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1. INTRODUCTION

As has often been claimed, the introduction (I) and elimination
(E) rules of intuitionistic natural deduction systems stand in a
certain harmony with each other. This can be understood in such a
way that once the I rules are given the E rules are uniquely deter-—
mined and vice versa. The following is an attempt to elaborate this
claim. More precisely, we define two notions of validity, one based
on I rules (valid+) and one based on E rules (valid-), and show:
the E rules generate a maximal valid+ extension of the I rules, and
the I rules generate a maximal valid- extension of the E rules. That
is to say, the calculus consisting of I and E rules (i.e., intuition-—
istic logic) is sound and complete with respect to both validity+
and validity-. This does not mean that the syntactical form of E
rules is determined by the I rules and vice versa, but that the
deductive power which E rules bring about in addition to I rules 1is
exactly what can be justified from I rules and vice versa. Concerning
the approach based on 1 rules this was already claimed by Gentzen
who considered I rules to give meanings to the logical signs and

the E rules to be consequences thereof (Gentzen, 1935, p. 189).
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Unfortunately (and contrary to the author's expectation) the
approach based on I rules does not work for the full system of in-
tuitionistic logic, but only for the fragment without v (and 3 in
the quantifier case). The reason for this asymmetry between the two
approaches is the indirect character of the E rules for v (and 3), as
will be shown at the end (see section 4.2 below). Thus from the
standpoint of the present investigation preference must be given to
the approach based on E rules. This, however, is only a technical
argument. Whether one should use I or E rules as the basis of proof-
theoretic validity must finally rest on genuine semantical or epi-

stemological arguments which go beyond the scope of this paper.

It is a central feature of the systematics of I and E rules of
intuitionistic logiec, that an I step followed by an E step whose
major premiss is just the conclusion of the I step represents a
"detour' and can be omitted: the premisses of the I step already
'contain' the conclusion of the E step in a certain sense. In Prawitz
(1965) this fact is called the 'inversion principle' and used as
the basis of the normalization procedures developed there. For

example, the sequence of inference steps

. +

. +

. +

o B
&1

o & B
&E

o

can be reduced to

Gy
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the sequence

. T m B
. | +
. | .
o | .
vI
o v B Y Y
vE (1)r
Y

where "(1)" marks the discharging of assumptions by the application

of VvE, can be reduced to

(here the derivations of the minor premisses of VE must be at one's
disposal). Using the concept of the eliminability of a rule from a
derivation, which means that the derivation which possibly applies
that rule can be transformed into a derivation of the same formula
from the same or from fewer assumptions without any application of

that rule, these reduction steps can be characterized in two ways:

(i) They show that applications of E rules are eliminable from
all derivations in which major premisses of such applications are

always conclusions of applications of I rules.

(ii) They show that applications of I rules are eliminable
from all derivations in which the conclusions of such applications

are always major premisses of applications of E rules.
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If one considers eliminability in this sense to be a justifi-
cation of inference rules, in the first case one takes the elimination
procedure to be a justification of the E rules with respect to
given I rules (which are considered 'canonical', i.e., justified
by definition as meaning-determining rules), and in the second case
the same procedure to be a justification of the I rules with respect

to given 'canonical' E rules,

This idea can easily be generalized to definitions of validity

for arbitrary inference rules p of the form

I‘I Fu
G‘.l - o

5 (a2 0),
(s ]

where the Fi are (possibly empty) lists of assumptions which may be
discharged by the application of p in the derivation of a; from T..
Calling all a for which Fi is empty the principal premisses of p
(and correspondingly for applications of p) one only has to use what
is said in (i) and (ii) about E and I rules, respectively, as the
definiens. That is to say, we consider arbitrary inference rules p
as if they were E rules for their principal premises, or as if they

were I rules for their conclusion.

(i') p is valid+ if applications of p are eliminable from all
derivations in which the non-atomic principal premisses of such

applications are always conclusions of applications of T rules.

(ii") p is valid- if applications of p are eliminable from all
derivations in which the non-atomic conclusions of applications of

p are always major premisses of applications of E rules.
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These definitions have the disadvantage that validity is not
transitive in the sense that rules derived by application of valid

rules are valid. E.g., both

(o & B) & v a & B
———— and
a & B o

are valid+, but not

(o & B) & v

o

since there is no elimination procedure for the application a of the

latter rule in the derivation

a & B Y
n (¢ & B) & v
a ——

[¥]

where @ & f and y are used as assumptions. Similarly, both

o B a & B Y
and —m
a & B (a & B) & v

are valid-, but not

o B ¥

-]

(a & B) & v

since there is no elimination procedure for the application m of the

latter rule in the derivation
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a B ¥

a —

(2) (a & B) & ¥
a & B

where «, B, y are assumptions. Another example is the inference rule

a v B
o a & B
o & B

(where occurrences of a v B can be discharged by the application of
this rule): it is not valid- in the sense of (ii') because it cannot

for example be eliminated from the derivation

(1)

(@ v B) 2 (a & B) a v B

o o & B

(3) = (1)
a & B
B

It can nevertheless be derived by use of the valid- rule

a
av B
+
-+
+
a v B
+
+ . . o
from + and . one obtains .
o o v B
a & B
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Thus the soundness and completeness results which can be proved
for intuitionistic logic with respect to the notions of validity
defined by (i') and (i'') (cf. Schroeder-Heister, 1983a, 1983b) only
lead to an equivalence between derivability in intuitionistic logic
and the 'transitive closures' of valid rules; this gives much less
information than one would like to have (that is reflected in the

fact that the proofs of these results are fairly simple).

This difficulty can be overcome by defining the validity of
an inference rule p by induction on the complexity of p (which will
be explicated by the rank |pl of p). We allow that in eliminating
an application of p from a derivation, rules which are of lower
complexity than p may be used. This leads to the following pre-

liminary definitions (for precise definitions see section 2.4 below):

(i'') An atomic rule is valid+ if it is derivable without use
of basic rules for operators. A non-atomic rule p is valid+ if
applications of p are eliminable from all derivations in which the
non-atomic principal premisses of applications of p are always
conclusions of applications of I rules, and where, besides I rules,

valid+ rules of lower complexity than p are at one's disposal.

(ii'') An atomic rule is valid- if it is derivable without use
of basic rules for operators. A non-atomic rule p is valid- if
applications of p are eliminable from all derivations in which the
non-atomic conclusions of applications of p are always major premis-
ses of applications of E rules, and where, besides E rules, valid-

rules of lower complexity than p are at one's disposal.

