hertz and Gentzen, respectively, for the propositional
case. We shall try to make our presentation self-contained so that it can be
read without consultation of Hertz’s and Gentzen’s original papers. This is
particular important for Hertz, whose papers have not been translated into
English. As for terminology, we shall give the original German terms in
parentheses.
Hertz introduces sentences (“Sätze”) of the form A1, . . . , An → A,

8 where
the capital letters stand for elements (“Elemente”) from a given domain
(“Bereich”) E, which is finite or denumerably infinite (Hertz 1929, p. 460).
The element A is called the succedent (“Sukzedens”), and the complex
(“Komplex”) of elementsA1, . . . , An is called the antecedent (“Antezedens”)
of A1, . . . , An → A.

9 This complex is understood as a set of elements, i.e.,
order and multiplicity of elements in the antecedent are irrelevant (p. 461).
If we identify elements with their names, calling the latter atoms, sentences
can be identified with sequents or clauses in the terminology used in the
previous section. In the following, when presenting Hertz’s and Gentzen’s
systems, we shall use this identification and talk of elements A,A1, . . . , An
as synonymous with atoms, and of sentences of the form A1, . . . , An → A as
synonymous with sequents or clauses, respectively. We shall use our previous
notation accordingly, writing sentences as Γ→ A or Γ, A→ B etc.
Hertz’s inference system is based on the following rules:

Γ1→ A1 . . . Γn → An ∆, A1, . . . , An → A

∆,Γ1, . . . ,Γn → A
(Syllogism)

Γ→ A

Γ,∆→ A
(Immediate Inference)

The terms Syllogism (“Syllogismus”) and Immediate Inference (“unmittel-
barer Schluß”) are due to Hertz.10 A more modern terminology would be
multicut11 for the first inference. The second one is a sort ofmultiple weaken-
ing. In resolution terminology it may be called propositional subsumption.12

8He writes u1, . . . , un → v. For readability, we stick to the notation used so far.
9The terms antecedent and consequent were thus coined by Hertz.
10Hertz gives detailed explanations of why Syllogism is supposed to be the most funda-

mental inference rule in logic and therefore deserves its name. We shall not discuss this point
here.
11To my knowledge, Slaney (1989) was the first to introduce this term.
12Hertz (1923, p. 82) speaks of the conclusion of an immediate inference as contained

(“enthalten”) in its premiss.
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Gentzen (1933) introduces the term Thinning for it. In the context of the
presentation of Hertz’s results, we shall use his terminology.
The right premiss of a Syllogism is called the major sentence (“Ober-
satz”), the other premisses are called minor sentences (“Untersätze”). The
A1, . . . , An are called the main members (“Hauptglieder”) of the antecedent
of the major sentences, the remaining ones its accessory (“akzessorische”)
members.
The schemaofSyllogism is understood in such away that theA1, . . . , An do
not occur in Γ1, . . . ,Γn . Although this is not clear from Hertz’s notation,

13

his verbal explanation in the early paper (1923, p. 82) suggests this read-
ing, which we presuppose in the following. This coincides with Gentzen’s
understanding of Cut (see below).
It is very interesting to note that Hertz was the first to consider tree-like
proof structures, an idea that became essential for Gentzen’s later develop-
ment of natural deduction and of the full sequent calculus. Hertz defines
a proof (“Beweis”) as a linear sequence of inferences (1929, p. 463), and
an inference system (“Schlußsystem”) as a corresponding tree-like structure
(p. 464).14 In the following, we do not make this distinction and always
understand proofs as trees.
If we use this terminology, a proof from a system of sentences T is defined
by Hertz as a tree-like structure, whose top sentences (“oberste Sätze”) are
either tautological sentences, i.e., sentences of the form

A→ A,

or sentences taken from T, and which is generated by means of the rules of
Syllogism and Immediate Inference.15

13In fact, the literal reading of Hertz (1929, pp. 461 seq.) seems to suggest the opposite.
14Hertz (1923, pp. 85 seqq.) explicitly shows that proofs can be transformed into inference

systems and vice versa. See also 1929, p. 464. It seems to us that Hertz’s notion of a (linear)
proof is not exactly the same as that of a sequence of sentences generated by rules, and there
are differences between the 1923 and 1929 papers (see 1929, p. 464, footnote 12). We do not
want to discuss this issue here as the notion of a tree-like proof (inference system) is clear,
and is the only relevant notion in the present context. However, it is interesting to remark
that the step from linear to tree-like proofs would have been a very small one already for
Hilbert (1923, p. 158), who considers linear proofs in which each formula occurrence is used
only once as a premiss, and thus is able to decompose linear proofs into threads which would
correspond to branches in tree-like proofs. This is quoted in Hertz (1929, p. 464, footnote).
15It might be mentioned that for Hertz (as well as for Gentzen, see Gentzen 1933, p. 331

