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Abstract Several proof-theoretic notions of validity have been proposed in the litera-
ture, for which completeness of intuitionistic logic has been conjectured. We define
validity for intuitionistic propositional logic in a way which is common to many of
these notions, emphasizing that an appropriate notion of validity must be closed under
substitution. In this definition we consider atomic systems whose rules are not only
production rules, but may include rules that allow one to discharge assumptions. Our
central result shows that Harrop’s rule is valid under substitution, which refutes the
completeness conjecture for intuitionistic logic.
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1 Introduction

Within proof-theoretic semantics [25] certain notions of validity have been proposed,
notably by Prawitz [16–19] (for a discussion and overview see [24]; cf. also [2]).
Prawitz [17,19] conjectured that intuitionistic first-order logic is complete with respect
to one such notion. We show that this conjecture is not even true for propositional
logic, if certain plausible assumptions are made about validity.
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For a language without disjunction, Sandqvist [20] has shown that the laws of
classical logic are valid with respect to a variant of proof-theoretic semantics, which
corresponds to the one we are using here (for a discussion see [3] and [12]). His
result cannot be extended to formulas containing disjunction, unless disjunction is
defined classically, e.g., in terms of implication and negation. However, if we want
to give a proper counterexample to the completeness of intuitionistic logic, we need
to find a formula or rule which is not derivable in a calculus of intuitionistic logic,
though all its substitution instances, including those containing disjunction, are valid.
A formula which is valid, but one of whose substitution instances is not valid, can
never be derivable in intuitionistic logic for the trivial reason that derivability in
intuitionistic logic is closed under substitution. That a notion of validity is not closed
under substitution is, of course, a highly significant result in itself, but a result which
rather demonstrates that such a notion is not even a candidate for completeness.
Therefore a thorough discussion of completeness or incompleteness of intuitionistic
logic should at least consider a concept of validity closed under substitution. This does
not infringe Sandqvist’s justification of classical logic, where only disjunction-free
substitution instances need to be considered, with respect to which validity is indeed
closed under substitution.

Like all other notions of validity in the works mentioned above, we rely on atomic
systems, with respect to which the validity of atomic formulas is defined. However,
we not only consider standard atomic systems whose rules are production rules, but
also atomic systems whose rules can discharge assumptions.

2 Validity

We define a notion of validity which is not necessarily closed under substitution.
We then define valid under substitution as valid for all substitution instances, so
that validity under substitution is by definition closed under substitution. Our proof-
theoretic notion of (intuitionistic) validity for propositional logic is based on atomic
deductive systems, which determine the validity of atomic formulas. The validity of
complex formulas is defined inductively relative to such systems. In this section we
use, for simplicity, atomic systems based on production rules. In Section 5 we consider
atomic systems whose rules can discharge assumptions.

We use propositional formulas A,B, . . . ,A1,A2, . . . constructed from proposition
letters, called atoms, ⊥,a,b, . . . ,a1,a2, . . . by means of the logical constants →, ∨
and ∧. We use ¬A as an abbreviation for A→⊥. It is crucial that ⊥ is an atom, as this
makes it possible to deal with minimal negation independently of ex falso quodlibet.

Definition 1 An atomic system S is a (possibly empty) set of atomic rules of the form

a1 . . . an

b

where the ai and b are atoms. The set of premisses {a1, . . . ,an} in a rule can be empty;
in this case the rule is an atomic axiom.

An atomic system S1 is an extension of an atomic system S (written S1 ⊇ S), if S1
results from adding a (possibly empty) set of atomic rules to S. The derivability of an
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atomic formula a from a (possibly empty) set {a1, . . . ,an} of atomic assumptions in
an atomic system S is written a1, . . . ,an`S a.