Using these definitions the applications m of the rules con-
sidered in the examples above can be eliminated from (1), (2) and

(3): We may transform (1) to
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o &

because 3
(¢ & B) & v
o

is a valid+ rule of lower complexity than the rule

. (2) can be transformed to

because a

&
o B Y
(o & B) & v

8 is a valid- rule of lower complexity than the rule

. Similarly, we may transform (3) to

o4

(e v B) D (ax & B) av B

o & B

B

because — is a valid- rule of lower complexity than
(8]

v B

a v B
o o & B
a & B

It can however be shown that the rule

(a v B) & v

(a &Y) v (B &y)
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for example, is not valid+ in the sense of (i''), because to eliminate

it from certain derivations one would have to use an VE rule

o B
o v B (0w & y) v (B & v) (@ &y) v (B &)

(a0 &y) v (B &)

which is valid+, but not of lower complexity than the rule above
(see section 5.2 below). (i'') will turn out to be adequate only for
rules which are built up from formulas without v (and 3 in the
quantifier case). Thus when speaking about validity+ this should

always be understood as restricted in this way.

The fact that the so-defined notions of validity are in general
transitive, follows immediately from the soundness and completeness
results we are going to prove with respect to these notions, i.e.,
from the fact that a rule p is derivable in intuitionistic logic iff
it is valid+ and iff it is valid-. Due to lack of space we confine
ourselves to sentential logic; the quantifier case is an exercilse
which gives no new fundamental insight. We shall, however, take
atomic bases into account, i.e., consider calculi for atomic formulas

which are extended with rules for logically compound formulas.

In the following we shall understand the term "eliminability' as
employed above in its uniform reading. That is to say, the elimination
procedures which transform certain derivations of the premisses of
a rule into certain derivations of its conclusion must be uniform
in the sense that they do not depend on the way the premisses have
been derived. This idea will be formally captured by introducing
assumption rules, i.e., rules functioning as assumptions, which are
a natural counterpart of assumption formulas for natural deduction

systems.
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Section 2 below will present our system of sentential logic
over atomic calculi including assumption rules in detail, more pre-
cise re-definitions of validity, and some basic lemmata. Sections 3
and 4 give the soundness and completeness proofs for validity- and
validity+, respectively, and section 5 contains, beside some remarks
on the extension of our approach to quantifier logic, a discussion
of why the conception which is based on I rules fails for formulas

containing v (or 3).

The approach presented here was stimulated by and is closely
related to Prawitz' theory of arguments and his definitions of
validity (cf. Prawitz, 1971, 1973, 1974, 1984). Because we are con-
cerned mainly with technical matters of proof theory, we always
speak of 'derivations' and do not distinguish them from 'arguments'.
A comparison of ours and Prawitz' approach cannot be carried out
here; we just mention some aspects which must be taken into consider-

ation for such a comparison:

- Prawitz defines the validity of inference rules in terms of
the validity of arguments which is the primary notion. We define
validity of an inference rule first; a derivation is considered

valid if it results from applications of valid inference rules.

- Prawitz' definitions of validity which are based on I rules
capture the whole system of intuitionistic logic whereas our notion
of validity+ is adequate only for the restricted system without v
(and 3). Conversely, Prawitz' short discussion of a validity notion
based on E rules (1971, p. 289 seq.) is restricted to the system
without v (and 3) whereas our notion of validity- is adequate for

the full system.

- Prawitz leaves the notion of a 'procedure' unrestricted,

whereas we will consider only uniform procedures. It seems to be
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exactly this restriction which makes the fairly simple completeness
proofs for our system possible (whereas the soundness proofs are
more complicated because they have to apply the whole power of the
normalization theorem). For Prawitz' approach there is an obvious
way of proving soundness but it is not at all clear how a complete-
ness proof may proceed. Furthermore, our restriction to uniform
procedures is the reason why, when dealing with atomic systems, we
need not consider arbitrary extensions of such systems in the defi-

nitions of validity.

2. BASIC NOTIONS

2,1 Calculi With Assumption Rules - Uniform Procedures

As stated above we deal with sentential logic which is built
over atomic calculi for atomic formulas. An atomic calculus A is
given by a set of atomic formulas and a set of inference rules
(perhaps including axioms) governing these formulas. The calculus
of intuitionistic logic I(A) over A is defined as follows: Formulas
of T(A) are formulas of A, and furthermore (x & B), (a2 v B), (a D B),
1l for formulas a and B of I(A), where outer brackets can be omitted.
Such formulas are also called formulas over A. For given A, 'a', 'R',
'vy', '6", 'e' (with and without indices) are syntactical variables
for formulas over A. Formulas of IU(A) are formulas over A which do
not contain v. Basic inference rules (shortly: basic rules) of I(A)
are the atomic inference rules of A and the standard I and E rules

of intuitionistic sentential logic, i.e.,

o B o & B o & B
&E
a & B o B

&I
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o B
o B o v B Y Y
vi VE
a v B o v B Y
(&3
B o DB o
=33 - SE
a DB B
L
[no LI rule] 1 —
(s}

for all a, B, y. Basic rules of 1°(A) are these rules without the

v rules, where a, B, vy are formulas of IO(A). Note that rules in

our sense are not rule schemata so there are, e.g., many 21 rules

and not one >I rule. The formulas standing above a premiss of a

rule are those whose occurrences may be discharged by the application
of this rule. In the notation of a derivation this discharging must
be indicated (e.g., by small numerals in brackets), but not in the
notation of a rule, for in the latter case assumptions which are not
discharged are never mentioned. As usual, the leftmost formulas of

E rules and of applications of E rules are called major premisses.

I+(A) results from I°(A) by omitting the E rules, I (A) from
I(A) by omitting the I rules as basic rules. By 1 we denote the
calculus T (F) over the atomic calculus F where F has denumerably
many sentence letters ar, 32, ... as formulas and no inference rules.
I.e., T is the ordinary calculus of 'formal' intuitionistic senten-
+

. . . . . . o
tial logic without an atomic base in the genuine sense. By 1, T

and I we denote IO(F), T+(F) and I*(F), respectively.

Following Lorenzen (1955), by a system of signs we understand

a list of signs whose entries are separated by commas and called
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its members. Note that o is just the system consisting of « only
(which is different from the finite set {a}). If ¢ is a system,

then {?} is the set having as elements the members of o. Empty
systems are allowed as limiting cases - they have no graphical repre-
sentation. Syntactical variables for systems of formulas are ',
'A', with and without indices. 'T', A' denotes the system which is
obtained by concatenating the members of T and A. It will be always
obvious from the context, if the comma is used as dividing entries

of a system or if it is metalinguistically used in the context of

an enumeration.

The general form of an inference rule (shortly: rule) is

r T
1 n
(4) a ...«
1 n
(s

where Fi's may be empty and n may be 0. Syntactical variables for

rules are 'p', "p ', 'p.' , ... . Rules over A (or 'of I(AY") are

| 2
built up from formulas over A, rules of I1°(A) from formulas over
A without v. As a linear notation for a rule p of the form (4) we use

<<' > = q vy K> a >=20
] n n

],
where, if Fi is empty, <Pi> =, is replaced by a, and where, if
n =0, we write =ua. By (O)] we denote the system

<FI> = q ey, S > =0
n

1’ n

and by (p)2 the conclusion o. In this linear notation, we write, e.g.,
<a, B>=a & B for an &I rule and <a v B, <a> = Y, <B> = y> = y for
an VE rule. As syntactical variables for systems containing formulas

and/or rules of the form <I'> = o we use '¢' and 'V' (with and without
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indices). (Note that ¢ and Y cannot contain arbitrary rules of the
form (4) but only those where all Fi are empty.) So a rule p of the

general form (4) can be represented as <¢> = .