[Szabo-transl., p. 31]) a formal proof has always to contain at least one proper rule applica-
tion. For example, a formal proof of A→ A would be

A→ A

A→ A

rather than the tautological sentence A→ A alone, and analogously for a proof of a non-
tautological sentence from itself (see Hertz 1929, p. 463 [footnote]). Therefore it is important
that the rule of Immediate Inference includes the case where Γ is empty.
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Initially, Hertz considered his systems as directly understandable. A justifi-
cation by means of an external semantics and a completeness proof was sub-
sequently delivered in Hertz (1928), motivated by comments from Bernays.
This issue will be dealt with at the end of the following section.
Gentzen (1933) builds on Hertz’s approach. In the development of his
structural system, he follows Hertz’s terminology in many details. The only
fundamental deviation from Hertz is that he introduces the notion of Cut
(“Schnitt”) as a variant of Syllogism with just a single minor sentence as
left premiss. He uses the term Thinning (“Verdünnung”) for what Hertz
calls Immediate Inference. So the system Gentzen proposes is based on the
following rules

Γ→ A ∆, A→ B

∆,Γ→ B
(Cut)

Γ→ A

Γ,∆→ A
(Thinning),

where in Cut it is supposed that ∆ does not contain A. Corresponding
to Hertz’s terminology, the left and right premisses of Cut are called minor
sentence andmajor sentence, respectively. The atomA is called the cut element
(“Schnittelement”) (Gentzen 1933, p. 331 [Szabo-transl., p. 31]). We may
look upon Identity as an (improper) rule, as derivations are allowed to start
with tautological sentences of the form A→ A. The (obvious) equivalence
of Gentzen’s system with that of Hertz is explicitly established by Gentzen
(p. 332 [Szabo-transl., p. 32]).

§4. Hertz’s normal form and completeness proofs. The main goal of both
Hertz (1922, 1923, 1929) and Gentzen (1933) was to establish axiomatiz-
ability results for systems of sentences. Given a set S of sentences which
contains all tautological sentences (i.e., sentences of the form A→ A) and
which is closed under Immediate Inference /Weakening and Syllogism / Cut,
we may ask questions like the following ones: Can S be axiomatized? If
S can be axiomatized, is there an independent set of axioms? If S can be
axiomatized, can axioms be chosen in such a way that they are strongest with
respect to the ordering generated by Immediate Inference / Weakening? Can
a finite set of axioms be found? In which way do results depend on whether
the domain of atoms considered is finite or (denumerably) infinite? Which
results are obtained if only systems with linear sentences (i.e., sentences of
the form A→ B) are considered?
Some of the results achieved are highly interesting, particularly from the
point of view of inductive logic programming, where one aims at finding
programs (i.e., a kind of axiomatization by means of clauses) for facts and
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clauses given as data.16 Here we are interested in Hertz’s and Gentzen’s nor-
mal form and completeness results which establish fundamental properties
of their standard systems. For both Hertz and Gentzen, these results played
an auxiliary role in their treatment of axiomatizability. From amoremodern
point of view they contain fundamental conceptual insights.
In this section where we describe Hertz’s results, we assume that a domain

E of elements and a set of sentences S over E, called the axioms, are fixed.
Axiom is here synonymous with assumption in modern terminology. By a
proof we mean a proof from the given axioms using tautological sentences
and the rules of Immediate Inference and Syllogism.
Hertz calls a proof an Aristotelian normal proof if each non-tautological
major sentence of a syllogism is an axiom. A proof is called a Goclenian
normal proof if each non-tautological minor sentence of a syllogism is an
axiom. This terminology is based on the traditional distinction between
Aristotelian andGoclenian17 chain syllogisms, which lead to Hertz’s normal
forms when decomposing them into binary proof steps. For example, an
Aristotelian chain inference with four premisses

A→ B
B → C

C → D

D → E
A→ E

leads to the Aristotelian normal proof

A→ B B → C

A→ C C → D

A→ D D → E
A→ E ,

whereas the Goclenian chain inference

D → E
C → D

B → C

A→ B
A→ E

leads to the Goclenian normal proof

A→ B

B → C

C → D D → E

C → E

B → E
A→ E .