Definition 2 S-validity (�S) and validity (�) are defined as follows:
(S1) �S a :⇐⇒ `S a,
(S2) �S A→B :⇐⇒ A �S B,
(S3) Γ �S A :⇐⇒ ∀S1 ⊇ S : (�S1 Γ =⇒ �S1 A), where Γ is a set of formulas, and

where �S1 Γ stands for {�S1 Ai | Ai ∈ Γ },
(S4) �S A1∨A2 :⇐⇒ �S A1 or �S A2,
(S5) �S A1∧A2 :⇐⇒ �S A1 and �S A2,
(S6) Γ �S ∆ :⇐⇒ ∀A ∈ ∆ : Γ �S A,
(S7) Γ � A :⇐⇒ ∀S : Γ �S A.

Definition 3 S-validity under substitution (�S) and validity under substitution (�)
are defined as follows:
(i) Γ �S A :⇐⇒ for each substitution instance Γ ′,A′ of Γ,A: Γ ′ �S A′.
(ii) Γ � A :⇐⇒ for each substitution instance Γ ′,A′ of Γ,A: Γ ′ � A′.

Definition 4 Intuitionistic S-validity (�i
S) is defined as follows. Suppose (⊥) stands

for the set of rules
{⊥

a
∣∣ a atomic

}
. Then Γ �i

S A :⇐⇒ Γ �S∪(⊥) A.
Correspondingly, Γ �i A, Γ �i

S A and Γ �i A are defined as Γ �(⊥) A, Γ �S∪(⊥) A
and Γ �(⊥) A, respectively.

In Prawitz’s original definitions [16–19], validity is defined for derivations rather
than for formulas, and is relativized not only to atomic systems, but also to proof
reductions (‘justifications’). However, the formulation in Definition 2, which avoids
the explicit mentioning of justifications, suffices to make our point. More delicate
is the question of whether in (S3) it is appropriate at all to use extensions of atomic
systems (a point which makes our definition similar to the definition of validity in a
specific Kripke structure). This point is not entirely clear in Prawitz’s writings and
will be discussed in the final section. We consider the reference to extensions of S to
be absolutely essential, as it guarantees the monotonicity of � with respect to S.

A crucial point in our dealing with absurdity (and thus negation) is that we do not,
as in Kripke semantics, define absurdity to be something that cannot be validated in
any atomic system. If we defined ⊥ to be a non-atomic constant with the semantical
clause

There is no S such that �S ⊥
we could verify ¬¬a for any atom a, because ¬a is never valid in any S1 ⊇ S, as a
will always become valid in some S2 ⊇ S1. This fact, that any atom a is validated in
some extension of any atomic system, might be considered a fault of validity-based
proof-theoretic semantics, since it speaks against the intuitionistic idea of negation
¬A as expressing that A can never be verified. We do not deal with this issue here.

The fact that we consider absurdity ⊥ to be a distinguished atom means that we
have defined a notion of minimal validity, where “minimal” is understood in the sense
of minimal logic. If we addedf as a non-atomic constant with the semantic clause

�Sf :⇐⇒ ∀a : �S a
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(which is the clause used by Sandqvist [20] following Dummett [4, Ch. 13]) then,
in the presence of ex falso quodlibet, the non-atomic f and the atomic ⊥ become
equivalent, more precisely, ⊥ �if andf�⊥.

Lemma 1 (Properties of S-validity)
(P1) �S is a consequence relation, i.e.,

(i) A �S A,
(ii) Γ �S A =⇒ Γ,∆ �S A,
(iii) (Γ �S A and ∆ ,A �S B) =⇒ Γ,∆ �S B.

(P2) �S is monotone w.r.t. S, i.e., Γ �S A =⇒ ∀S1 ⊇ S : Γ �S1 A.
(P3) Γ �S A→B ⇐⇒ Γ,A �S B.
(P4) a1, . . . ,an �S b ⇐⇒ a1, . . . ,an`S b.
These properties also hold for intuitionistic S-validity, i.e., for �S replaced with �i

S.

Proof Straightforward. ut

Note that (P4) is an atomic completeness result: S-valid consequence between
atoms coincides with derivability in S.

3 Formulas and rules

There is an obvious correspondence between rules and formulas of a certain form.
Any atomic system S can be represented by a set of formulas S∗, if axioms and rules
are translated into formulas as follows:

Definition 5 The atom a represents the axiom a, and the formula a1∧ . . .∧an→b rep-

resents the rule
a1 . . . an

b
. Then S∗ is defined as the set of formulas representing

the axioms and rules in S.

