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Abstrac t  

Definitional Reflection is a principle for introducing atomic assumptions, given a set 
of definitional rules for atomic formulas. In this paper, proof-theoretic properties of 
first-order sequent systems with definitional reflection are proved. It is shown that 
the presence of contraction and the use of implication in the bodies of definitional 
clauses exclude each other, if cut-elimination is desired. 

1. I n t r o d u c t i o n  

"Definitional reflection" denotes an inversion principle for clauses of an inductive defini- 
tion. For example, suppose an atomic formula A is defined by the inductive clauses 

F1 =~ A 

F ,  ~ A ,  

where F1 , . . . ,  F~ are formulas of some logic, then this principle says that everything that 
can be obtained from each definitional condition of A can be obtained from A itself, i.e., 
for any F,  if F~F-F for every i (1 < i < n), then Ab-F. It is called "definitional reflection", 
since, when applying this principle, one reflects on the fact that F1 , . . . ,  F~ are the only 
conditions defining A, i.e., there is no further condition which allows one to infer A by 
means of definition. 

Definitional reflection has been developed and investigated in the context of inductive 
definitions [12] and in the context of logic programming [13, 22]. It has some (distant) 
relationship to Clark's "completion" of logic programs [4], to Martin-LSf's elimination 
rules for predicates in his theory of "iterated inductive defintions" [19] and to Lorenzen's 
"inversion principle" in his operative interpretation of logical constants [18]. 

In this paper we focus on systems of first-order logic to which definitional reflection is 
added. Such systems can be used in the formulation of a declarative semantics for certain 
programming languages, to be supplemented by an operational semantics guiding the 
evaluation of queries. This application, however, is not the subject of the present inves- 
tigation. Rather, we concentrate on the problem of how cut-elimination in Centzen-style 
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sequent systems is affected by definitional reflection. Actually, the algorithmic questions 
associated with an operational semantics are much harder to solve. 

Our basic results are the following: Cut-elimination holds if the definition of an atom 
(i.e., the F~ above) does not contain implication (Theorem 3). Furthermore, it holds if the 
Fi are arbitrary, but the logical system is contraction-free (Theorem 1). If the definition 
of an atom is allowed to contain implication and the logical system permits contraction, 
then a counterexarnple against the cut rule can be given. 

The restrictions for cut-elimination are not at all considered a negative result, particu- 
larly not for the programming language GCLA based on a subsystem (with implication!) 
of first-order logic with definitional reflection [3]. Although in many applications of GCLA, 
such as function evaluation, one works in a contraction-free logic where cut-elimination 
holds, in others one uses the full system where one may or may not have cut, depending 
on the specific program (set of inductive clauses) one is considering. We simply do not 
consider the admissibility of the cut pale to be a matter of principle. A few philosophical 
remarks may be appropriate to illustrate this point of view. 

Normally one considers cut to be a postulate that expresses that the cut-formula F 
has a well-defined meaning in the sense that the statements which one can infer from 
F are not stronger than those from which one can infer F ,  i.e., that one does not gain 
anything by proceeding via F. According to this approach, eliminability of cut is a 
necessary condition for the acceptability of a logical system. However, one may also look 
at a cut with cut-formula F as expressing that F is totally defined. The failure of cut- 
elimination would then express that F is just partially defined. That F is totally defined 
means that one can safely proceed from assertions not containing F,  via F, to assertions 
not containing F without creating anything new; if this is not always possible, F is just 
partially meaningful. 

It is justified in the partial case to say that F has at least some meaning, since we 
are stating fully symmetric conditions for asserting F and for drawing conclusions from 
F. This holds especially in the case of an atomic F - here this symmetry is due to our 
principle of definitional reflection. Even the fact that there is no definitional clause for F 
can be viewed as stating a condition for asserting F (giving rise to the absurdity rule - 
although this is debatable). 

In the case of the definition of a function f ,  partiality means that for a certain argument 
a, the function does not return a (unique) value, i.e., that "f(a)" cannot be replaced by 
a value. Analogously, in the case of a partially defined formula F it means that F cannot 
be fully eliminated from any deductive context. This conceptual relationship between 
partiality and cut-elimination was first pointed out by Halln~ [12]. 

As already mentioned, the principle of definitional reflection refers to a "database" or 
"program" of clauses, which is handled by our inference system in a certain way. So if we 
speak of the logical system l) (":D" stands for "definitional reflection"), we mean a system 
T~(P) over a fixed database P of clauses. For the sake of simplicity, we deal with sequents 
with a single formula in the succedent. Inspection of proofs will show that methods and 
results carry over to the case with arbitrarily many formulas in the succedent except in 
the case of the Lambek-calculus. 

We do not say more here about the philosophy of definitional reflection, nor about the 
theory of definition behind (which gives up monotonicity and does not stick to the least 
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fixpoint interpretation). The reader is referred to the publications mentioned. 
In the following, Section 2 describes the first-order system we are dealing with. In Sec- 

tions 3 and 4 we present the central theorems on the contraction-free and the implication- 
free system, respectively. Finally, Section 5 gives some hints on how these results carry 
over to relevance logic, linear logic, and the Lambek calculus. In an appendix we make 
some remarks concerning recent work by Girard on definitional reflection. 

2. First-order logic with definitional reflection 

We consider a first-order logic over a certain alphabet with the logical constants T, _L, A, 
o, V, 4 ,  V, 3. Metalinguistic variables for terms are t, for atomic formulas A, B, C, for 
formulas F, G, H, for finite multisets of formulas X, Y, Z, each with and without primes 
and indices. Definitional clauses for atoms, in short: clauses, have the form T=~A. Thus 
each clause has a nonempty body, which may be T. Sequents have the form XI-F. 
We consider multisets rather than sets as antecedents of sequents since we are dealing 
in particular with contraction-free systems. Expressions like X, YI-F or X, AI-F are 
understood in the usual way. 

A definition P is a finite set of clauses. Let a fixed definition P be given. Let 

D(A) := {F : there is a such that F = Get, A = Ba and G=~B ~ P} .  