16See Nienhuys-Cheng & Wolf (1997).
17“Goclenian” after the German logician Rudolph Goclenius [Göckel] (1547–1628).
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Obviously, Goclenian chain inferences represent the form of reasoning in-
herent in SLD-derivations.
Then Hertz obtains the following results, which we formulate as explicit
theorems:

Theorem 1. Any proof can be transformed into an Aristotelian normal

proof.

Theorem 2. Any proof can be transformed into a Goclenian normal proof.

Theorem 3. It is decidable whether a sentence S is provable fromS, ifS is

finite.

For Theorem 1, Hertz (1923) gives a purely syntactic proof which is
highly significant as it uses for the first time the proof-theoretic method of
reducing a proof by a syntactic manipulation of inferences, and of justifying
the termination of this reduction by an assignment of ordinal numbers.
It is obvious that Hertz’s proof could provide considerable inspiration to
Gentzen, who later made extensive usage of such methods.
For Theorems 1 and 2, Hertz (1929) gives proofs in terms of certain fixed
point considerations (in modern terminology), which anticipate ideas now
standard in logic programming. The fact that a fixed point is reached after
finitely many steps is then used to prove Theorem 3.
In the following, we sketch Hertz’s proofs in more modern terminology
and symbolics.

Hertz’s syntactic proof of Theorem 1 (Hertz 1923, pp. 88–93). This proof
is given by Hertz for a modified system with

Γ1→ A1 . . . Γn → An A1, . . . , An → A

Γ1, . . . ,Γn → A
(Pure Syllogism)

(“reiner Syllogismus”) as a primitive rule instead ofSyllogism, i.e., Syllogism
without accessory elements. Obviously, by adding tautologies as minor
sentences, any syllogism can be tranformed into a pure syllogism, so the
systems based on Syllogism and Pure Syllogism are equivalent (p. 83).
We illustrate Hertz’s proof transformation procedure, which heavily uses
multiple indices, by a simple example, from which the general method can
easily be inferred.
Suppose a subproof ending with

D → C

C → A1 C → A2 A1, A2 → B

C → B

D → B
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is given. Then this subproof is transformed into the following subproof
ending with

D → C C → A1
D → A1

D → C C → A2
D → A2 A1, A2 → B

D → B,

which means that the applications of Pure Syllogism are permuted. The
proof complexity is reduced with respect to a certain complexity measure.
Hertz defines the ordinal number (“Ordnungszahl”) of an occurrence of a
sentence in a proof as follows:

The ordinal number of a top sentence is 0.

If the premiss of an immediate inference has ordinal number n, then the
ordinal number of its conclusion is n + 1. If the premisses of a syllogism
have ordinal numbers k1, . . . , kn+1, respectively, then the ordinal number of its
conclusion is (max1≤i≤n+1ki) + 1.