The rank of formulas, rules and systems of formulas and rules

is denoted by '| |' and defined as follows:
lal = 0 if o is atomic
[Ll =1
lo & Bl = Ja v Bl = la 2 B8] = max(lal, [B]) + I

[¢] = max{|¥]/ ¥ is member of ¢}

[<d> = al = max([®], lal) + 1.

For example, according to this definition, VE rules and OI rules
have rank 2 if a, B, y are all atomic. Note that the rank of a rule

is always greater than O.
Lemma 2.1.1: (i) An I rule with conclusion @ has rank la] + 1.
The same holds for E rules with a as major premiss, if @ is a con-

junction or an implication.

(ii) If 18] < lal, then max(|<d> = | - I, 1Bl + 1) <

1A

|<d> = al - 1.

Proof (i) trivial.

(ii) |<b> = 8] - 1 = max(1®l, IRl) < max(|®|, |a]) =

[<d> = al = 1. [B] + 1 £ |a] € max(|®], la]) = |<b> = a| - 1.

As usual in natural deduction systems, derivations may start
with assumptions (or applications of atomic axioms if there are any)

and proceed by the application of inference rules where by the
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application of certain rules assumptions can be discharged, i.e.,
the dependence on assumptions can be eliminated in the course of a
derivation. Unlike usual treatments of natural deduction, however,
we permit the application of rules of the form <ul, ey an> = o

as additional assumptions. These are not assumptions from which one

can start, but assumptions which are applied according to the schema

and allow one to pass over from derived formulas to another formula.
Assumption rules differ from assumption formulas in that, in the
framework presented here, there are no rules which allow one to
discharge applications of them. We use the term 'assumption' as in-
cluding assumption formulas and assumption rules. (For a thorough
treatment of assumption rules within a framework where they are
dischargeable, including the quantifier case, see Schroeder-Heister

1984a, 1984b).

Assumption rules are a natural extension of assumption formulas
for the context of natural deduction systems in so far as they can
help to explicate the notion of a uniform procedure for transforming
derivations from assumption formulas; such a notion is important
for the definition of the derivability of a rule which allows us to
discharge assumptions. Following Lorenzen (1955), in the case of
Hilbert-style calculi one can distinguish between the admissibility

and the derivability of a rule <a , ..., a>=a in the following

]’
way: <o, ..., @ >=a is admissible if there is a procedure which

transforms assumption-free derivations of Uy oeey @ into an
n
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assumption-free derivation of aj; it is derivable if there is a uni-
form procedure of this kind, i.e., a procedure which does not depend

on the way the a ey an may have been derived. The latter can be

l’
expressed by saying that o is derivable from the assumptions

Gy eees O Occurrences of the assumptions Gps weny @ in a derivat-
n

ion of o from u}, ey an can be considered as schematic letters
representing assumption-free derivations of s,
ly: instantiation of them by assumption-free derivations uniformly

RN an, respective-
yields an assumption-free derivation of a.

The same distinction can be drawn on the next level with
natural deduction calculi. A rule of the form 4<T]) AL ITRRERE <Fn> =
= an> = o may be called admissible, if there is a procedure which
transforms derivations of oy from Ti (for all i, 1 £ i £ n) into
an assumption-free derivation of a, and called derivable if there
is a uniform procedure of this kind, i.e., a procedure which does
not depend on the way the a, may have been derived from the Fi. The
latter can be expressed by saying that a is derivable from the

assumptions (F]> =« ieey, <[ > = a - Applications of assumptions
n

I ’
<Fi> = oy in such a derivation can be considered as schematically
representing derivations of o from Fi: replacement of them by
derivations of a. from Fi uniformly yields an assumption-free

1

derivation of a.

Consider for example the rule

a B
B &y &
a D6

for arbitrary formulas o, B, y, 6 of I. Its derivability in I can be

shown using assumption rules in the following way:
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(1)

o
<a> = B & vy
B & v
&E
g
<f> = 5
4]
ol (1,
a2 6

This derivation expresses a uniform procedure because the replacement

of

a B
<a> = B & v and <> = § —
B &y &
o B
. . - +
by derivations - and 1
B & v 5

. . . . ' - +
uniformly yields the required derivation, no matter how - and b look.

The distinction between admissibility and derivability breaks
down in favour of derivability, however, if one allows additional

assumptions from the beginning: If we call <a cer > =0

I)
admissible if there is a procedure which transforms derivations of

ai from & (1 = 1 £ n) into a derivation of o from 4, then by taking

A to be the system Uy weey O we obtain the derivability of

n
A TRRERRY o« >=a from its admissibility. And similarly, if we call
<<F]> REITTIRERE, <Fn> =a>=a admissible, if there is a procedure

which transforms derivations of oy from Ti and ® (1 £ 1 £ n) into
a derivation of o from %, then by taking ® to be the system

[ >
<> =a,
oy from Fi and ¥ (1 £ i £ n), we obtain the derivability of the con-

. €Fn> = o so that there are trivial derivations of
n

sidered rule from its admissibility.
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In the following we shall rely on the notion of uniform proce-
dures and thus on assumption rules not only when dealing with deriv-
ability in intuitionistic logic but also when dealing with the
validity of rules. That means that we may use assumption rules
throughout so that elimination procedures are, according to the last

paragraph, eo ipso uniform ones.

2.2. Derivability - Canonical Conditions and Consequences

The explication of the notion of assumption rules leads to the
following formal definitions of derivation and derivability which
correspond to those one can find in Prawitz (1965). Let K be one
of the calculi defined above. We consider formulas of K and rules
which are built up from formulas of K. Derivations of formulas

depending on finite sets of assumptions are defined as follows:

« is a derivation of a in K depending on the empty set, if
= a is a basic rule of K (i.e., an axiom), and depending on {a}
otherwise.

If for each i (1 £ 1 £ n),

4,
R

=]

i
is a derivation of ay in K depending on Mi’ then

(x) (x}

|

e D
“ew p’
j=!

=
=l
=1

(%)

=}



COMPLETENESS OF INTUITIONISTIC LOGIC 61

is a derivation of a in K depending on iQI(Mi \ {&i}), if 4<ﬂ]> =
AL TERRERE cﬂn> = an> = o is a basic ruli_?E}K, x 1is a numeral which
has not been used in the derivation and ﬂ.i means that '(x)' is
attached to all B where B is a topmost occurrence of a formula be-

longing to ﬁi.

If for each i (1 € 1 £ n),

R

is a derivation of a, in K depending on Mj, then

i
is a derivation of a in K depending on (igl Mi) U {aa], ceey @ > al.