Conversely, any disjunction-free formula A without any left-iterated implication as
subformula can be translated into a set of rules S◦ (a left-iterated implication is an
implicational formula A1→A2, such that A1 contains an implication). Obviously, any
such A can be transformed into a set of formulas A1, . . . ,Am of the form a1∧ . . .∧an→b
by (repeatedly) replacing any B→ (C→D) with (B∧C)→D and any B→ (C1∧ . . .∧
Ck) with the list B→C1, . . . ,B→Ck. Call the resulting set of formulas S′. Then we
proceed as follows:

Definition 6 The axiom a corresponds to the atom a, and the rule
a1 . . . an

b
corresponds to the formula a1 ∧ . . .∧ an→ b. Then S◦ is defined as the set of rules
corresponding to the formulas in S′.

Lemma 2 (Properties of the formula-rule correspondence)
(C1) S∗◦ = S, ∆◦∗ ��∆ .
(C2) �S S∗, �∆◦ ∆ .
(C3) (�S S∗1 and Γ �S∪S1 A) =⇒ Γ �S A, (�S ∆ and Γ �S∪∆◦ A) =⇒ Γ �S A.
(C4) Γ �S A ⇐⇒ Γ,S∗ � A, Γ �∆◦ A ⇐⇒ Γ,∆ � A.
These properties also hold for intuitionistic S-validity, i.e., for �S replaced with �i

S.
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Proof We show the first claim of each pair of propositions.
(C1) and (C2): Straightforward.
(C3): By induction. �S∪S1 a ⇐⇒ `S∪S1 a. Lemma 1, (P4) implies for �S S∗1 that all
rules of S1 are derivable in S. One therefore obtains `S a, and thus �S a.

�S∪S1 A→B ⇐⇒ A �S∪S1 B by (P3)
=⇒ A �S B by �S S∗1 and i.h.
=⇒ �S A→B by (P3).

(The cases for the remaining connectives are also trivial.)

Γ �S∪S1 A ⇐⇒ ∀S2 ⊇ (S∪S1) : (�S2 Γ =⇒ �S2 A)

⇐⇒ ∀S3 : (�S3∪S∪S1 Γ =⇒ �S3∪S∪S1 A)

⇐⇒ ∀S3 : (�S3∪S Γ =⇒ �S3∪S A) by �S3∪S S∗1 and i.h.
⇐⇒ Γ �S A by Def.

(C4): “⇐=” follows from (C2) and Lemma 1, (P1), (iii).
“=⇒”: Γ �S A ⇐⇒ ∀S1⊇ S : (�S1 Γ =⇒ �S1 A) ⇐⇒ ∀S1 : (�S∪S1 Γ =⇒ �S∪S1 A).
Suppose �S2 S∗ and �S2 Γ . Then �S∪S2 Γ by Lemma 1, (P2), and therefore �S∪S2 A.
From �S2 S∗ and (C3) one gets �S2 A. ut

4 The failure of strong completeness

We now consider natural deduction for intuitionistic logic and show that it is not
complete for validity.

Definition 7 Natural deduction for intuitionistic logic NI is given by the following
rules:

[A]
B (→I)

A→B
A A→B (→E)

B

Ai (∨I) (i = 1 or 2)
A1∨A2

A1∨A2

[A1]

C
[A2]

C
(∨E)

C

A1 A2 (∧I)
A1∧A2

A1∧A2 (∧E) (i = 1 or 2)
Ai

⊥ (⊥)
a

Note that the rule (⊥) can be assumed to have only atomic conclusions.
The derivability of a formula A from a (possibly empty) set of assumptions Γ over

an atomic system S is written Γ `S A, and derivability in NI is written Γ `A.

Definition 8 (i) Soundness of NI means: Γ `A =⇒ Γ �i A.
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(ii) Strong completeness of NI means: Γ �i A =⇒ Γ `A.
(iii) Completeness (simpliciter) of NI means: Γ �i A =⇒ Γ `A.