Hertz argues that “the ordinal number of a major sentence is replaced
with a set of lower ordinal numbers of major sentences” (1923, p. 92). In
the present example the ordinal numbermax(k1, k2, k3)+1 is replaced with
the set of ordinal numbers {k1, k2}, where k1, k2, k3 are the ordinal numbers
of C → A1, C → A2 and A1, A2 → B , respectively.
Now Hertz proceeds by induction as follows (p. 93). If we start with a
subproof such that C → B has k as the maximal ordinal number of major
sentences occurring in the proof, then after finitely many reductions of the
sort indicated we reach a proof with a maximal ordinal number of major
sentences less then k. Iterating this procedure finitely many times we reach a
proof with all major sentences being of ordinal number 0, i.e., anAristotelian
normal proof. In more modern terminology, Hertz is using ù2-induction
on the pair 〈α(Π), â(Π)〉, where α(Π) is the maximal ordinal number of a
major sentence in Π and â(Π) is the number of major sentences with that
ordinal number.
In a footnote in his 1929 paper (p. 474) he remarks that for this procedure
to work one has to choose a lowermost subproof of the form considered.
Otherwise the ordinal number of D → B and of sentences below them can
increase, which is critical if major sentences are among them.
Using the terminology coined by Prawitz 1965 for the area of natural
deduction, Hertz’s normal form demonstration can be described as follows:
Call a sentence maximal in a proof if it is the conclusion of an application
of Immediate Inference or Pure Syllogism and at the same time the major
sentence of an application of Pure Syllogism. Call a proof normal if it does
not contain maximal sentences. Then any proof can be normalized by the
procedure described.
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Hertz’s fixed point proof of Theorem1 (Hertz 1929,Section 3, pp. 475–477).
The non-syntactic proofs in Hertz (1929) of Theorem 1 proceed as follows.
We assume that the set of axioms is finite. We start with a finite subset E0
of the domain of elements E. The elements in E are called distinguished
(“ausgezeichnet”) at level 0. An element A is distinguished at level n+1 (with
respect to E0) if A is not distinguished at any level ≤ n (with respect to E0)
and if there is an axiom Γ→ A such that each element in Γ is distinguished
at some level ≤ n (with respect to E0). An atom A is distinguished with
respect to E0, if for some n, A is distinguished at level n (with respect to
E0). Loosely speaking, A is distinguished with respect to E0, if A can be
“generated” stepwise fromE0 bymeans of axioms (considered as production
rules). With this definition Hertz anticipates the definition of the monotonic
operator associated with program rules in logic programming (often called
TP) and offers some sort of fixed point semantics.
By straightforward induction arguments he then proves:

(1) If a sentence Γ→ A is provable from the axioms, thenA is distinguished
with respect to Γ.
(2) If A is distinguished with respect to Γ, then there is an Aristotelian
normal proof of Γ→ A from the axioms.

Theorem 1 is an immediate consequence of (1) and (2).

Hertz emphasizes (1929, p. 475) that his argument holds for arbitrary, pos-
sibly infinite systems of sentences, whereas the decidability result concluded
from it (Theorem 3 below) holds only for the finite case.

Two remarks are appropriate.

– If we skip the rule of Immediate Inference and instead allow a proof to
start with trivial sentences of the form Γ, A→ A, then in the Aristotelian
normal proof constructed all minor sentences of syllogisms as well as the
end sentence have the same antecedent Γ.18

– It is essential for the construction of the Aristotelian normal form that
Syllogism (Multicut) is used. If we decompose a single multicut into several
cuts, then new major sentences arise which are conclusions of Cut.19

Hertz’s fixed point proof of Theorem 2 (Hertz 1929, Section 4, pp. 478–
479). As for Theorem 1, Hertz assumes a finite set of axioms over a domain
of elements E to be given. Starting with an element A in E, a finite set of
elements Γ is called distinguished at level 0 (with respect to A) if Γ contains
A. Γ is called distinguished at level n + 1 (with respect to A) if Γ is not
distinguished at any level ≤ n (with respect to A), and if there are axioms
Γ1→ A1, . . . ,Γm → Am such that the following holds:

18According to Hertz (1928, p. 277) this observation is due to Bernays.
19This was observed by Gentzen (see footnote 21 below).
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(i) ∆′∪{A1, . . . , Am} is distinguished at some level≤ n (with respect toA)
for some ∆′

(ii) Γ = ∆ ∪ ∆′ ∪ Γ1 ∪ · · · ∪ Γm for some ∆.

Loosely speaking, Γ is distinguished with respect to A, if, starting with
A, Γ can be reached by looking step by step for conditions sufficient to
“generate”A by means of axioms taken as production rules. Whereas in “A
is distinguished with respect to Γ” we were looking for A as a consequence
of Γ (forward reasoning), in “Γ is distinguished with respect to A” we are
looking for Γ as a condition of A (backward reasoning). Formally, this can
be described as the construction of a fixed point operator on the power set
of E, which, starting with {A}, associates with each set of elements Γ those
sets of elements ∆ from which Γ can be generated using axioms.
Based on this definition Hertz gives inductive proofs of the following
statements:

(3) If a sentence Γ→ A is provable from the axioms, then Γ is distinguished
with respect to A.
(4) If for a sentence Γ→ A, Γ is distinguished with respect to A, then there
is a Goclenian normal proof of Γ→ A from the axioms.

Theorem 2 is an immediate consequence of (3) and (4).

