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Abstract. Prawitz proposed certain notions of proof-theoretic validity and conjectured

that intuitionistic logic is complete for them [11,12]. Considering propositional logic, we

present a general framework of five abstract conditions which any proof-theoretic seman-

tics should obey. Then we formulate several more specific conditions under which the

intuitionistic propositional calculus (IPC) turns out to be semantically incomplete. Here a

crucial role is played by the generalized disjunction principle. Turning to concrete seman-

tics, we show that prominent proposals, including Prawitz’s, satisfy at least one of these

conditions, thus rendering IPC semantically incomplete for them. Only for Goldfarb’s [1]

proof-theoretic semantics, which deviates from standard approaches, IPC turns out to

be complete. Overall, these results show that basic ideas of proof-theoretic semantics for

propositional logic are not captured by IPC.
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In [5] it was shown that intuitionistic propositional logic is semantically
incomplete for certain notions of proof-theoretic validity (see also [4]). This
questioned a claim by Prawitz, who was the first to propose a proof-theoretic
notion of validity, and claimed completeness for it [11,12].

In this paper we put these and related results into a more general con-
text. We consider the calculus of intuitionistic propositional logic (IPC) and
formulate, in Section 1, abstract semantic conditions for proof-theoretic va-
lidity which every proof-theoretic semantics is supposed to satisfy. They are
so general that they cover most semantic approaches, even classical truth-
theoretic semantics. In Section 2 we show that if in addition certain more
special conditions are assumed, IPC fails to be complete. In Section 3 we
study several concrete notions of proof-theoretic validity and investigate
which of the conditions rendering IPC incomplete they meet. In Section 4
we consider Goldfarb’s [1] semantic approach for which IPC is complete,
but which is not a ‘standard’ notion of proof-theoretic validity compared to
those proposed by Prawitz.
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1. Proof-Theoretic Validity in an Abstract Setting

We consider the intuitionistic propositional calculus (IPC) with the standard
constants ∧, ∨, → and ¬.

In validity-based proof-theoretic semantics, one normally considers the
validity of atomic formulas to be determined by an atomic system S. This
atomic system corresponds to what in truth-theoretic semantics is a struc-
ture A (in propositional logic A reduces to a truth-valuation of propositional
variables). Via semantical clauses for the connectives, an atomic base then
inductively determines the validity with respect to S, in short: S-validity
�S A of a formula A, as well as S-consequence Γ �S A between a set of for-
mulas Γ and a formula A. In our abstract setting we completely leave open
the nature of S and just assume that a nonempty finite or infinite set S
of entities called bases is given. We furthermore assume that for each base
S ∈ S a consequence relation �S is given, that is, a relation Γ �S A between
a set Γ of formulas and a formula A, such that the following conditions are
satisfied:

(Reflexivity) A �S A.

(Monotonicity) If Γ �S A, then Γ, B �S A.

(Transitivity) If Γ �S A and Γ, A �S B, then Γ �S B.

By Γ �S Δ we mean that for all A ∈ Δ: Γ �S A.
The S-validity of A (i.e., �S A) is identified with the fact that A is an S-

consequence of the empty set (∅ �S A). We expect that S-validity respects
the intended meaning of the logical connectives, where we take only the
positive connectives of conjunction, disjunction and implication into account
(see, however, the remark on negation at the end of Section 2):

(∧) �S A ∧ B ⇐⇒ �S A and �S B.

(∨) �S A ∨ B ⇐⇒ �S A or �S B.

(→) �S A → B ⇐⇒ A �S B.

The relation of universal or logical consequence is, as usual, understood
as transmitting S-validity from the antecedents to the consequent. In our
abstract setting, this is achieved by assuming that besides �S , there is a
consequence relation � available, such that the following two conditions are
satisfied:

(�) Γ � A ⇐⇒ For all S ∈ S : (�S Γ =⇒ �S A).

(�′) If Γ � A, then Γ �S A for any S.
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Condition (�′) expresses that � is a generalization of �S . It follows from
condition (�), if we assume that (�S Γ =⇒ �S A) implies Γ �S A, which
we do not, however, want to presuppose as a necessary condition.