The derivations of ai are called the immediate subderivations

of the resulting derivation.

If Mc {¢}, then a derivation of a depending on M in K is also
called a derivation of o from ¢ in K. o is derivable from ¢ in
K (¢ }K-a) if there is a derivation of o from ¢ in K. A rule p is
derivable from ¢ in K (¢ ij p) iff ¢, (p)]
in K (FEH* p) iff (p)I PE-(p}z. A system of formulas or rules Y is

h(-(p)z. It is derivable

derivable from ¢ in K (¢ FE-?) if all its members are derivable

from ¢ in K.
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The definition of the derivability of rules is justified by the
remarks in section 2.1 above, according to which the assumption that
a derivation of B from A is given can be represented by the assumption
rule <4> = B if this assumption is considered as an argument of

uniform transformations only.

Following this definition the I rules can be conceived of as
permitting the inference of formulas from systems of formulas and/or
rules, namely of a & B from the system a, B; of a v 8 from the
systems a and B and of a ® B from the system <a> = 8, L as a limiting
case cannot be inferred from any system. The E rules can be conceived
of as permitting the inference of formulas or rules from formulas,
namely of o and 8 from a & B, of <<a> =y, <B> = y> =y for every y
froma v B, of <a> = 8 from o« 2 B and of a for every a from L. This
relationship between formulas and (systems of) rules leads to the
following definition: Let o be a formula over A. Then we define the
predicate of being an « , which is a predicate for systems of formulas

or rules, as follows:

o is an ¢ 1if a is atomic.

B, vy is an a if o equals P & y.
Bis ana if o equals B v y.
vy is an o if « equals B v vy.

<> = y is an a if o equals B D v.

There is no L (not even the empty system!).

For a rule p, we define p itself to be a p_, and for systems
of formulas and/or rules &, & is defined memberwise, i.e.,

?I, ceey Wn is a ¢_, if each ?i is a ¢i_ (1 £1i =< n) and ¢ equals
¢], ceny ¢n where each ¢i (I €£i <n) is either a formula or a rule.

If @ is empty, ¢ is a ¢ .

For given «, the ¢ can be considered as the possibilities from
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which a can be introduced by application of an I rule. They will
also be called the canonical conditions for a, and similarly for &

and 9.

. + . .
Conversely, we define the predicate of being an o , which is

a predicate for formulas or rules, as follows:

a is an o if o is atomic.

B is an at if a equals B & ¥y.

Y is an at if o equals B & vy.

For each &, <<B8> = 6, <y> = 6> = § is an u+ if o equals B v y.
<f> =y 1s an o if equals B D 7.

+
For each vy, y is an L .

+ . . :
Each @ can be considered as a possible consequence of «, if o

. . . + -

1s used as the major premiss of an E rule., The a will also be-called

the canonical consequences of a.

1 +

In the following we shall use 'a ', "8°', ..., 'a ', '8°', ...,
"o ', '® ', ..., as schematic letters for formulas, rules or systems
of formulas and/or rules, which are u+, B+, cees 0, B, ., o,
%, ... . That is, we also use these metalinguistic predicate signs

as schematic letters for what falls under the predicates.

Lemma 2.2.1: (i) From each ¢_, ? can be inferred by use of I

rules for formulas which are members of &.
+
(ii) Each a can be inferred from o by use of an E rule for a.

Proof: (i) Let ¢ be the system & cee, Qn where each ¢i

]!
i = n) is either a formula or a rule. We show that for each i

A

(1
(1

I

i £ n), each ¢i‘ implies @i in the described way. If ¢i is a



64 P. SCHROEDER-HEISTER

rule, then each ¢i_ is identical with Qi' Let ¢i be a. Then the
assertion follows from the fact that for all a_, a follows from a

by use of the I rule for a. (If a is L, there is no a_, so 'for all

a ...' is vacuously fulfilled.)

. +
(ii) Immediately from the definition of a« and the E rules for a.

. - + + .
Lemma 2.2.2: (i) For each o and each o : o can be derived

from o« without use of any basic rule.

- - + . -
(ii) For each o there are o such that o can be derived with

the help of these at by use of the I rule for o (if o is non-atomic).

Proof: (i) If o is atomic, nothing remains to be shown. If a is
B & y, then a+ is either B or y and o is the system B, y. Now both
B and y are derivable from B, y without a basic rule. If a is B V ¥,
then & is either B or Y, and each u+ is of the form <<f> = §,
<y> = 6> = 6. Now 6 follows both from R, <f> = 6§, <y> = & and from
Y, <B> =06, <y> = 6 without application of a basic rule. If « is
B o vy, then both a+ and o equal <B> = y, and y trivially follows
from B, <B> = y without application of a basic rule. If a is L1, the

assertion is vacuously fulfilled, because there is no L .

(ii) If @ is 8 & v, then both B and y are o', and B & y follows
from B, y by the I rule for a., If a is B v vy, consider <<B> = 8 v v,
<y>= B v y>= B8 v y which is an a+. With the help of this rule,
B vy can be obtained, since B v y follows both from B and from y by
the I rule for a. If a is B © y, then each o’ equals to <B> = vy,
and B 2 v follows from <B> = y by use of the I rule for a. If o is

L, then L itself is an L1 .

. - + - + .
(i) shows that for all @ and o the way from o to o via a is
y

. . . = + .
a detour and can be avoided by directly moving from o to o . This
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is closely related to the fact that adding I and E rules for logical
operators to a calculus forms a conservative extension of that
calculus. (ii) shows that I and E rules uniquely determine logical
constants: For if o and B are of such a kind that the sets of all

o and of all B are identical as well as of all «" and of all B+
(i.e., a and B have the same canonical conditions and consequences),
then we may pass from B by E rules to all u+, and from some of these
o’ to a by I rules (according to (ii)), and vice versa. I.e., a is
uniquely determined by the sets of canonical conditions and canonical
consequences of a. (For a general investigation of conservativeness
and uniqueness in relation to conditions and consequences of senten-

ces see Dosen and Schroeder-Heister, 1984.)

2.3. Validity and Harmony

The concepts of »  and a+ can now be used to redefine the
notions of validity+ and validity- respectively, of a rule <> = a.
The idea is roughly as follows: instead of saying that applications
of <¢> = o can be eliminated from derivations in which the principal
premises of applications of this rule are always conclusions of
applications of I rules, we could simply formulate that o is deriv-
able from all ¢ without that rule. For if <> = o can be eliminated
from the described derivations, it can be eliminated from the deri-
vation of a from all ¢ which infers ¢ from ¢ and then applies
<¢> = «; and if o is derivable from all ¢_, the eliminability of
<¢> = a follows because, according to the restrictions on the con-
sidered derivations, applications of <$> = a presuppose a derivation
of a § and can be evaded by immediately deriving o from this ¢ .
Similarly, instead of saying that applications of <¢> = a can be
eliminated from derivations in which the conclusion a of such applic-
ations is always a major premiss of an E rule, we could simply for-—

+
mulate that all o« are derivable from ¢ without that rule. For if
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<> = a can be eliminated from the described derivations it can be
eliminated from all derivations of o' from ¢ which apply <o> = o

and then infer a from a; and if all ot are derivable from ¢ the
eliminability of <9> = a follows because, according to the restrict-
ions on the considered derivations, applications of <¢> = o are
followed by inferring an ot in the next step and can be evaded by

. . . 4 . +
immediately deriving this @ from %.