Since derivability in NI is closed under substitution, soundness implies Γ �i A. As
remarked in the introduction, we are mainly interested in completeness rather than
strong completeness. Strong completeness parallels a concept of validity, which is not
necessarily closed under substitution, with derivability in intuitionistic logic. Therefore,
if we do not have strong completeness, this may simply be due to the fact that validity
is not closed under substitution, whereas derivability in intuitionistic logic is closed
under substitution. In this sense, intuitionistic validity under substitution (and not
intuitionistic validity) is the proper concept to be compared to intuitionistic derivability.
We shall nevertheless present some results on the failure of strong completeness before
we proceed to our main result, which is the failure of completeness (simpliciter).

Lemma 3 NI is sound.

Proof By induction on the structure of derivations. ut

Theorem 1 NI is not strongly complete.

We present and discuss three proofs of this theorem.

Proof 1 In his justification of classical logic, Sandqvist [20] proved ¬¬a �i a for any
atom a, and even showed that this holds when a is replaced with any formula A not
containing disjunction. (We are, of course, using the terminology developed in the
present paper.) This was part of his soundness theorem for classical logic. Although
he did not explicitly deal with the incompleteness of intuitionistic logic, his result
obviously demonstrates that NI is not strongly complete, as ¬¬a`a is false. ut

This result is essentially due to the fact that validity is not closed under substitution.
For example, ¬¬(a∨¬a) �i a∨¬a is not true, since, using standard principles for
�i, we can easily conclude �i a∨¬a, which is obviously false. We interpret this as
showing that the notion of validity is not properly framed, if it is to be compared with
derivability.

Proof 2 It is clear that a→ (b∨ c)`(a→b)∨ (a→ c) is false. We show that a→ (b∨
c) � (a→b)∨ (a→ c) holds. Suppose that �S a→ (b∨ c) for some atomic system S.
We have to show that �S (a→b)∨ (a→ c). We know that for every S1 ⊇ S for which
�S1 a, we also have that �S1 b∨c, which means that either �S1 b or �S1 c. Now choose
S1 to be S extended with a as an axiom. Then by (C4) either a �S b or a �S c, which
implies �S (a→b)∨ (a→ c). ut

This is a counterexample against strong completeness of minimal logic and thus
of NI, which has also been presented by Goldfarb [5] in his discussion of Dummett’s
boundary rules. Like Sandqvist’s double-negation example, it shows that validity is
not closed under substitution. If b∨ c were substituted for a, then it would have to
be shown that either � (b∨ c)→b or � (b∨ c)→ c, which cannot be achieved. The
advantage of this counterexample over Sandqvist’s is that it is not tied to the particular
format of atomic systems. It just expects that we can extend an atomic system by
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adding an atom as an axiom, whereas Sandqvist’s example ceases to be valid if we
consider atomic systems with assumption-discharging rules, which we shall consider
below in Section 5.

Proof 3 As is well-known, Mints’s rule

(A→B)→ (A∨C)

((A→B)→A)∨ ((A→B)→C)

is not derivable in NI, i.e., (A→B)→ (A∨C)0((A→B)→A)∨ ((A→B)→C) (cf.
Mints [14]). However, assuming strong completeness, we show (A→B)→ (A∨C) �i

((A→B)→A)∨ ((A→B)→C), which contradicts completeness. Therefore NI is not
complete. Suppose �i

S (A→B)→(A∨C). By (C4), S∗ �i (A→B)→(A∨C). Assuming
strong completeness, S∗`(A→B)→ (A∨C), i.e., there is an open derivation in NI of
the premiss of Mints’s rule from assumptions S∗. This derivation can be transformed
into normal form. Since S∗ does not contain disjunctions, this normal form must be of
the following form, having an introduction rule in the last step:

[A→B]n,S∗

D
A∨C

(→I)n

(A→B)→ (A∨C)