This means, D(A) is the set of all formulas from which A can be immediately obtained 
by applying a definitional clause for A (i.e., D(A) is the set of "definientia" of A). If 
F E D(A), we also say that F is a definitional condition of A. 

The logical system 79(P) (in short 79) we consider is then given by the following 
inference rules: 

(I) AI-A 

XI-H 
(Thin) F, XI-H 

(I-T) 

no (i-x_) 

XI-F XI-G 
(I-A) XI-FAG 

(i-o) XI-F YI-G 
X, YI- FoG 

XI- F 
(I-V) XI-FVG 

XI-G 
XI- FVG 

(Contr) X, F, FI-H 
X, FI- H 

X ~ H  
(TI-) X, TI -H 

x,  

(fi-) X, FI-H 
X, F AGI- H 

(oF) X, F, GI-H 
X, FoGI-H 

(vi-) x,  s  X, a i -g  
X, FVGI- H 

X, GI-H 
X, FAGI-H 
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X, FFG 
(e-~) XFF-~G 

(FV) XFF(y) 
Xf-VxF(x) y new 

XFF(t) 

(f_p) XF-F 
XF-A F E D(A) 

XFF Y, GFH 
(~F-) X, Y, F--.GFH 

X, A(t)FH 
(Vl-) X, VxF(x)F-H 

(3~-) X,F(y)FH 
X, 3xF(x)FH y new 

(p~) (X, FF-H)FeD(A) 
X, AFH 

provided D(Aa) = (D(A))a for all a 

XF-F Y, FFG 
(Cut) X, YFG 

Remark on T and _L : 

If we admit clauses 

with empty body, we may allow for 

~ A  

FA 

to be  a limiting case of (t-P), where F in F ~ B  is empty and A = B(r. Then (FT) 
and (TF-) are immediate consequences of (F-P) and (PF-), respectively, if -1- is a nullary 
predicate constant defined by 

= ~ T .  

Furthermore, if _L is a nullary predicate constant not defined by P, i.e., there is no clause 
with head _L in P, then (_l_f-) is an immediate consequence of (PF-) since D(_L) is the 
empty set. 

For technical reasons it is quite useful to keep the -1-- and _L-rules separate from P. Due 
to the presence o f / ,  we can assume that for any atom A considered, D(A) is nonempty. 
(Otherwise we just put _L=~A into the definition P.) It might be noted that -I- corresponds 
to 1 and _L to 0 in Girard's linear logic [11]. 

Remark on o: 

The connective o is to be distinguished from A, if the rule of contraction is absent. It 
corresponds to "times" in linear logic. 

Remark on (FP): 

This rule decribes the application of a definitional clause. It is contained in various 
extensions of logic programming (e.g., A -Prolog, see [20]) and guarantees that the system 
is closed under definitional clauses. Its operational counterpart is the resolution principle. 
Adding definitional reflection (PF-) can be seen as establishing the symmetry of Right- 
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and Left-rules also for the atomic ease ("computational symmetry") by providing means 
for assuming an atom. 

Remarks on the proviso for (PF): 

. It ensures that (PF) is only applicable if for all clauses G ~ B  referred to in the 
definition of D(A), G contains no free variables beyond those in B ("no extra- 
variables"). In particular, it guarantees that there are only finitely many premisses 
for (PR). 

2. It ensures that, when A is further substituted to A~r, no conditions of Aa beyond 
substitution instances of conditions of A have to be taken into account. 

Both 1) and 2) guarantee that the rule (PF) is closed under substitution. It would be 
possible to weaken 1) by admitting extra-variables and treating them like eigenvariables. 
This would be useful in  a logic programming language without quantifiers. However, 
since here we have existential quantification at our disposal and therefore can express the 
intended meaning of a clause 

f(x)=~A 

by 
@z) F(x)=~A, 

we can actually assume from the beginning that in any clause G=~A in P, each free 
variable of G occurs in A. 

The failure of cut-elimination for the full system: 

The system ~D@) with empty database is a standard logical system of first-order intu- 
itionistic logic which admits cut-elimination. However, this does not extend to ~D(P) for 
any P. E.g., for any atom p we can define 

P := {p---~J_=~p}. 

Then we have the derivation 

(c t) 
(RP) 

p, p--._kRl 
( P~-) p, pl- i  pRp _l_kl_ 

(Contr) p~-A_ p, p---,A_~-A_ 

Rp pl-_L 

~-_1_ 

The cut this derivation ends with is not eliminable: Since there is no definitional clause 
for A_, there is no rule in T~(P) except cut by means of which t-A_ can be inferred. 

Inspection of the derivation given shows that application of the ordinary reductions 
used in cut-elimination proofs does not terminate. Actually, such proofs normally proceed 
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by induction on a pair of numbers whose first component is the logical complexity of the 
cut formula F. This number decreases if F is a logically compound formula and is 
introduced in the last step of the premiss derivations of the cut by a Right-rule on the left 
hand side and a Left-rule on the right hand side. In that case the cut is reduced to a cut 
with a less complex subformula of F. However, if F is atomic, then, depending on P, the 
cut with F has to be reduced to a cut with a definitional condition of F which may be of 
higher complexity than F, as in the present case, where p~_L is a definitional condition 
of p. 

Of course, there are non-trivial cases where cut-elimination holds. One example is 
the case of a well-founded definition P, i.e., a definition whose predicates can be ordered 
in such a way that, if p < q in this ordering, q does not occur in a clause whose head 
starts with p. In that case, one can attach a degree of complexity to atoms and formulas 
such that a condition of A is always of lower degree than A. Another example is that 
of definitions which do not use implications in their bodies. This is treated in Section 4 
below. However, as the example above shows, cut-elimination does not hold in general. 

The example, which is closely related to Curry's paradox ([5]), uses contraction to 
derive the premisses of the cut (cf. Curry's [5] explicit statement of contraction as a logical 
premiss of his paradox). Without contraction, an analogous counterexample cannot be 
constructed. Rather, standard reductions of the cut-rule terminate. This is shown in 
detail in the following section. 