The Goclenian normal proof constructed in (4) is related to an SLD-
derivation in so far as all minor sentences which are used as “input” to
antecedents of major sentences are axioms. However, it is not exactly the
same. A minor difference is that multiple input in one step (multicut) is
possible. The major difference is that Immediate Inference (Thinning) may
be used in between two applications of Syllogism and not only as the last
step of the proof. This is changed in Gentzen (1933).

Hertz’s proof of decidability (Theorem 3). For decidability Hertz (1929)
gives twoproofs, each for a finite systemSof sentences. Thefirst one (pp. 474
seq.) argues that the lengths of proofs needed to obtain all sentences of the
system is bounded, so that we just have to check all possible proofs from the
given axioms step by step. The second one uses the fixed point construction
introduced in the proof of Theorem 1. To check whether Γ→ A belongs to
S, we generate, for each n, the elements distinguished with respect to Γ at
level n, and determine whether A is among them.
Although these results are trivial from the modern point of view, the way
of proving them is original in its proof-theoretic setting. In particular, it
is highly significant that Hertz relates the idea of atoms being generated
from other atoms by means of sentences (clauses) with the idea of proofs of
sentences of a certain form. This means that in principle he is aware of the
close relationship betwen provingA from Γ by means of axioms (understood
as production rules) and a formal proof in a sequent style system of Γ→ A
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from the axioms (see Hertz 1929, middle of p. 476). Today this idea is the
basis of relating natural deduction and the sequent calculus with each other.
With respect to reasoning with atoms, it is also basic for logic programming.
There the smallest fixed point of an operator defined in terms of clauses can
be described in terms of an SLD-derivation using these clauses as axioms.
Hertz’s derivations do not have exactly that form, but in Gentzen (1933),
who heavily relies on Hertz, we find what is today called the completeness of
SLD-resolution (see section 5 below).

Hertz’s semantics and completeness result. Before we turn to Gentzen, we
look at Hertz’s semantic completeness result which goes beyond Theorems 1
and 2. The notions of being distinguished used in the fixed point proofs are
not considered a real semantics but rather a technical device. In his 1928
paper (written after Hertz 1929) he explicitly provides such a semantics.
Motivated by personal remarks by Bernays (see Hertz 1928, p. 272) he then
proves the completeness of his rules with respect to this semantics.

Suppose a finite universal domain (“Grundbereich”) G of elements is given.
A subset (domain, “Bereich”)B of G satisfies (“genügt”) a sentence Γ→ A,
if eitherA is inB or not every element of Γ is inB, i.e., if Γ ⊆ B, thenA ∈ B.

This definition of a domainB satisfying a sentence Γ→ A can be read as
a classical truth definition for a sentence under a valuation (represented by
the domain B) as well as a constructive interpretation of Γ→ A as a pro-
duction rule under which B is closed. Hertz presents several philosophical
interpretations of Γ→ A, which we do not want to discuss here in detail. It is
interesting that he mentions the possibility of identifying a sentence with the
set of the domains satisfying it (p. 27320), which corresponds to identifying
a proposition with the set of worlds in which it is valid, again anticipating a
modern idea.
According to Hertz, a finite set of sentences S implies (“impliziert”) a
sentence S, if any domainB satisfying all sentences ofS satisfies S as well.
If we writeB |= S for “B satisfies S”,B |= S for “B satisfies every element
ofS” and S |= S for “S implies S”, this can be expressed as

S |= S iff for everyB, ifB |= S thenB |= S.

The completeness result Hertz proves can then be formulated as follows:

Theorem 4. A sentence S is provable from a finite set S of axioms iff

S |= S.

The validity of the soundness direction is obvious. For the completeness
direction Hertz relies on (2) which says that the fact that A is distinguished
with respect to Γ is sufficient for the provability of Γ→ A from the axioms.

20See also Hertz (1929a), p. 188.
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It remains to show that S |= Γ→ A implies that A is distinguished with
respect to Γ given the elements of S as axioms.
In order to establish this fact, Hertz considers the domain Γ∗, which
consists of all elements distinguished with respect to Γ. This means that Γ∗

is the closure of Γ under the sentences of S. By definition, Γ∗ satisfies all
sentences of S, formally Γ∗ |= S. By the assumption S |= Γ→ A, this
implies Γ∗ |= Γ→ A. Since Γ ⊆ Γ∗, this means that A ∈ Γ∗, i.e., A is
distinguished with respect to Γ.