The resulting definitions of validity - according to which,
roughly speaking, <¢> = a is valid+ if a is derivable from all &
by means of I rules and valid+ rules of lower complexity, and valid-
if all o are derivable from ¢ by means of E rules and valid- rules
of lower complexity (for exact definitions see the next section) - can
be programmatically stated as follows, using the terms 'canonical
condition' and 'canonical consequence' and neglecting the inductive
character of the definitions of validity: A rule is valid+ if its
conclusion follows from all canonical conditions of its premisses,
and is valid- if from its premisses all canonical consequences of
its conclusion follow. In other words, the definitions of validity
guarantee that everything that follows from all canonical conditions
of a system of formulas and/or rules follows from that system itself,
and everything that implies all canonical consequences of a formula

implies that formula itself.

This can be put in still another way: Let us call a stronger+
than B if B is derivable from a« by means of I rules and valid+ rules,
and weaker- than B if o is derivable from B8 by means of E rules and
valid- rules. o is called a strongest+ formula fulfilling a given
condition if o is stronger+ than all other formulas B fulfilling
this condition. o is called a weakest- formula fulfilling a given
condition if o is weaker- than all other formulas B fulfilling this

condition. Then each a is a strongest formula which can be inferred
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from all o by I rules and valid+ rules: For if B can be derived

from all o by such rules, then <a> = B 1is valid+; thus B is derivable
from ¢ by means of I rules and valid+ rules. The inductive definition
of validity+ can be viewed as a stepwise addition of valid+ rules in
order to guarantee this maximal strength of conclusions of I rules.
Similarly, each a is a weakest— formula from which each «' can be
inferred by E rules and valid- rules: For if each «” can be derived
from B by such rules, then <B> = o is valid-; thus a is derivable
from B by means of E rules and valid- rules. Again, the inductive
definition of validity- adds on each level valid- rules in order to

guarantee this minimal strength of major premisses of E rules.

This formulation is very close to what Tennant (1978) calls
the Principle of Harmony: "Introduction and elimination rules for
a logical operator A must be formulated so that a sentence with A
dominant expresses the strongest proposition which can be inferred
from the stated premisses when the conditions for A-introduction
are satisfied; while it expresses the weakest proposition which can

feature in the way required for A-elimination.'" (p. 74)

It should be noted, however, that though the principle of
harmony follows from our definitions of validity, the fact that the
principle of harmony holds does not guarantee validity. As can easily
be checked, the principle of harmony is not affected if one adds

unvalid+ E rules as, e.g.,

o & B

v

Concerning these nice symmetries between the two approaches to
validity one should, however, be aware that only the notion of

validity- is adequate for the full system of intuitionistic logic.
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2,4, The Definitions of Validity - Basic Lemmata

Let an atomic calculus A be given. We assume that the considered
formulas and rules are formulas and rules over A. Without always
mentioning it, we assume in all contexts of validity+, 1°(A) and
I+(A), that the formulas, rules and systems of formulas or rules do
not contain V. Since the definitions of the two validity concepts
run completely parallel we give them at the same time, presenting

the different formulations for the second notion in square brackets.

A derivation is called k-valid+ [k-valid-] in A if it is a
derivation in the calculus which results from I+(A) [T_(A)] by
adding all rules of rank < k which are valid+ [valid-] in A. If there

is a derivation of a from ¢ which is k-valid+ [k-valid-] in A, we

write ¢F§i—:a [¢F§L~:a]. A rule <9> = a is called valid+ [valid-]
. . =T+ - A+ A, - +
in Aif for all ¢ (o), ¢ Hmmor—me Do 1

Obviously, rules of rank | are valid+ [valid-] if they are
derivable in 1+(A) [T7(A)] and therefore in A (because their premises

and conclusions must be atomic).

An interpretation in A is a function which assigns a formula of
A to each sentence letter, i.e., a function from the formulas of F
into the formulas of A, If p is a rule over F (i.e., a rule of I)

? is the rule over A which results

and ¢ an interpretation in A, then p
from p by replacing sentence letters a by ¢(a) in p. Obviously,

1ol = 10”1, A rule of 1° [I] is called valid+ [valid-] if for each
atomic calculus A and for each interpretation ¢ in A, ptp is valid+

[valid-] in A.

Lemma 2.4.1: A rule p of I° [I] is valid+ [valid-] iff it is

valid+ [valid-] in F.

Proof: The direction from left to right is trivial because the
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identity is an interpretation in F. For the direction from right to
left we use induction on the rank of p. Let ¢ be an interpretation

in A. If p is of the form <¢> = o and valid+ [valid-] in F, then for
all o [u 1, F 4+ ]

[I ] become b351c rules of I (A) [I (A)] when interpreted in A,

o [@.‘ — -a+] Since all basic rules of

and the same holds by induction hypothesis for rules of rank < |pl

whlch are va11d+ [valid-] in A, we have €3 }T-T-———q¢

[o® F—*T*—H—(a ) ] i.e., 0¥ is valid+ [valid-] in A.

Lemma 2.4.2: If ¢Féi—ia [¢}éi~:ﬁ], then ¢li’ a [¢] o]

for every 1 > k.
Proof: trivial.

Lemma 2.4.3: If <> = o is valid+ [valid-] in A, then <?, ¥> = «

is valid+ [valid-] in A.
Proof: trivial.

Lemma 2.4.4: If <¢> = o is valid+ [valid-] in A, then

¢ F*-—-F'—-—ﬂﬁ [¢l—-—

o1,
|<d> = al |<d> = al ]

Proof: trivial.
Lemma 2.4.5: (i) All basic rules of I°(A) are valid+ in A.
(ii) All basic rules of I(A) are valid- in A.
Proof: (i) For the basic rules of A nothing remains to be shown.
For the I rules the assertion follows by twofold application of lemma
.2.1(i). For the E rules the assertion follows from lemma 2.2.2(i)

where in the case of DE lemma 2.2.1(i) is still to be applied to

the minor premiss.
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(ii) For the basic rules of A nothing remains to be shown. For
the E rules the assertion follows by twofold application of lemma

2.2,1(ii). For the I rules the assertion follows from lemma 2.2.2(i).

Lemma 2.4.6: If <?> = o is valid+ in A and o is different from 1
then for each ¢ there is an a such that ¢*L?%E;1;7;T—:—Tﬂ_.