3. Cut -e l imina t ion  for the  cont rac t ion- f ree  s y s t e m  

In rough analogy to a terminology introduced by Girard, we call inference rules with both 
X and Y in the antecedent of the conclusion multiplicative rules and the others additive 
rules. According to this terminology, all single-premiss rules are additive as is (PF) (which 
may have more than two premisses). Of the two-premiss rules, (Fo), (--*F) and (Cut) are 
multiplicative, all others are additive. 1 

For derivations, we use the following notation: If 11 is a derivation, then 

II 
X F F  

expresses that II ends with the sequent X F F ,  whereas 

H 
X F F  

expresses that X F F  results by applying an inference rule to the end sequent of H, and 
similarly with notations like 

II1 H2 
X ~ F  

1In Girard [11], "additive" and "multiplicative" are attributes of connectives. Since we call all single- 
premiss rules additive, (o[-) is additive although o is a typical multiplicative connective. Our classification 
of rules is for technical purposes, to be used in the definition of an induction measure in the proof of 
Theorem 1 (see also remark 6 after the proof of Theorem 1). 
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Furthermore, we write (b-.) and (.~-) to denote right- and left-rules in an indefinite or 
context-dependent way. 

We define the D-rank rD(II) of a derivation H (which may contain cuts) inductively 
as follows: 

~o(H) = 0, if II is an application of (I), (FT), or (_U-) 

~o(n) = ~o(nl), if II ends with an application of a single-premiss 
rule except (PF),  whose premiss-derivation is 111 

~D(H) = ~ . (n l )  + ~o(n,), if H ends with an application of a multiplicative 
rule, whose premiss-derivations are FI1 and 112 

r . ( n )  = m a x ( t o ( n 0 ,  ~o(rI,)), if II ends with an application of a two-premiss 
additive rule except (P~-), whose premiss-deriva- 
tions are H1 and II~ 

rD(H) = maxl<~<,(rD(IIi)) + 1, if II ends with an application of (P~-), whose 
premiss-derivations are Hi (1 < i < n) 

The D-rank rD(H) measures the number of applications of (P~-) in H, where these num- 
bers are summed up with multiplicative rules and the maximum is taken with additive 
rules. 

We define the cut-rank rc( I I )  to be the logical complexity of the cut-formula of the 
single cut in H, if H ends with a topmost  cut, i.e., with a cut whose premiss-derivations do 
not contain any cut. Otherwise, rc ( I I )  is not defined. We define rL(II) to be the length 
of H, i.e., the number of rule-applications in H. 

T h e o r e m  1 The rule (Cut) is admissible in the system without (Contr) and without 
(Cut) .2 

P r o o f  Suppose II ends with a topmost cut. Then we show by induction on the triple 

r(n)  := <to(n), rc(n), rL(n)> 

that  H can be transformed into a cut-free derivation II ~ such that  

rD(n') _< to(H). 

The proof proceeds similarly to the usual cut-elimination proofs. We present some 
example steps, particularly those where the assertion rD(II') _ rD(II) comes into play. 
The following reductions are understood to be performed in the given order, i.e., a certain 
case is applicable only if no previous case is applicable. 

2We do not claim originality for this theorem (but, of course, for the proof and its induction measure). 
The theorem is suggested by the approaches to avoid logical and set-theoretical paradoxes by using 
contraction-free systems, which date back to Fitch [9] and Ackermann [2] (for an historical overview see 
[6]). 
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1. If II has the form 
Ha 

XFA (I)AFA 
(Cut) Xt-A ' 

we replace rI with II1, which is cut-free. Furthermore, rD(II1) = rD(II). 
2. If II has the form 

II2 
II1 YFH 

XFF (Thin) y, FFH 
(Cut) 

X, YF H 

we replace II with 

rI2 
YFH 

(Thin) : 
X, YFH 

The new derivation is cut-free. Furthermore, its D-rank is not higher than that of II. 
3. If the right premiss-derivation of the cut II ends with does not introduce the cut- 

formula by means of a (,F)-rule, we perform a permutative reduction according to the 
pattern of the following examples. 

3.1. ff II has the form 

(c.t) 
I f  1 

X F F  '~'LFj :y, F, _Lt-H 

X,Y,• ' 
we replace II with the following derivation II': 

(J_U) X, Y, •  

r I  2 
H~ ( ....  Y, FI-G(y) 

Xt-F d-v) ]I, Ft-VxG(x) (cut) 
X, YFVxG(x) 

we replace H with the following derivation H ~ after renaming y to an appropriate z, if 
necessary: 

n: n2[v/z] } 
(Cut) X F F  Y, FFG(z) II~ 

(Fv) x,  YFC(z) 
x,  YFw, c(~) 

Obviously, rD (]-I t) = 0 < rD (II). 
3.2. If II has the form 
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where H2[y/z] results from Ha by substituting z for y throughout. For the subderivation 
II~ of H' we have the following: 

m(nl) =~D(nl) +rD(n=) 
=rD(n)  

rc(nl)  =~c(11) 

Thus, by the induction hypothesis, cut is eliminable from II~, yielding a cut-free derivation 
II{ of X, YFG(z) with rD(II~) _< rD(II~). Therefore, replacing II~ by II~ in 1-Y yields a 
cut-free derivation II" for which rD(II") < rD(II). 

Note that replacing y with z in II2 requires the closure of inference rules under sub- 
stitution, which in the case of (PF) is guaranteed by the proviso. 

3.3. If YI has the form 

(Cut) 

112 Ha 
171 (~A) Y' F~-G Y, F~-H 

Xk-F Y, Fk-GAH 
X, Yb-GAH 

we replace II with the following derivation II': 

(>f) 

II1 II2 } 
(Cut) XF-F Y, FKG IIi 

X, Y~G 

111 1-I3 
Xk'F Y, Ft-H 

(Cut) X, Y~-H 

X, YbGAH 

n; 

For the subderivations II~ and II~ of II' we have the following: 

rD(n'~) = rD(nl) + ~D(n~) 
_ rD(1-I1) + rrtax(rD([I2), rD(113)) 
= ~D(n) 

rD(n~) _< ~D(11) (similarly) 

~L(n~) < ~.(n).  