The subderivation D either ends with (∨I) or with an elimination rule. (It cannot end
with the rule (⊥), which has only atomic conclusions.) If D ends with (∨I), then
either A→B,S∗`A or A→B,S∗`C. If D ends with an elimination rule, then there is
a path through formulas F1, . . . ,Fn,Fn+1, where each F1, . . . ,Fn is the major premiss of
an elimination rule, and Fn+1 is either the major premiss of an elimination rule or the
endformula. The path starts with F1, which is the open assumption A→B and major
premiss of an application of (→E). Hence, there is a derivation of the minor premiss
A of this application of (→E), i.e., A→ B,S∗`A or even S∗`A. If A→ B,S∗`A
or S∗`A, then S∗`(A→B)→A, and if A→B,S∗`C, then S∗`(A→B)→C, each
by (→I). In both cases S∗`((A→B)→A)∨ ((A→B)→C), by (∨I). By soundness
S∗ �i ((A→B)→A)∨((A→B)→C), and �i

S ((A→B)→A)∨((A→B)→C) by (C4).
ut

This proof is independent of the form of the formulas A, B and C, i.e., it holds
for A, B and C used as schematic letters for arbitrary formulas. However, our proof
is indirect. Assuming strong completeness, it shows that Mints’s rule is valid under
substitution, thus providing a counterexample to completeness (hence a fortiori to
strong completeness). What makes this proof interesting is that it does not rely in an
obvious way on the fact that validity is not closed under substitution. The assumption
S∗ �i (A→B)→ (A∨C), to which the hypothesis of strong completeness was applied,
is not in any clearcut manner non-closed under substitution. It might even be that it is
closed under substitution after all, so that we have a proper refutation of completeness.
As the previous one, this proof is not dependent on the format of atomic systems. If
we consider assumption-discharging rules, everything stays as it is.
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5 Atomic higher-level rules

In order to give a direct counterexample to completeness, we extend the notion of an
atomic system by allowing for rules that discharge assumptions. Atomic systems in
the sense of Definition 1 are now called first-level atomic systems.

Definition 9 A second-level atomic system S is a (possibly empty) set of atomic rules
of the form

[Γ1]
a1 . . .

[Γn]
an

b
where the ai and b are atoms, and the Γi are finite sets of atoms. The sets Γi may be
empty, in which case the rule is a first-level rule. The set of premisses of this rule can
be empty as well, in which case the rule is also called an axiom.

The intended meaning of such a rule as suggested by the notation is as follows: If
in S we have derived a1, . . . ,an from certain assumptions, then we may pass over
to b, where, for each i, in the branch of the subderivation leading to ai assumptions
belonging to Γi may be discharged. Rules which discharge assumptions are present in
logical calculi, for example in the implication introduction or disjunction elimination
rules in NI. Here the idea of having rules discharging assumptions is carried over to the
atomic case. As before, the derivability of an atomic formula a from a (possibly empty)
set {a1, . . . ,an} of atomic assumptions in an atomic system S is written a1, . . . ,an`S a.

This idea of atomic discharging rules can be extended to the higher-level case
where not only atoms but atomic rules can be introduced and discharged as assump-
tions, an idea first proposed in [22] (for the more general case of arbitrary, non-atomic
rules). We cannot spell out the full formalism of this approach here, but sketch it in
sufficient detail. A recent exposition can be found in [26] and [15]. First we need a
linear notation for rules. A basic rule of a first-level atomic system (Definition 1) is
linearly written as a1, . . . ,anBb, a basic rule of a second-level atomic system (Defi-
nition 9) as (Γ1Ba1), . . . ,(ΓnBan)Bb. The precise definition of atomic higher-level
rules runs as follows:

Definition 10 (i) Every atom a is a rule of level 0.
(ii) If R1, . . . ,Rn are rules (n≥ 1), whose maximal level is `, and a is an atom, then

(R1, . . . ,RnBa) is a rule of level `+1.

The intended meaning of a rule (Γ1Ba1), . . . ,(ΓnBan)Bb is nothing but a general-
ization of the second-level case: Suppose, for each i (1≤ i≤ n), we have derived ai
from Γi; then we may pass over to b. This gives rise to the notion of a higher-level
atomic system.

Definition 11 A higher-level atomic system S is a (possibly empty) set of atomic rules
of the form

[Γ1]
a1 . . .