This is exactly as a modern proof would proceed. However, for appli-
cations such as logic programming, an Aristotelian normal proof is not as
relevant as a special Goclenian one with single input (Cut) and Immediate
Inference (Thinning) only at the end of the proof. Results for such a system
were achieved by Gentzen (1933).

§5. Gentzen’s normal form and completeness proofs. After presenting his
system (see section 3 above), Gentzen (1933, pp. 333 seqq. [Szabo-transl.,
pp. 33 seqq.]) provides the same semantics as Hertz (1928). So we can
use the notation introduced at the end of the previous section. We shall
write S1, . . . , Sn |= S, if {S1, . . . , Sn} implies S. Terminologically differing
from Hertz, Gentzen prefers to speak of S as a consequence (“Folgerung”)
of S1, . . . , Sn, if S1, . . . , Sn |= S. In the present section, we adopt this
terminology. Furthermore, Gentzen makes it explicitly clear that, when
considering the question of whether S1, . . . , Sn |= S holds, the underlying
domain of elements comprises just the elements occurring in S1, . . . , Sn, S.
In the terminology of logic programming, this corresponds to considering
the (propositional) Herbrand universe as a basis.
Gentzen first proves soundness with respect to this semantics.

Theorem 5. If there is a proof of S from S1, . . . , Sn, then S is a consequence
of S1, . . . , Sn.

The soundness direction, which is obvious from a modern point of view,
is proved by Gentzen in all detail (p. 333 seq. [Szabo-transl., p. 33 seq.]).
For completeness, Gentzen proves a stronger result which yields a normal
form theorem at the same time. He explicitly refers toHertz, mentioning that
he is aiming at normal proofs different from those considered by Hertz.21

21See Gentzen (1933), p. 334 (footnote) and p. 335 (footnote) [Szabo-transl., p. 312, notes
6 and 7]. Gentzen remarks that his own normal proofs are related toHertz’sGoclenian normal
proofs, because the minor premiss of each application of Cut is a sentence of S1, . . . , Sn (an
axiom in Hertz’s terminology). Gentzen also gives the following simple counterexample
showing that there is no analogue to Hertz’s Aristotelian normal proofs in his system based
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Call a sentence of the form Γ, A→ A trivial.22 A normal proof (“Normal-
beweis”) of a non-trivial sentence S from the sentences S1, . . . , Sn is defined
as a proof of the following form:

Rm−1

R1

R0 Q0
Cut

Q1
Cut

...
Qm−1

Cut
Qm
Thinning

S,

wherem ≥ 0, and theRi andQi are sentences such that the following holds:

(i) All initial sentences (“Anfangssätze”) Q0, R0, . . . , Rm−1 occur among
S1, . . . , Sn.
(ii) No trivial sentence occurs in the proof.

Then the completeness theorem is formulated by Gentzen as follows (p. 336
[Szabo-transl., p. 36]):

Theorem 6. If a non-trivial sentence S is a consequence of S1, . . . , Sn, then
there is a normal proof of S from S1, . . . , Sn.

Gentzen does not explicitly define the notion of a normal proof for trivial
sentences. Of course, this would be just a proof of the form

A→ A

Γ, A→ A.
Thinning

It is obvious that a normal proof is an SLD-derivation in the sense of
section 2. Therefore the proof of Theorem 6 establishes the completeness
of SLD-resolution. Due to condition (ii), a normal proof is slightly more
restricted than SLD-derivations in general, so Theorem 6 proves more than
needed for the completeness of SLD-resolution. In an SLD-derivation of a
non-trivial sentence we would admit trivial clauses as assumptions, if they
belong to the program considered. We would also admit trivial clauses if
they happen to occur as conclusions of Cut (e.g., the trivial clause A→ A
as a consequence of the non-trivial clauses A→ B and B → A). As an

on Cut rather thanMulticut:

E → A

D→ B A,B → C

A,D → C

E,D→ C

22This term (“trivialer Satz”) is due to Hertz. See his 1929, p. 463.
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immediate consequence of Theorems 5 and 6 Gentzen obtains the following
normal form theorem.

Theorem 7. If a non-trivial sentence S is provable from S1, . . . , Sn, then
there is a normal proof of S from S1, . . . , Sn.