Thus, by the induction hypothesis, cut is eliminable from II~ and H~, yielding cut-free 
derivations II~ and H~ with 

m(n~) _< m(ng, 
m(n~) < ~D(H~). 

Replacing 11~ and II~ in H' by II~ and H i yields the following cut-free derivation II": 

I ~  I I  T~ I I  
(}--A~ ~*1 **2 

"X, Yt-GAH' 

for which 
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rD(II") = max(rD(II~), rD(IIg)) < rD(n ) 

holds. 
3.4. If II has the form 

(Cut) 

n, (_~) 
X b F  

II2 1-[3 
YFG Z, F, HFH I 
Y, Z, F, G--~ HF-H' 

X, Y, Z, G ~  HV H I 

we replace II with the following derivation H~: 

( ~ )  
n~ (cut) 

Y[-G 

I-I1 YI3 
XFF Z, F, HF-H' 

X, Z, HFH I 

X, Y, Z, G ~  HF H' 

} n~ 

For the subderivation II~ of IY we have the following: 

~D(n~) = m(n,)+rD(n3) 
rD(H1) +rD(H2)+rD(H3) 

=rD(H) 
~c(n~) =~c(H) 
rL(H~) <rL(H). 

Thus, by the induction hypothesis, cut is eliminable from II~, yielding a cut-free derivation 
H'[ with 

rD(R~ I) ~ rD(II~). 

Replacing 1-I~ in II' with II~' yields the following cut-free derivation II": 

ri~ ii~ 
(~F) X, Y, Z, G---,HFH" 

for which 

rD(H") = rD(II2) + rD(1-I~ ~) 
rD(I-[2) + rD(l[[1) + rD(II3) 

= rD(H) 

holds. 
3.5. If II has the form 

XFF (PC) 

Ha 
Y, F, G~H ) GeD(A) 

Y, F, AFH 
( C u t )  - -  

X, Y, AFH 
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we replace II with the following derivation HI: 

(P~) 

II1 IIo } 
(Cut) X F F  II, F, G~-H II~ 

X,  Y, GFH 

X, Y, AFH 

For each subderivation II~ of HI we have the following: 

rD(IIG) = ?~D(III) H- rm(rIo) 
< rD(II1 ) + rrtaxaeD(A)(rD(lIG)) + 1 
= r o ( I I ) .  

Thus, by the induction hypothesis, cut is eliminable from II~ for each G, yielding cut- 
r rlI tl ~ free derivations II~ with D t, G) <-- rD(II~). Replacing each II~ in II' by II~ yields the 

following cut-free derivation H': 

(p~_~ k G)GED(A) 

for which 

rD (II") " = maXCeD(A)(rD(IIo) ) + 1 
<_ maXGeD(A)(rD(II~)) + 1 
< r D (1-[) + 1 

and thus 

holds. 
4. If the right premiss-derivation of the cut II ends with introduces the cut-formula by 

means of a (,F)-rule, but the left premiss-derivation does not introduce the cut-formula 
by means of a 0-*)-rule, we perform a permutative reduction according to the pattern of 
the following examples: 

4.1. If II has the form 

(• x , •  (*~) ri~ 
Y, FF-H 

(Cut) X, II, _I_F-H 

we replace H with the following derivation IY: 

(• x,  Y, • 

Obviously, rD(II') ---- 0 _< rD(II). 
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4.2. If II has the form 

(c,a) 
(vF) 

1-[1 l-i2 
X, GkF X, HFF 

X, GVH[-F 
( , F )  II3 

II, FF H' 

X, Y, GVH[-H' 

we replace H with the following derivation IY: 

(ve) 

111 (,k-). Ha 
X, GFF y, FFH I 

(Cut) X, Y, GFH' (Cut) 

II2 ,[_ 1-[3 
X, Hk-F ( ) ]I, -F'-~H' 

X, Y, HF H' 
X, Y, GVHFH' 

The argument proceeds analogously to case 3.3 above. 
4.3. If II has the form 

(cut) (-~) 
I-[ 1 H 2 

XFG ]I, HF F 
X, Y, G ~  H[-F 

1I 3 

(*~-) Z, FFH' 
X, Y, Z, G'-'* H~-H t 

we replace H with the following derivation II': 

(__,~-) _ _  

II2 (,F) ~ Ha 
II1 Y, H]-F z, Fi-H ~" 

XFG (Cut) Y, Z, HFH' 

X, Y, Z, G ~  HF H t 

The argument proceeds analogously to case 3.4 above. 
4.4. If H has the form 

('~ 
X ,  GF F GeD(A) 

(PF) X,A[-F (cut) 
X, Y, AFH 

Y[1 
(*[-)Y, F~-H 

we replace 1-I with the following derivation II': 

((cut) 
17o (,~_). II1 

X, GF F Y, F~- H 
X, Y, GFH 

(PF) - -  
X, Y, At-H 
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The argument proceeds analogously to case 3.5 above. 
5. If the right premiss-derivation of the cut II ends with introduces the cut-formula by 

means of a (.F)-rule, and the left premiss-derivation introduces it by means of a (F*)-rule, 
we perform a logical reduction according to the pattern of the following examples: 

5.1. If II has the form 

(Cut) 

HI 

(FT)-t:.-..i: (TF) XI- t t  
X, TFH 

XFH 

we replace II with II1. Obviously, rD(IIl) = rD(II). 
5.2. If H has the form 

(c~t) 
(Fo) 

I11 If2 
XFF YFG 
X, YFFoG 

lI3 
Z, F, GF H 

(oF) Z, FoGFH 

X,Y, ZFH 

we replace H with the following derivation II~: 

1-12 I]3 } 
Ill (Cut) YFG Z, F, GFH II'~ 

XF F Y, Z, FF H (Cut) 
X,Y, ZFH 

For the subdefivation II~ of II' we have the following: 

m(n~) = ~D(n~) + ~o(n3) 
<_ rD(II1) § rD(YI2) -~ rD(II3) 
= rD(II) 

~c(II~) < ~c(n).  