[Γn]
an

b
where the ai and b are atoms, and the Γi are now finite sets of rules, which may be
empty. The set of premisses of such a rule can be empty as well, in which case the
rule is also called an axiom.
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The fundamental difference to the second-level case is that now rules and not only
atoms can function as assumptions, which can be discharged. This has to be taken into
account to define the notion of a derivation of an atom a from rules R1, . . . ,Rn.

Definition 12 For a level-0 rule a,
a

a

is a derivation of a from {a}.
Now consider a level-(`+ 1) rule (Γ1B a1), . . . ,(ΓnB an)B b. Suppose that, for

each i (1≤ i≤ n) a derivation
Σi∪Γi

Di
ai

of ai from Σi∪Γi is given. Then

Σ1
D1
a1 . . .

Σn

Dn
an

(Γ1Ba1), . . . ,(ΓnBan)Bb
b

is a derivation of b from Σ1∪ . . .∪Σn∪{(Γ1Ba1), . . . ,(ΓnBan)Bb}.
We say that b is derivable from Σ in a higher-level atomic system S, symbolically

Σ `S b, if there is a derivation of b from Σ ∪S.

An example may illustrate what a particular derivation looks like. Suppose the atomic
system S comprises the rules (bB e)B f and ((aB b)B c)B e. Then the following
derivation demonstrates that ((aBb)Bd),((b,d)B c)`S f :

[b]3
b

[a]1
a

[aBb]2
b

1 (aBb)Bd
d b,dB c

c
2 〈((aBb)B c)B e〉

e
3 〈(bB e)B f 〉

f

Here, the rules enclosed in angle brackets 〈. . .〉 are primitive rules of S. As usual, square
brackets [. . .] with numerals indicate the discharge of assumptions. The definitions of
S-validity (Definitions 2, 3 and 4) remain unchanged, with the reference to derivability
in S now understood in the higher-level sense.

The translation of atomic rules into formulas and vice versa (Definitions 5 and 6)
can easily be carried over to the higher-level case as follows.

Definition 13 With every rule R in a set of rules S a formula R∗ representing R is
associated as follows:
(i) a∗ := a, for atoms a.
(ii) (R1, . . . ,RnBa)∗ := R∗1∧ . . .∧R∗n→a, for a rule R1, . . . ,RnBa.
Then S∗ is defined as the set of formulas representing the rules in S.

Conversely, with a formula A not containing disjunction a rule or finite set of rules
S◦ is associated as follows. Carry out the following transformations on subformulas
until an irreducible formula A′ is reached:
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(i) Replace any subformula of the form C→D1 ∧ . . .∧Dn with (C→D1)∧ . . .∧
(C→Dn).

(ii) Replace any subformula of the form C→ (D→E) with (C∧D)→E.
Then the operation # associating a rule or set of rules with A′ is defined as follows:
(i) a# := a, for atoms a,
(ii) ((B1∧ . . .∧Bn)→a)# := B#

1, . . . ,B
#
nBa,

(iii) (B1∧ . . .∧Bn)
# := {B#

1, . . . ,B
#
n}.

Finally set S◦ := A′#.

As an example, if A is the formula (a∧ b)→ (c∧ ((d→⊥)→⊥)), then A′ is the
formula ((a∧b)→ c)∧ ((a∧b∧ (d→⊥))→⊥), and S◦ is the set consisting of the
two rules a,bB c and a,b,(dB⊥)B⊥.

The properties (P1)-(P3) in Lemma 1 continue to hold. Note that (P1)-(P3) also
hold for the intuitionistic case, which we need now. Lemma 1, (P4) now takes the form

∆
∗ �S b ⇐⇒ ∆

∗`S b

where ∆∗ is the set of formulas representing a finite set ∆ of atomic rules.
Lemma 2 continues to hold with ∗ and ◦ understood in the new way.

6 The failure of completeness

First we note as lemmas two interesting completeness results, which show that in
the current framework of higher-level atomic systems strong completeness holds for
disjunction-free formulas as well as for arbitrary negative formulas.