Proof: By assumption, we have a derivation D of a from ¢ which
is k-valid+ in A for k = |<¢> = o] - 1, If « is atomic, then all o
are equal to ¢ and nothing remains to be shown. Let o be non-atomic.
If [¢] > |al, then by lemma 2.4.5(i) and 2.1.1(i) we obtain a deri-
vation of any o by application of an E rule to « which is k-valid+
(note that a is not a disjunction). If |®| < |al then I<¢> = of =
= |al + 1. Thus D is |al|-valid+ in A. In the last step D cannot
apply an assumption rule <¥> = « belonging to o , because |® | £ [8] <
< lal, but |<¥> = al| > |al. Likewise, D cannot apply a rule of rank
< |lal which is valid+ in A. a cannot even be an assumption formula
of D, for then « would belong to a 8 for a member B of ¢, and
because o is a formula, lal < |B| would hold, contradicting |B| <
< ¢l < lal (I8 | = 18] only holds if 8 is an implication and B a

rule). So D must apply an I rule in the last step.

Lemma 2.4.7: (i) If for all o , ®, a”FéiniB, then ¢, aF%L—:B,

where 1 = max(k, lal + 1).

(ii) If for all ¢ , ¢_I—f—5—(1—)a, then ¢ 5.

proof: (i) 1f o 1is identical with o, nothing remains to be
shown. If a is a conjunction or implication, apply the E rule for o
and use lemma 2.1.1(i), If @ is 1, then by applications of LE rules
with atomic conclusions (which are thus of rank |a| + 1) we can

obtain all atomic subformulas and subformulas of the form L of B.
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Therefrom B is derivable by use of I rules.
(ii) Similarly.

For the calculus T(A) (and therefore for ID(A)) a normalization
theorem in the sense of Prawitz (1965) can be proved. Because of the
possible occurrence of assumption rules certain modifications are
necessary (cf. Schroeder-Heister, 1981) but the central conclusions
like the subformula property can be upheld. Without proof we state

what we shall need.

Lemma 2.4.8: Let a derivation D of a from ¢ in T(A) or IO{A) be
given. It can be transformed into a normal derivation D' of a from
¢ in I(A) or IO(AJ, respectively, for which the following holds: if
D' applies an E rule in the last step with B as major premiss, then
B is a subformula of a formula occurring in ¢ and |B| < |®|. Further-

more all applications of 1E rules have atomic conclusions.

3. SOUNDNESS AND COMPLETENESS OF INTUITIONISTIC LOGIC WITH RESPECT
TO VALIDITY-

Let an arbitrary atomic calulus A be given.

Theorem 3.1 (Soundness): If ¢ TR then <¥> = a is valid- in

A. (I.e., each rule which is derivable in I(A) is valid- in A.)

Proof: By lemma 2.4.8 we can assume that derivations in I(A)
are in normal form. We proceed by induction on the length of normal
derivations. We have to distinguish five main cases according to the
kinds of rules which might have been applied in the last step of the
given normal derivation D of o from ¢ (cf. the clauses in the defi-

nition of a derivation).
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(i) If D is of the form a where = a is a basic rule of I(A),
then = « is a basic rule of A (because there are no premiss—free

I or E rules), thus %%—:ﬁ, therefore <> = a is valid- in A.

(ii) If D is of the form o where a is an assumption (thus belong-
ing to ®¢), then for all u+, GF%L—:a+ holds by lemma 2.2.1(ii), there-

fore <¢> = o is valid- in A.

(iii) If D applies an I rule in the last step, we distinguish

subcases according to the form of a.

a) If a is o, & « then D contains derivations of a, and of a

1 2° 1 2
from ¢ as immediate subderivations. Thus by induction hypothesis
<p> = o, and <¢> = a, are valid- in A, i.e., 0|2 ot
L 2 [<¢> = a;] - 171
for all ui (i=1, 2).

Thus by lemma 2.2.2(ii) and lemma 2.1.1(i):
A, - .

(!JI-..-—--.—C(_ (1 = ], 2)
ki i

where k, = max(|<¢> = a.| -1, |a.| + 1).
i i i

Thus by lemma 2.1,1(ii):

A

y = ) - .
¢||<¢>=>al -1 G o2

b) If a is o v oa,, then D contains a derivation of o, or of a,
from ¢ as an immediate subderivation. Thus by induction hypothesis

<p> = ai is valid- in A for some i (i = 1, 2). As in a) we obtain

|A’_
T<d> = al - 1

¢ o .. Thus
i
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A, -
| 3 Q
b, (ul) = B, ¢a2> = B'Id¢> T =18 for each B.

C) If a is CC] 30’-2)

@, as an immediate subderivation. Thus by induction hypothesis

then D contains a derivation of o, from ¢,

<d, al> = o, is valid- in A. As before we obtain

|A! -
I o,
17| <d, o> =al - 172

b, o

where |<¢, a1> =al| = |<d> = al.
(iv) If D applies an E rule in the last step, we distinguish

subcases according to the form of its major premiss 6.

a) If 6 is « & B or B & o, then D contains a derivation of
@ & B or B & o, respectively, from ¢ as an immediate subderivation.
By induction hypothesis <¢> = o & B or <¢> = 8 & u, respectively,

is valid- in A, i.e., in particular

|A’

¢';<¢> =a & B8] - 1

o .

Thus by lemma 2.2,1(ii):

A

Ly = + +
CI)'|.<(I:> =0 & Bl - e for each a .

By lemma 2.4.8: |®] = la & Bl, thus |<¢> = a & B| = [®] + | =

= |<¢> = al.

b) If 6 is B v y, then D contains derivations of B v vy from d,
of a from ¢, B and of a from ¢, y as immediate subderivations. By
induction hypothesis <¢> = B v y, <b, B> = a and <&, v> = a are

valid- in A, i.e.,
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b, <> = g, <y> = EFE! e for all ¢

|<d> =B v v| - 1
A, -
I<d, B> = al = 1

]A, - + +
, Yi|<¢ 7SS al - ™ for all o .

+
a+ for all o

¢, Bl

P

By specializing € to o’ if o' is a formula and to (a+)2 if o
is a rule, we obtain ¢F%¢::Tu+ for all a+, where k = max(|<¢> = B v
v yl, I<¢, B> = al, |<®, yv> = al). By lemma 2.4.8: |¢| = |B v vI,
thus |<¢> =B v y| = [¢] + 1 =&, B] + 1 =10, y|] + 1 < |<d> = al.

c) If 6 is B © ¢ then D contains derivations of B > a from ¢
and of B from ¢ as immediate subderivations. By induction hypothesis

<b> = B o a and <> = B are valid- in A, i.e.,

A

Brs_
"T<¢> = B 2 a| - 1

b, 0

and

A

[BAL at +
®,|<¢> ey E— for all B .