Thus, by the induction hypothesis, cut is eliminable from Hi, yielding a cut-free derivation 
II~ with 

rm(II~) < rD(II~). 

Replacing H~ in II ' with II~ yields the following derivation If": 

(c,~t) E1 n~, 
X, Y, ZFH 

for which 

rD(H") =rD(H1) +rD(H~) 
rD(HI) +rD(H2) +rm(n3) 

= to(n) 
rc(n') < rc(n) 
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holds. Thus, again by the induction hypothesis, cut is eliminable from H", yielding a 
cut-free derivation H "t of X, Y, ZFH, for which 

rD(n") < rD(n") < rn(n) 

holds (see remarks 2 and 4 below). 
5.3. If H has the form 

(cut) 

111 
X, FF-G 

( ~- ) 2-F P-~ a 
( ~ - )  

H2 Ha 
YFF Z, O-H 
1I, Z, F-~GF H 

X,Y,  ZFH 

we replace 1I with the following derivation IY: 

(c~t) 

H2 1-11 
Y}--F X, FFG 

(Cut) X, YFG 
} Hi n3 

Z, GFH 
X,Y, ZeH 

For the subderivation II~ of 1]~ we have: 

TD(n~) =rD(n2)+rD(nl) 
rD(1]l) +rD(H2)+rD(H3) 

= m(n) 
~c(n~) < ~c(n). 

We argue analogously to the previous case 5.2 (see remarks 2, 3 and 4 below). 
5.4. If II has the form 

(Cut) 

I]1 1-12 
, . ,  XF-F(t) Y, F(y)~H 

(~-~) X~xF(x )  (~)  Y, 3xF(=)~-H 
X, YFH 

we replace H with the following derivation HI: 

1]1 n2[y/t] 
X~-F(t) Y,F(t)~H 

(cut) 
X, Y~-H 

where 1]2[y/t] results from 112 by substituting t for y throughout. (Here, again, closure of 
rules under substitution is used.) Obviously, for H ~ we have that 

m(n') = ~D(n) 
~c(1]') < rc(n), 
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so that the induction hypothesis is applicable to H'. 
5.5. If II has the form 

(c.t) 

II1 
(F-P) XF-F 

X~A 
(P[-) 

Y, G[-H GED(A) 
Y, AV-H 

X, YF-H 

we replace H with the following derivation II': 

(c t) 

II1 IIF 
X[-F Y, Fb H 

X, Y~-H 

Since F E D(A), I I  F must be among the rio. Obviously, rD( I I ' )  < rD(II), so that the 
induction hypothesis can be applied to rI' (see remark 1 below). 

[] 

Remarks on the proof of Theorem 1 

1. The introduction of the D-rank as the first component of the induction value is 
essential for the logical reduction of the P-rules (case 5.5), since in that case the formula 
F may be of higher complexity than the atom A. 

2. That part of the induction hypothesis which says that the D-rank is not increased 
by cut-elimination, becomes crucial when subsequent cuts have to be eliminated. This 
happens in the logical reductions of o and --+ (cases 5.2 and 5.3). 

3. It is essential that we use the (normal) multiplicative version of (-+[-). With an 
additive version like 

XV-F X, G[-H 
X, F--+G}-H ' 

the reduction in case 5.3 would not be valid, save we also used an additive version of cut 
like 

Xt-F X, F[-G 
XFG 

4. There is a crucial difference between cases 5.2 (o) and 5.3 (--+) above. In the 
reduced derivation II' of case 5.2 (o), the cuts with F and G as cut-formulas can just be 
interchanged by interchanging H1 and H2 as subderivations of 11' without changing the 
structure of II'. Here H1 and 112 can be viewed as two "independent" input-sequents for a 
(generalized version of) cut (see Section 4). In case 5.3 (-+), interchanging the cuts with 
F and G in 11' would change 1I' to the following derivation: 

Ill I13 
Fl2 (Cut) X, F[-G Z, GF-H 

YF-F X, Z, FF-H 
(Cut) 

X,Y,  ZF-H 
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whose structure differs from that of H I, although the order of II1 and H2 remains the 
same. The derivations II1 and II2 are not "independent", but members of a "chain" of 
cuts. This peculiarity of --* prevents reducing the two cuts in HI in a single step with an 
appropriate induction measure which would allow for the reduction of contraction. 

5. In order to reduce contraction, one would have to replace the derivation 

(Contr) 

with the derivation 

(Cut) 

IX 2 

II1 (Contr) Y' F, F[-H 
X[-F Y, FF-H 

X, YFH 

(Cut) 

I] 1 

XFF 

121 YI2 
XFF Y, F, FFH 

(c t) 
x,  Y, 

X, X, YFH 
X, YFH 

Due to the duplication of 121, the D-rank may increase in an uncontrolled way. If --* is 
not present, this problem can be avoided (see Section 4). 

6. The distinction between additive and multiplicative rules in the definition of the 
D-rank of a derivation has the following reason. If one treated all rules in the additive 
way, taking the maximum of the D-ranks of the subderivations, in the right permutative 
reduction with (PF) (case 3.5) the D-rank may increase if II1 is of highest D-rank. If one 
treated all rules in the multiplicative way, summing up the D-ranks of subderivations, it 
may increase in cases like 3.3, where a subderivation is duplicated. 

4. Cut -e l iminat ion  for implicat ion-free  def init ions 

Now we admit contraction, but consider only definitions P which do not contain implica- 
tion. We first show that a generalized version of cut, the "multicut" rule 

(m~Xlt-F1 ... X,,FF~ F1,. . . ,F~,YFH 
~ w X1,... , X~, YFH 

is admissible provided F1 , . . . ,  F,~ do not contain implication (Theorem 2). 3 Prom that we 
obtain as a corollary that for implication-free definitions, the atomic cut-rule 

. XFA A, YFG 
(Cuto) X, YFG 

is admissible (Corollary 1). By combining this result with the ordinary cut-elimination 
procedure for intuitionistic logic, we then obtain the admissibility of (Cut) for implication- 
free definitions (Theorem 3). In the last case, implication is allowed to occur in cut- 
fol-mulas, but not in bodies of definitional clauses. 