Lemma 4 (Strong completeness for disjunction-free formulas) Suppose Γ and A
do not contain disjunction. Then Γ �i A ⇐⇒ Γ `A.

Proof Follows immediately from Lemma 1, (P4), together with the translation between
formulas and rules. ut

Remark 1 For disjunction-free Γ and A we also have strong minimal completeness
Γ � A ⇐⇒ Γ `m A, where `m denotes derivability in minimal logic, i.e., without
using the rule (⊥).

Lemma 4 depends on the availability of higher-level rules, which makes it possible
to represent any nested implication as a rule. It can be extended to arbitrary negative
formulas, as from negative formulas disjunctions can be eliminated.

Lemma 5 (i) Any formula ¬A is intuitionistically equivalent to a formula A′, which
does not contain disjunction.

(ii) �i
S ¬A ⇐⇒ �i

S A′ for any S.

Proof (i) The following equivalences hold for NI (see [9, §§26-27]):
¬(A∨B) `̀¬A∧¬B, ¬(A∧B) `̀¬(¬¬A∧¬¬B), ¬(A→B) `̀¬¬A∧¬B.

(ii) Soundness of intuitionistic logic. ut
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Remark 2 This result does not hold in the framework of minimal logic, as we need ex
falso quodlibet (i.e., the rule (⊥)) in the translation of a negated implication.

Lemma 6 (Strong completeness for negative formulas) For any formula of the
form ¬A it holds that �i ¬A ⇐⇒ `¬A.

Proof Suppose �i ¬A. By Lemma 5, we we have �i A′ for some disjunction-free A′

which is intuitionistically equivalent to ¬A. By Lemma 4 we have that `A′, which
again is equivalent to `¬A. ut

Now we can present our counterexample to the completeness of intuitionistic
logic.

Theorem 2 Intuitionistic logic is not complete with respect to the semantics based on
higher-level atomic systems.

Proof Harrop’s rule1

¬a→ (b∨ c)
(¬a→b)∨ (¬a→ c)

is not derivable in intuitionistic logic, i.e., ¬a→ (b∨ c)0(¬a→b)∨ (¬a→ c).2 We
show that ¬A→(B∨C)�i (¬A→B)∨(¬A→C) holds for any formulas A,B,C, which
means that Harrop’s formula is intuitionistically valid under substitution. Suppose
that �i

S ¬A→ (B∨C). We have to show that �i
S (¬A→B)∨ (¬A→C). We know

that for every S1 ⊇ S for which �i
S1
¬A, we also have that �i

S1
B∨C, which means

that either �i
S1

B or �i
S1

C. By Lemma 5, �i
S1
¬A is equivalent to �i

S1
A′ for some

disjunction-free A′ which is intuitionistically equivalent to ¬A. Now choose S1 to be
S∪ (A′)◦. Then by (C2) we know that �i

S1
A′, and therefore �i

S1
¬A. Thus either �i

S1
B

or �i
S1

C. Thus, by (C4), either A′ �i
S B or A′ �i

S C, i.e., either ¬A �i
S B or ¬A �i

S C. ut

7 Critical discussion

By means of a counterexample, we have shown that intuitionistic logic is incomplete
for a semantics based on higher-level atomic systems. By appropriate coding, the
usage of higher-level rules can be reduced to the usage of second-level rules (see
[21]). Thus, in effect, we have shown the incompleteness of intuitionistic logic for a
semantics based on second-level atomic systems. However, there is no way in sight
how to carry over this result to a semantics based on standard first-level rules in the
sense of Definition 1 (in the following called standard semantics). The arguments in
Section 4 show that intuitionistic logic is not strongly complete for standard semantics.
This means that the question of whether intuitionistic logic is complete (simpliciter)
with respect to standard semantics is still open.