Gentzen remarks that a direct syntactic proof of Theorem 7 is possible, but
that he prefers the deviation via the soundness and completeness theorems,
as they present important additional insights into the system.23

Proof of Theorem 6 (Gentzen 1933, pp. 336 seqq. [Szabo-transl., pp. 36
seqq.]) Due to the specific requirements of the normal form, this proof dif-
fers from the argument by Hertz discussed in the previous section. However,
as in Hertz, it uses the fixed point construction which is now standard in the
theory of logic programming.
Let S be non-trivial. Suppose there is no normal proof of S from
S1, . . . , Sn. Gentzen shows that S is not a consequence of S1, . . . , Sn by
constructing a domain Γ∗ of elements such that

Γ∗ |= Si for all i (1 ≤ i ≤ n), but Γ
∗ 6|= S.

SupposeS has the formΓ→ A. ThenΓ∗ is the closure of Γ underS1, . . . , Sn,
if S1, . . . , Sn are considered as production rules, and is obtained through a
finite sequence of domains

Γ = Γ1 ( · · · ( Γm = Γ
∗,

where in each stepone element is added. In the terminologyof logic program-
ming, Γ∗ is the fixed point of the operator TP characteristic of the program
{S1, . . . , Sn}. Since Γ

∗ |= Γ, we have to show that Γ∗ 6|= A, i.e., A 6∈ Γ∗.
For that purpose, Gentzen proves the following assertion by induction on
the construction of Γ∗.

LetS be the set of those non-trivial sentences of the form ∆→ A, for which
there is a normal proof from S1, . . . , Sn without Thinning at the end. Then for
any Γk , we have Γk |= S, but Γk 6|= A.

This is a full-fledged completeness proof for propositional SLD-resolution,
invalidating Γ→ A by constructing the closure Γ∗ of Γ under the clauses
given. The special case of SLD-refutations as SLD-derivations of the empty
clause, which is normally considered in logic programming, can be obtained
from Gentzen’s results as follows. Since the succedent of the right premiss
and of the conclusion of a Cut are identical, Gentzen normal proofs can be

23See Gentzen (1933), p. 337 [Szabo-transl., p. 37 seq.]. What Gentzen obviously has
in mind is the method of shifting down Thinning by permuting applications of Cut with
Thinning.
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written as

Rm−1

R1

R0 Γ0 → A Cut
Γ1→ A Cut
...

Γm−1→ A
Cut

Γm → A
Thinning

Γ→ A .

If we represent absurdity by a special atom denoted by the empty succedent,
we obtain

Rm−1

R1

R0 Γ0 → Cut
Γ1→ Cut
...

Γm−1→
Cut

Γm →
Thinning

Γ→ .

Clauses with empty succedent are usually called goal clauses. A Gentzen
normal proof of the empty goal would then have the form

→ B

R1

R0 Γ0→ Cut
Γ1→ Cut
...

B → Cut
→

withoutThinning at the end. If we know that for a setP of sentences without
empty succedents (the program),

P, Γ0→ |= →

holds, then the derivation resulting from Theorem 7 has the form required,
as Γ0 → can only occur as a major sentence of a cut.

§6. Hertz’s structural logic with variables. From the point of view of mod-
ern resolution theory, propositional resolution based on the cut rule is a
“trivial” discipline, as the unification of variables, which is the basic ingredi-
ent of the resolution rule, is not involved. Although the resolution calculus
based on unification was first presented by Robinson (1963), it is interesting
that Hertz sketches a calculus with variables, which for definite clauses has
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the deductive power of the resolution calculus. It is obvious and well-known
that Cut together with the substitution rule

S

S[t/x]
(Substitution),

is strong enough to replace the resolution rule.24 Hertz’s system with vari-
ables, which is developed in his 1929 paper,25 contains principles correspond-
ing to Substitution. He even sketches a proof that, modulo substitution, his
normal form theorems extend to the case with variables, yielding a result
which corresponds to the completeness of SLD-resolution with variables.
Hertz defines atoms of the form R(x1, . . . , xn) for n-ary predicates and
variables x1, . . . , xn . As before, sentences have the form A1, . . . , An → B
for atoms A1, . . . , An , B . For philosophical reasons, Hertz does not permit
any mixture of variables and constants in the same sentence, not even in
the same proof.26 He distinguishes between amacrosentence (“Makrosatz”)
with variables and a microsentence (“Mikrosatz”) with constants. So