3The multicut rule and the idea to prove cut-elimination via multicut-elimination is due to Slaney 
[23]. In his system with implication, multicut is actually not admissible. 
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In a multicut (mc), the F1, . . . ,  F,, are called "cut-formulas". The rightmost premiss 
of a multicut is called its major  premiss, the other ones its minor  premisses. We also 
write 

(mc) (XibFOi-<~ F 1 , . . . , F ~ , Y F H  
X1,. . . ,  X~,  Y~-H 

We only consider derivations ending with a topmost multicut, i.e., with an application of 
(mc), above which there is no further application of (mc).  Define for such a derivation 
H the D-ran k rD(II) to be the number of applications of (Contr )  and of (Pb-) above the 
major premiss of the multicut II ends with, rc(II)  to be the sum of the logical complexities 
of the cut formulas F1, . . . ,  F~ of that multicut, and rL(II) to be the length of H. 

T h e o r e m  2 Suppose P is implication-free. Then in the system without (Cut) ,  the 
multicut rule (mc) is admissible for implication-free cut-formulas. 

P r o o f  We proceed, for a given II ending with a topmost multicut, by induction on 
the triple 

:= (rD(n), rL(n)). 

1. If H has the form 
HI 

X F A  A b A  

X F A  ' 

we replace II with II1, which does not contain any multicut (see remark 1 below). 
2. If II has the form 

Hi 
X&F~ ) i<_,., 

I~n+l 
F~, . . . , F,,-1, Y } - H  

(Th in )  -if1: : - . ; ~  

X1 , .  . . , X~,  Y P H  

we replace II with the following derivation II1: 

(Th in )  

Hi ) IIn+l } 
XIF  F~ i<~-I FI,  . . . , F~-I ,  Y i - H  II~ 

X1 , .  .. , X ~ _ I , Y ~ - H  

X1, . . . , X m  Y i - H  

For tile subderivation II~ of 1-i t we have the following: 

ro(nl)  = rD(n) 
 c(nl) _< re(n) 
 L(nl) < 
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Therefore we can apply the induction hypothesis. 
3. If II has the form 

(~) 

II~ 
XiFFi )i< ~ ( C o n t r )  

IIn+l 
F~,. . . ,  F,,  Fn, YFH 

~;;: ::, F--~, YF-~ 
X 1 , .  . . , X, , ,  Y t - H  

we replace H with the following derivation HI: 

IIi ) II,~ 

x & ~  ~_<~ X~FF~ 
(mc)  X ~ , .  . . , X n ,  X,~, YFH 

X1, �9 �9 �9 X n ,  Y F H  

~n+l } 
F~, . . . , F,~, F,~, YF H n'~ 

( C o n t r )  

For the subderivation II~ of H I we have rD(I-I~) < rD(YI), since the number of contractions 
above the major premiss of the multicut is reduced by 1. Therefore we can apply the 
induction hypothesis. 

4. If the derivation of the major premiss of the multicut 1I ends with does not  introduce 
any  cut-formula F1, . . . ,  Fn by means of a (*F)-rule, we perform a permutative reduction 
according to the pattern of the following example: 

If 1I has the form 

(me) 

IIi 

XiFFi ) i<r, (AF) 

IIn+l 
Fa, . . .  , F , , , Y ,  F F H  

F 1 , . . .  , F,~, Y,  F A G F H  

X~,  . . . , X,~, ]I, F A G F H  

we replace II with the following derivation IY: 

(AF) 
(mc) 

II~ ) II,,+l } 
XiFF~ i<_,~ F 1 , . . . ,  Fn, Y, F F H  II~l 

X I ,  . . . , X n ,  Y, F F H  

X 1 ,  . . . , X n ,  Y~ F A G F  H 

For the subderivation II~ of II ~ we have the following: 

rD(II~) = rD(H) 
r c ( I r l )  = r c ( I I )  
rL(II~) < rL(II). 

Therefore we can apply the induction hypothesis. 
5. If the derivation of the major premiss of the multicut II ends with introduces a cut- 

formula by means of a (*F)-rule, but the derivation of the corresponding minor premiss 
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does not  introduce this cut-formula by means of a (F*)-rule, we perform a permutative 
reduction according to the pattern of the following example: 

If II has the form 

(me) 

Hi 
XzFFi ) ~n--1 

n: n: 
(--.F) X F F  Z, GFF,,  II~+l 

X ,  Z,  F-- .Gt-F, ,  ( .F)  F 1 , . . . ,  F,,, Y t - H  

X1, . . . , X , _ I ,  X ,  Y, Z, F - - . G F  H 

we replace H with the following derivation H~: 

(--,~) 
n" 

X I - F  (mc)  

n, ) n~ (,~) n~+, 
X i F F i  i<_~-I Z,  GFF~ F 1 , . . . ,  F,~, Y F H  

X I , . . . ,  X,~_I, Y, Z, GF H 

X1, . . . , X,~-I, X ,  Y, Z,  F--*GF H 

nl 

For the subderivation II~ of H ~ we have the following: 

m ( n l )  = m ( n )  

rg(nl) < rg(H). 