1 Also known as Kreisel-Putnam rule (cf. [10]) or independence of premiss rule.
2 Harrop’s rule was proposed as an example of a formula, which is admissible, but not derivable in

intuitionistic logic (see [8]). It should be pointed out that admissibility is different from validity, although
there are some similarities between these concepts (see [3]).
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The significance of this point is reinforced by the fact that serious objections
can be raised against second-level and higher-level atomic systems. By admitting
atomic rules that discharge assumptions, a great deal of logic is already put into the
atomic system, namely fundamental ideas underlying the framing of implication in
natural deduction. With higher-level atomic systems, everything that is independent
of disjunction is already present at the atomic level. This is reflected by the fact that
the strong completeness of implication-conjunction logic is nearly trivially proved
(Lemmas 4 and 6). In fact, once we start to include implication-specific features such as
assumption discharge in the atomic system, there is no genuine reason why we should
exclude further means of expression. If we included propositional quantification,
which is very useful in the framing of logical rules (see [26]), in the atomic system, we
would gain means to express disjunction-like features at the atomic level, giving us the
completeness of intuitionistic logic in a relatively simple way.3 Overall this means that
there are good reasons to argue that the ‘real’ validity-based proof-theoretic semantics
is standard semantics, in which atomic systems consist just of production rules.

What we have shown speaks neither for nor against completeness with respect to
standard semantics. If the latter could be established, we would have the interesting
fact that, in view of Sandqvist’s result for classical logic, there would be a justifica-
tion for classical as well as for intuitionistic propositional logic, where intuitionistic
logic, being based on a wider range of connectives, demands stronger requirements
concerning closure under substitution.

However, there are further points that affect the validity concept as a whole, as it
is used here and in related works. One crucial point already mentioned in Section 2 is
the handling of negation. If we consider negation to be a proper logical constant as
dealt with in Kripke semantics, namely as expressing that something can never turn
out to be true, then most of our techniques fail. Our way of proceeding depends on the
fact that, by means of adding rules to a given atomic system, we can force a negated
statement to be true. By adding the rule aB⊥ to S we can generate an extension of S,
in which a is false. Theoretically, we could even make an atomic system inconsistent
by adding absurdity ⊥ as an axiom to it. This is not possible if absurdity is a logical
constant which by definition can never be established. If the semantics is restricted
in such a way that only consistent extensions of atomic systems are allowed, i.e.,
extensions in which absurdity⊥ cannot be derived, then completeness can be achieved
(Goldfarb [5]; see also Litland [11]).

Another crucial point is that our framework and results rest on the assumption
that in the interpretation of hypothetical consequence in (S3) (and therefore implicitly
in the interpretation of implication in (S2)) we are considering arbitrary extensions
of atomic systems. Prawitz used the idea of extensions of atomic systems in [16],
but from 1973 [17] on never refers to them, without making it explicit that he does
not need them. There might be arguments against extensions of atomic systems as
describing evolving knowledge; an atomic system might instead be considered to be an
(inductive) definition that delineates the meaning of atomic expressions. With respect
to definitions one would not expect monotonicity (in the sense of (P2)), as an extension

3 See also Sandqvist [21], who proposed some sort of semantics for disjunction corresponding to the use
of propositional quantification in atomic rules, for which completeness follows almost immediately.
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of a definition changes what is being defined. A system for definitional reasoning is
definitely worth developing. For that purpose one might use, for example, Martin-Löf’s
theory of iterated inductive definitions [13] or Hallnäs’s idea of definitional reflection
(see [6,7,23]). It would then not be enough to just drop the reference to extensions
in (S2). It would rather be necessary to add a full-fledged definitional theory.

In any case we have shown that if extensions are considered, which is a com-
mon case considered by many authors, and absurdity and negation are dealt with in
the way indicated, then we do not have intuitionistic completeness, at least when
assumption-discharging atomic rules are considered. This is a significant result, which
goes against certain intuitions concerned with the harmonious relationship between
introduction and elimination rules (cf. [1]) as put forward by Prawitz [16–18], and
also by Dummett [4]. However, even if, given the standard introduction rules, there
are no stronger elimination rules than the intuitionistic ones, this does not preclude
that stronger rules, which do not have the form of elimination rules, can be validated.
Harmony between syntactically specified introduction and elimination rules is one
matter, the validity of arbitrary rules is a different matter.
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