Thus by lemma 2.2.2(ii) and lemma 2.1.1(i):

ohes
where k = max(|<d> = g| - 1, |B] + 1), thus by lemma 2.1.1(ii)
¢'A' — f, thus

"T<0> = B 2 al - |

YLt
|<d> = B D al - e
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By lemma 2.2.1(ii):

A, - * for all a+

1
®'|<¢>¢B:al—la

]

By lemma 2.4.8: [¢] = |8 2 al, thus [<¢> =8 D al = [¢] + 1]

= |<d> = of.

d) If 6 is 1, then D contains a derivation of 1 from ¢ as an
immediate subderivation. By induction hypothesis <¢> = 1 is valid- in

A, i.e., in particular

AT
II>‘t<<13> = 1| - el

By lemma 2.4.8: |¢| 2 L, thus |<t>= 1] = [¢] + | £ |<d> = al,

Furthermore o 1s atomic, l.e., each ¢ 1is identical with «.

(v) D applies an assumption rule <« «vey @ > = a belonging to
- 21ng

I L ]
? in the last step. Then for each i (I £ 1 £ n) D contains derivat-
ions of o from » as immediate subderivations. By induction hypo-

thesis, for each i (1 £ i £ n), <¢> = o, is valid- in A, i.e.,

A, -
¢+—I<¢'> dail -1

+ +
o, for each a. .
i i
Thus by lemma 2.2.2(ii) and lemma 2.1.1(i)
A, - . .
¢F£L~—ai for all 1 (1 £1 £ n)
i

2 sees @ > =
belongs to ¢, we have |al < |¢| and ]ail < |%] for all 1 (1 £1 £ n).

where k., = max(|<?> = ail -1, iail + 1). Because <u
i

Thus ki= [¢] = |<¢> = al| - | for every i (1l £ i < n). Thus
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A, -
|<d> = al = 1

$} v

by application of <a,, ..., @ >=a (which belongs to ¢}, thus by

lemma 2.2.1(ii):

+ +
b « for each a .

|A’ -
<t> = o] - 1

. A, -
Theorem 3.2 (Completeness): For any k, if QPE—_—G then ¢FTTK70.

Proof: by induction on the pair consisting of k and the length
of derivations D of o from ¢ which are k-valid- in A. If D is
O-valid- in A, nothing remains to be shown. Let D be k-valid- in A

for k > 0.

(i) 1f D is of the form & where = o is a basic rule of T (A),
then o is a basic rule of A, so D is already O-valid- in A. If = a
is a rule which is valid- in A and for which |= al £ k, then
A

, — + + . . . + +
h:f:*ru for all a . So by induction hypothesis FTTKTQ for all a ,

therefore FTTITG by lemma 2.2.2(ii).

(ii) If D is of the form o where o is an assumption (thus

belonging to ®), then ¢FT?K30 holds trivially.

(iii) If D applies a rule p of the form <<FI> RALTERRRRE <Tn> =
=a>=a in the last step, then D contains for all i (1 £ 1 £ n)
derivations of o from Fi’ ¢ as immediate subderivations which are

k-valid- in A. By induction hypothesis, we have

(5) T, dlgrgma

i T(A)1°

We distinguish three subcases:
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a) If p is valid- in A and |p| € k, then (p}}F%L::Ta+ for all
a+. So by induction hypothesis (p)] TR +, therefore (p)]FT?ﬁjﬂ
by lemma 2.2.2(ii). Together with (5) we obtain ¢Ffija.

b) If p is a basic rule of I (A) then p is also a basic rule
of T(A) and together with (5) we obtain ¢PTT330.

c¢) If p is an assumption rule then p belongs to ¢ and together

with (5) we obtain ¢FT?I7“'

Corollary 3.3: If <¢> = a is valid- in A, then ®FTTI7a (i.e.,

each rule which is valid- in A is derivable in I(A)).
Proof: From lemma 2.4.4 and theorem 3.2.

Corollary 3.4: If ¢F§i—:a for some k, then <¢> = o« is valid-

in A,

Proof: Theorems 3.2 and 3.1.

This corollary shows that validity- of rules is transitive in
the sense that rules which have been derived by successive applica-

tion of valid- rules are themselves valid-.

Corollary 3.5: A rule over F is derivable in I iff it is

valid-.
Proof: Lemma 2.4.1,
This shows that intuitionistic logic with sentence letters is

also 'formally' sound and complete with respect to validity-, i.e.,

sound and complete under all interpretations in atomic calculi.
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4. SOUNDNESS AND COMPLETENESS WITH RESPECT TO VALIDITY+

We consider an atomic calculus A and formulas over A which do

not contain v.

Theorem 4.1 (Soundness): Lf ®Ffaija, then <> = o 1s valid+
in A.

Proof: We proceed as in the proof of theorem 3.1, assuming that
the given derivation D of a from ¢ in IO(A} is in normal form. The

case (i) is treated analogously.

(ii) If D is of the form o where a is an assumption (thus belong-
. - A . .
ing to %), then a hiL—ia holds according to lemma 2.2.1(i), there-

fore <b> = o is valid+ in A.

(iii) If D applies an I rule in the last step we distinguish

subcases according to the form of a.

a) If a is o & ¢y then by induction hypothesis <¥> = o and

<b> = a, are valid+ in A, i.e., for all o :

_'A’ * a, (1 =1, 2).

b M<t>=al - 171

Thus by application of an &I rule (which is at our disposal in I+(A)):

FIA’ +

Hes= ail__]a for all ¢ .

b

b) If « is a; D ay, then by induction hypothesis <@, a>=a,

is valid+ in A, i.e., for all Q—, al_



COMPLETENESS OF INTUITIONISTIC LOGIC 79

- - A+ .
RAL)
%, @, T s = azf % thus by lemma 2.4.7(i)
v, o iA’ @, (note that Ja | + 1 £ |a] < |<d> = al)
’ 1" |<d> = o] = 172 I - )

Thus by application of an oI rule

- A, +

v T<t> = a] - 1

.

(iv) If D applies an E rule in the last step, we distinguish

subcases according to the form of its major premiss 6.

a) If 6 is @ & B, then by induction hypothesis <¢> = a & B is

valid+ in A. Thus by lemma 2.4.6

_IA! +
“T<t> = a & B| - 1

[ o for all ¢ .

|<d> = «al.

By lemma 2.4.8, [¢] = |Ja & B] > |al, thus |<¥> = o & Bl

b) If 6 is B © «, then by induction hypothesis <¢> = B D «

and <¢> = B are valid+ in A.

Therefore by lemma 2.4.6:

- A+

v "l<d> = a o B] - |

a for all & .

Together with

|—2
d Heos = BT = 18 for all ¢
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we obtain

- A + -
12 ¢
P NS =a SB] - T for all

(because |<9> = g D B| = |<¢> = B|). By lemma 2.4.8,

[¢] = la 2 B8] > lal, thus |<d> = a 2 B] = |<d> = al.

c¢) If 6 is L, then by induction hypothesis <¢> = 1 is valid+
in A, i.e.,
A, +

- A -
P F<e> = 1] = IL for all ¢ .