Therefore we can apply the induction hypothesis. 
6. If the derivation of the major premiss of the multicut II ends with introduces a cut- 

formula by means of a (,F)-rule, and the derivation of the corresponding minor premiss 
introduces the same formula by means of a (F.)-rule, we perform a logical reduction 
according to the pattern of the following examples: 

6.1. If II has the form 

II~ 

( II~ X ,  FF, / ~i<~-l . X,~FF (eV) x--Z-~a 
(~)  

(vF) 

1-~tn+ 1 I] t! n+l 
FI, .  . . , F,~_I, F, Y F H  F1, . . . , F,~_I, G, Y F H  

F I , . . . ,  F,~_~, F V G ,  Y I - H  

X1, . . . ,  X~, Y ~ H  

we replace H with the following derivation IF: 

(me) 

Hi ) 1L, 
XiFFi ,<,-1 X # - F  

11'~+ 1 
F1, . . . , Fn_I, F, Y F H  

X1 , .  . . , X,~, Y F H  

For IY we have the following: 

rD(II') <_ rD(II) 
rc(n') < rc(II). 
Since F V G  is implication-free, F is implication-free, so that the induction hypothesis can 
be applied. 
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6.2. If H has the form 

II~ 
Xii--F'i ) i<n-1 

Hn 
(t-P) X,~I-F 

X J - A  
(Pi-) 

( Ho ) 
F1,.. .  ,Fn_I,G, YI -H GeD(A) 

F I , . . .  , Fn_l, A, YI-H 

X1, . . . , X,~, YI-H 

we replace H with the following derivation H': 

Hi ) Ha HF 
X~I-F~ i<n-1 X~I-F F1, . . . ,F ,~-I ,F,  YFH 

XI, .  . . , Xn, YI-H 

Since F E D(A), HF must be among the Ha. Obviously, rD(H') < rD(II), since one 
application of (Pi-) disappears. Furthermore, due to the restriction on P, F is implication- 
free. So the induction hypothesis can be applied to IY (see remark 2 below). 

Q 

Remarks on the proof of Theorem 2 

1. Since by means of a multicut we reduce several cuts in a single step and do not 
have the problem of subsequent applications of cuts, we do not require in the induction 
hypothesis that the D-rank be not increased when a cut is eliminated. For example, in 
case 1 it is always increased if the D-rank of II1 is not 0. 

2. It is instructive to see what would happen in the presence of implication: Consider 
just the case with a single minor premiss, where a H of the form 

H1 H2 II3 
X,  Ft-G Z i -F  Z, Gt-H 

XI-F- C Y,Z,F- GI-H 
X, Y, Zt-H 

would have to be replaced with the following derivation H': 

(mc) 

II2 H1 } 
(mc) Y F F  X,  FI-G H i Ha 

X, YI-G Z, GI-H 

X,  Y, ZI-H 

The fact that here we have two subsequent cuts causes no problem, since for the D-rank 
only the major premiss is relevant. However, the D-rank of II~ may now be greater than 
that of H, since for the D-rank of H the subderivation 111 of H ,  as occurring in a derivation 
of a minor premiss, is irrelevant, whereas for the D-rank of II~ the subderivation II 1 of IIrl, 
as being a derivation of a major premiss, has to be taken into account. In the reduction 
of an implicational cut-formula, minor and major premisses change place. The presence 
of implication forbids an asymmetric induction measure for which only one of the cut 
premisses would be counted in the computation of the D-rank. 
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Since (Cuto) is a special case of (mc), and since by definition its cut-formula is atomic, 
we immediately have the following corollary: 

C o r o l l a r y  1 Suppose P is implication-free. Then in the system without (Cut), the 
atomic cut rule (Cuto) is admissible. 

T h e o r e m  3 Suppose P is implication-free. 
(Cut) is admissible. 

[] 

Then in the system without (Cut), 

P r o o f  We perform the usual cut-elimination procedure for intuitionistic first-order 
logic with the difference that  we apply Corollary 1 when we encounter an atomic cut. 

[3 

Theorems 1 and 3 show that  with definitional reflection contraction and implication 
exclude each other,  if one wants to have cut elimination. The elimination of implicational 
cuts requires a symmetric induction measure which would be blown up by contraction. 
On the other  hand, the elimination of contraction works with an asymmetric induction 
measure which is ruled out by implication. 4 

5. R e m a r k s  on  o t h e r  logica l  s y s t e m s  

We give some hints on how our results carry over to logics with other structural postulates. 

Relevance logic 

There is a great variety of systems of relevance logic. We only consider those which 
immediately fit into our framework. The easiest one is obtained by taking away the 
thinning rule (Thin). An inspection of proofs shows that  all our results remain valid: 
Thinning is not involved in the negative result (failure of cut-elimination for the system 
with contraction and with ~ in definitions). In the reductions of the cut-elimination 
proofs (Theorems 1 and 2), thinning is only used in cases where the original derivations 
apply (Thin). Besides (Thin), one might also drop (J_F-) in relevance logic. This, again, 
does not change our results. Here it proves useful that  we have kept the T-  and _k-rules 
separate from the P-rules (see the remarks on T and J_ in Section 2). - The  investigation 
of relevance logics in which the distribution law A&(BVC)F(A&B)VC holds, which in 
Centzen-style proof theory would require a second structural operation besides the comma 
([7], for references see [2,1]), is beyond the scope of the present investigation. 

4In [13] (Part II, Proposition 1) we proved cut elimination for definite Horn clause programming 
with definitional reflection in a much simpler way than here in Theorem 3, which relies on the multicut 
elimination of Theorem 2. This was possible because there, for the purpose of logic programming, we 
considered a fragment in which the underlying logic just contains the implication rules (besides definitional 
reflection). Since in our treatment of Horn clauses we did not even use explicit conjunction in the bodies 
of clauses, each premiss in the body of a clause is of the same logical complexity as its head (namely 
atomic). - It might be added that in the proof given there the notion of length of derivations has to be 
understood as the cut rank in Gentzen's [10] sense (i.e., the number of occurrences of the cut-formula 
when proceeding upwards from a topmost cut), not just as the number of rule applications. 
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Linear logic 

In linear logic we have neither thinning nor contraction. Therefore, according to the 
previous remarks on relevance logic, Theorem 2 holds for linear logic, too. That is, for 
linear logic with definitional reflection we have cut-elimination. However, this only holds 
if modal operators (exponentials) are not present. With exponentials, intuitionistic logic 
can be translated faithfully into linear logic ([11], pp. 78-82), so that the failure of cut- 
elimination for intuitionistic logic with definitional reflection carries over to linear logic 
with exponentials. More precisely, if one defines in linear logic 

! p---~_l_=~ p , 

where -* is now linear implication, then a derivation analogous to the example of Section 
2 which demonstrates the invalidity of cut can be given: Both i-!p and !pi-_L are then 
derivable, but not t-J_. Note that in linear logic contraction is available for !-formulas (on 
the left side of the turnstile). 