R(x1, x2), R(x2, x3)→ R(x1, x3)

is a macrosentence, whereas

R(a, b), R(b, c)→ R(a, c)

is a microsentence.
In Hertz’s writings the situation is even more complicated as macrosen-
tences are abstracted from sets of microsentences being their instances. Thus
macrosentences are identified if they have the same set of instances, i.e., if
they result from each other by renaming of variables. In the terminology of
logic programming they are variants of each other.27

The proof system for macrosentences Hertz proposes, results from the
propositional system dealt with in Section 3 above by adding the following
two inference rules:

S

S[y/x]
(Binding)

S

S ′
(Formal Inference)

(x and y variables in S) (S ′ variant of S)

Binding (“Bindung”) allows one to identify variables, i.e., to properly spe-
cialize a clause. By Formal Inference (“Formaler Schluß”) we can change
the names of variables. The term Formal Inference results from the fact
that in Hertz’s framework this inference passes from one representation of

24but not the resolution method as a method of constructing proofs. For that purpose
resolution with unification is indispensable. (See the last paragraph of section 2 above.)
25Second Section: “Sentences with Variables”, pp. 485–514.
26He does not even admit extra variables in the succedent of a sentence, i.e., variables not

already occurring in its antecedent (pp. 486 seq.).
27We do not follow Hertz’s construction of macrosentences and his corresponding termi-

nology in detail, as we are mainly interested in normal forms for proofs.



264 PETER SCHROEDER-HEISTER

a macrosentence to another one of the same sentence, i.e., the premiss and
the conclusion of the inference denote the same sentence. This means that
for Hertz the difference between premiss and conclusion is just a “formal”
difference (a matter of symbols, not of what is symbolized).
From themodern point of view, both rules taken together have the strength
of Substitution for systems with mixed variables and constants. We just have
to let certain distinguished variables play the role of constants. Then Formal
Inference accounts for the substitution of a term which does not occur in S,
whereas Binding accounts for the substitution of a term already occurring in
S. It should be noted that, since Formal Inference is just amatter of rewriting
a clause, it can be omitted in the “official” definition of a proof.
Hertz remarks that due to the presence of Binding, normal forms in the
original sense cannot be achieved, as the following example shows, for which
there is no Aristotelian normal form:

P(x)→ Q(x, x)

Q(x, y)→ R(x, y)
Binding

Q(x, x)→ R(x, x)
Syllogism

P(x)→ R(x, x).

However, Hertz also remarks that both Aristotelian and Goclenian nor-
mal forms can be obtained, when restrictions concerning normal forms are
relaxed in the following way: Instead of requiring that major or minor
premisses, respectively, of Syllogism be axioms, they may now be axioms
followed by applications of Binding.28

The argument Hertz gives (1929, pp. 498 seq.) is closely connected to
modern demonstrations of the completeness of SLD-resolution with vari-
ables. He first replaces macrosentences with corresponding microsentences,
which yields propositional proofs. Then he applies his normal form the-
orems for the propositional case to obtain normal proofs containing only
microsentences. Finally he observes that these normal proofs are of such a
form that normal proofs consisting of macrosentences can be extracted from
them. In modern terminology, this observation corresponds to the Lifting
Lemma,29 which says that substitution and resolution can be interchanged,
so that from a ground resolution proof, a proof for clauses with variables
can be obtained.
Hertz structural system with variables and his normal form theorem for
this system was not taken up by Gentzen, who never considered structural
reasoning with non-ground atoms. Inspired by Hertz’s investigations of the
propositional case, Gentzen passed on to his systems for first-order logic

28or by applications of Binding and Formal Inference, if Formal Inference is considered a
proper rule.
29See e.g., Lloyd (1987), pp. 47 seq.
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and arithmetic. It is the more modern background of resolution and logic
programming which enables us to fully appreciate Hertz’s achievements.
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Gerhard Gentzen [1933], Über die Existenz unabhängiger Axiomensysteme zu un-

endlichen Satzsystemen,Mathematische Annalen, vol. 107, pp. 329–350, English translation in
The Collected Papers of Gerhard Gentzen (M. E. Szabo, editor) Amsterdam, North Holland,
1969, pages 29–52.
Gerhard Gentzen [1934/1935], Untersuchungen über das logische Schließen, Mathema-

tische Zeitschrift, vol. 39, pp. 176–210 and 405–431, English translation in The Collected
Papers of Gerhard Gentzen (M. E. Szabo, editor), Amsterdam, North Holland 1969, pages
68–131.
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