According to lemma 2.4.8, o is atomic, and L is a subformula of a
formula occurring in ®. Thus [®]| = 1. If [¢] > 1, then |<d> = L| =
= |<®> = a| > 2, Therefore application of the LE rule <l> = a, which

is valid+ in A and for which |<l> = a| = 2 holds, yields

_IA’ +
<t> = al - 1

P a for all ¢ .

If |¢] = 1, this is vacuously fulfilled, because L then is a member
of .

(v) If D applies an assumption rule <a sees @ > = in the

1’
last step, then AR an> = a belongs to ® and we have |d] > lail
for all i (1 £1i £ n) and %] > lal, thus |<d> = uil = |<b> = al =
= |#] + 1 for all i (1 £ 1 < n). By induction hypothesis for each i

(1 i <), <t>=0a. isvalid+ in A, i.e., for all o :

Therefore
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A, +
%, <a], .-y ct.n>-=h ul—-—ailbl

which is the same as

_!_A,,,

¢ |<d> = al - ™

because <a,, ..., a > =a is contained in all ¢ .

Theorem 4.2 (Completeness): For any k, if @i-}é-'—*tct, then (HTW‘

Proof: Analogously to the proof of theorem 3.2. We only mark

the points where there are differences in argumentation.

(i) If = o is a rule which is valid+ in A and for which

+
|= ol £k, then }%—’-—-_——-l—a So by induction hypothesis ITO(—A}-Q.
(iii) a) If D applies a rule <¥> = a in the last step which is

valid+ in A and whose rank is £ k, then by induction hypothesis

(concerning the length of derivations)

(6) ¢1—15'—('I3*‘1’-

Because of the validity+ of <¥> = a in A we have
y }T(—_——]a for all ¥ ,
so by induction hypothesis (concerning k)

¥ I-f—mﬂ for all ¥ ,

therefore by lemma 2.4.7(ii)
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?}Tzqzja.

Together with (6) ¢FT6TITG follows.

The corollaries 3.3 to 3.5 can easily be taken over.

5. SOME FURTHER POINTS

5.1 Extension to Quantifier Logic

We have restricted ourselves to sentential logic but an extension
to quantifier logic presents no additional problem in principle. One
would have to introduce individual terms including individual vari-
ables, quantified assumption rules A = o, and canoniéal con-

XlseeesXp
ditions and consequences of formulas Vxa(x) and Ixa(x) by defining

the rule =ka(x) to be an (an(x))_,

each a(t) for an arbitrary term t to be an (Ixa(x)) ,

each a(t) for an arbitrary term t to be an (qu(x))+,

each rule <<a(y)> ﬂ& B> = B for an arbitrary formula B not

containing y free to be an (Ixa (x)) .

The soundness and completeness of intuitionistic quantifier logic
can then be proved in a similar way (without v and 3 in the I rule

approach).

As Prawitz (1971, p. 290) pointed out, in the E rule approach
one is even able to handle universal quantification within contexts
where the quantifier is not understood in the schematical sense, as
e.g., in Peano arithmetic: If numerals n are available for every n,

we may define each a(n) for arbitrary n to be an (an(x))+. According
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to that definition, the induction rules <a(0), <a(x)> = a(x')> =

= Vxa(x) turn out to be valid- in the atomic calculus characterizing
Peano arithmetic because for each n there is a derivation of af(n)
from a(0), <a(x)> - a(x') which applies no basic rule. However,
unlike Prawitz' sketch for an E rule approach (ibid.), our soundness
theorem cannot in that case be transferred to Peano arithmetic. This
is due to the fact that our restrictions on the complexity of rules
used in k-valid- derivations make it necessary to require normal
derivations in I(A) for our soundness theorem which cannot be fully
obtained in Peano arithmetic. Another reason is that the important
lemma 2.2.2(i1) would not hold for ¥Y-formulas. The fact that the
completeness theorem cannot be upheld follows from Gidel's incomplete-
ness theorem, The inadmissibility of the w-rule in Peano arithmetic

blocks step (iii)a) of the proof of theorem 3.2.

5.2. The Failure of the I Rule Approach for Formulas with v.

Lemma 2.1.1(i) is crucial for many succeeding lemmata and for
the theorems. It states that the rank of an I rule for a is |al + I,
and that the rank of an E rule with « as its major premiss is lal| + |
if o is not a disjunction or the absurdity. That means that the
rank of these rules only depends on the rank of & and not on the rank

of any other formula. This no longer holds in the case of VE rules

Their rank not only depends on the major premiss o v 8 but can be
arbitrarily high if y is complex enough. (The same holds for 1E, but
there it causes no problems because conclusions of applications of

1E can be assumed to be atomic.) Thus neither lemma 2.4.6 nor lemma
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2,4,7(i) which are important tools in the soundness theorem 4.1 can
be proved if v is admitted. However, lemma 2.4.7(ii) holds for 1(A)
instead of IO(A), because in T(A) we do not have any restriction on
ranks of applied rules. So the completeness theorem 4.2 can be upheld
if v is included. Furthermore, lemma 2.4.6 remains true in the

presence of v for the case that |$¢| < |al, as can easily be checked.
These results can be used to demonstrate that a soundness proof

for full intuitionistic logic over A including v with respect to

validity+ in A is not possible for all A. Consider the rule p:

(o v B) & ¥

(¢ & y) v (B & v)

over F where o, B, Y are atomic formulas (i.e., sentence letters),
which is of rank 3. If p were valid+ in A, by the part of lemma 2.4.6

which remains provable, we would have

. A
either a v B, le’ * a & ¥y

A, +
or a v B, YFEL*— B & v,
thus by the completeness theorem

either a v B, ybfu a & v

or a Vv B, Y}T— B & v,

which does not hold. p is, however, derivable in I by means of the

(normal) derivation
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(@ v B) &y (w0 v B) & v
—_ {1 — 1) ———
a Y B Y
(e vB) &y o &y B & vy
CRRVAN] (¢ & y) v (B & ) (¢ & y) v (B &¥)
(1)

(0 & y) v (B & )

One immediately sees that one cannot get rid of the application of

the vE rule

o B
avpg (a&y)v (B&y) (@0 & yv) v (B &)

(¢ &y) v (B &)

which is of rank 4, even if the premisses of p are inferred by I rules

(so that one has a v B8 and y as undischarged assumptions).

Since soundness, unlike completeness, is a necessary condition
for the adequacy of a semantics, the approach based on I rules
definitely fails for full intuitionistic logic. It might be noted
that Prawitz (1984, section 5) refers to difficulties of the kind
just described as being reasons for preferring the validity of
derivations ('arguments' in his terminology) instead of rules as the
primary notion: He mentions the problem that the derivation of a
premiss of an application of an DI rule may essentially contain
applications of E rules of higher complexity than the conclusion of
this application, which is exactly the case if we extend the deri-
vation given above by application of an I rule to a derivation of

(e vB)&y)D ((a &y) v (B &Y.
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Perhaps validity of derivations is the better tool when relying
on I inferences, and validity of rules the better tool when relying

on E inferences. ——
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