These remarks only apply to linear logic with a single formula on the right side of the 
turnstile, but can be carried over to the symmetric case (see below). 

The Lambek calculus 

In the Lambek calculus we have sequences rather than multisets as antecedents of se- 
quents. We do not have a postulate of exchange (nor do we have thinning or contraction). 5 
In this system we can distinguish between two implications with the (i-*)-rules 

X, FI-G F, XI-G 
(i- I)-2-i--r F (i- \) x-V-2Ur a .  

The (,i-)-rnles for these and all other connectives have to be (re-)formulated carefully 
with attention being paid to the order of formulas and the way they are embedded in a 
context. For example, the cut-rule would now have to be formulated as 

x i -F  Y, F, Zi-G 
Y, x ,  zi-G 

It can be seen that Theorem 2 holds for this case as well. This reflects the fact that for 
the Lambek-caleulus without definitional reflection cut-elimination holds ([14, 16]), and 
that our induction measure is independent of the structural postulates assumed. 

Logics with multiple formulas in the succedent 

In a system whose sequents are of the form XI-Y rather than Xt-F, one would have 
to introduce a connective dual to o ("par" in Girard's [11] terminology, here written 
"+"), as well as to consider rules for thinning and contraction on the right side of the 
turnstile. Nevertheless, as long as we work with multisets, all the results mentioned carry 
over to this case (including relevance and linear logic). One has to check all steps of the 

5We are considering here only the associative case [14], not the even weaker version with a non- 
associative binary structural connective [15] 
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proofs in detail. For Theorem 1 this result is plausible, since our induction measure is 
symmetric and only reductions dual to those presented are added. For Theorem 2 we 
used an asymmetric induction measure, which in the definition of "D-rank" only refers to 
the major premiss of a multicut. However, the additional logical reduction for + works 
well with that measure. For simplicity, we present the case of a multicut with a single 
minor premiss, which is the same as a cut: 

If H has the form 

n, G 
. XFF, G, Y X I, FFY t X", O-Y" 

7-0-,z (+F-) z" X I, X", F + G~Y I, 
(me) 

X, X', X 'F  Y, Y', Y" 

we replace H with the following derivation H~: 

XbF, a, Y X', Yt-Z' 
X, X%G, II, yr X", GF Y" 

X, X', X'q-Y, Y', Y" 

Contrary to all other reductions, here a single multicut is replaced with two subsequent 
multicuts. However, due to the fact that only the major premiss of a multicut is relevant 
for the D-rank, we have rD(l-I~) < rD( I I )  and r D ( I - [ ' ) _  rD ( I I ) ,  where H" results from H p 
by replacing H~ with a multicut-free derivation. ~ 

For the Lambek calculus with multiple formulas in the succedent, there are problems 
with cut-elimination anyway, quite independent of definitional reflection, even if certain 
conditions are posed on the application of cut (see [1, 17]). However, it can be shown 
that cut is eliminable in the system with definitional reflection if the implication-rules are 
dropped (and no negation-rules are introduced, which would lead to the same problems). 

A p p e n d i x  

In an electronically distributed message of 5 February 1992, entitled "A Fixpoint Theorem 
for Linear Logic ''7, Girard proposes a logical system with an elimination rule for atoms 
similar to our rule of definitional reflection and states a theorem similar to our Theorem 1 
above. It seems that his first presententation of these ideas was at the German Workshop 
on Artificial Intelligence (GWAI), Bonn, September 1991. This suggests some remarks on 
how Girard's system relates to ours. 

1. Girard's idea of inverting introduction rules for atoms ("definitional reflection" in our 
terminology) is basically the same as ours (see our [Halln~' and my] reply to Girard of 
19 February 19928). 

Sin the presence of thinning and contraction, it is sufficient just to consider additive connectives. 
However, since we are also considering the relevant case where thinning is absent, we have to take into 
account the multiplicatives even for Theorem 2. 

7Linear logic mailing list (linear@cs.stanford.edu, set up by Patrick Lincoln) 
SSame mailing list 
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2. In our notation, for a system with a single formula in the succedent and a definition 
P, Girard's "elimination rule" would be written as 

(Xa, Fa~-Ga)F=~Bep and o'=rngu(B,A) 
(ER) X, A~-G 

The rule (ER) is equivalent to our rule in the propositional case (i.e., without variables). 
In the general case, it is stronger than (PF) in the sense that (PF) can be derived (without 
cut) if (ER) is present. However, when it comes to the computation of bindings, where 
rules have to be read backwards in some reasonable sense, (ER) is less useful than (PF). 
For the computation of bindings it is essential that a single substitution is computed 
at each step. This means that only in the one-premiss case (with a single ~), (ER) 
can be used to generate a binding. With (PF), there is no such restriction. To obtain 
a binding, we compute a minimal substitution 8 such that for A8 the proviso for the 
application of (PF) is satisfied (for details see [13]). Therefore, computationaUy, (PF) 
is more powerful than (ER). This is why we rejected a rule like (ER) in 1987, when 
we considered "definitional reflection" as the basis for an extended logic programming 
language and chose (PF-) instead. 

Deductively, of course, (ER) is a very interesting rule which has to be further investi- 
gated. So far, it has been considered by Eriksson ([8], p. 102). Philosophically speaking, 
(ER) and (PF) differ in the interpretation of variables in the atom A. 

3. For Girard, the cut-elimination theorem for contraction-free systems with definitional 
reflection (Theorem 1 above) is fundamental, since he considers the admissibility of cut 
a matter of principle. Therefore he works throughout with a contraction-free logic (in 
fact, linear logic), whereas for us the failure of cut is a sign of partiality (see Section 1 
above). Concerning his proof, Girard gives some hints for the treatment of exponentials 
and furthermore refers to the small normalization theorem of [11] (p. 71). It is not 
immediately obvious how to carry over this proof to our logical system. Our proof is 
different from that. 
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