The five conditions (∧), (∨), (→), (�), (�′) constitute our abstract notion
of a semantics. That is, if a non-empty set S of bases, and consequence
relations �S (for each S ∈ S ) and � are given such that these five
conditions are met, we speak of a validity-based proof-theoretic semantics
in the abstract sense, in short: a semantics.

Note that these conditions are also satisfied by classical truth-theoretic
(or model-theoretic) semantics, if one defines Γ �A A to mean: If A � Γ,
then A � A.

Most concrete versions of proof-theoretic semantics, including those con-
sidered by Prawitz, are semantics in this abstract sense. Deviant proof-
theoretic semantics we are aware of are only those, which challenge the fact
that �S or � are standard consequence relations, for example, by changing
the principles of monotonicity or transitivity. However, even those semantics
could be discussed in a modified framework of our kind (see [7,8]), but this
is not our topic here.

The notions of valid rule and derivable rule will be used in what follows.
It is 	 the derivability relation of IPC.

Definition 1.1. A rule
A1 . . . An

B

is called valid iff A1, . . . , An � B. It is called derivable iff A1, . . . , An 	 B.

The following standard results will play a prominent role.

Lemma 1.2. 1. Harrop’s rule (see [2])

¬A → (B1 ∨ B2)
(¬A → B1) ∨ (¬A → B2)

is not derivable in IPC (though it is admissible; cf. [3]).

2. For 	 the following generalized disjunction property holds:

GDP(	) If Γ 	 A ∨ B, where ∨ does not occur in Γ, then Γ 	 A or Γ 	 B.

3. Disjunctions can always be removed from a negated formula, by the fol-
lowing principles:

(∨-removal)

⎧
⎪⎨

⎪⎩

¬(A ∨ B)
	 ¬A ∧ ¬B;

¬(A ∧ B)
	 ¬(¬¬A ∧ ¬¬B);

¬(A → B)
	 ¬¬A ∧ ¬B.
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Remark 1.3. A stronger version of GDP(	), in which it is only assumed
that ∨ does not occur positively in Γ, was proven by Harrop [2] and, in
a natural deduction setting, by Prawitz [9]. We here only need the stated
weaker version GDP(	), where the stronger assumption is made that ∨ does
not occur in Γ at all.

Soundness and completeness of IPC are understood in the usual way.

Definition 1.4. Soundness of IPC means:

For any Γ and A: if Γ	 A, then Γ � A;

and completeness of IPC means:

For any Γ and A: if Γ � A, then Γ	 A.

Lemma 1.5. In view of (�′), soundness implies the following: For any Γ and
A, if Γ 	 A, then Γ �S A for any S.

2. Conditions for Incompleteness of IPC

We show that IPC turns out to be incomplete, if the semantics given satisfies
certain special conditions.

A crucial role is played by the generalized disjunction property, which was
stated above for the derivability relation 	 of IPC. We are particularly in-
terested in its semantical version. Therefore we formulate it for an arbitrary
consequence relation � in the language of IPC:

GDP(�) If Γ� A ∨ B, where ∨ does not occur in Γ, then Γ� A or Γ � B.

We assume in the following that a semantics in the abstract sense of
Section 1 is given, with respect to which IPC is sound.

Lemma 2.1. If GDP(�S) for every S, then Harrop’s rule

¬A → (B1 ∨ B2)
(¬A → B1) ∨ (¬A → B2)

is valid.

Proof.

�S ¬A → (B1 ∨ B2) =⇒ ¬A �S B1 ∨ B2; by (→)

=⇒ A′ �S B1 ∨B2 for some ∨-free formula A′ such
that A′ 
	 ¬A; by (∨-removal), Lemma 1.5
and transitivity of �S

=⇒ A′ �S Bi for i = 1 or 2; by GDP(�S)
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=⇒ ¬A �S Bi; by (∨-removal), Lemma 1.5 and
transitivity of �S

=⇒ �S ¬A → Bi; by (→)

=⇒ �S (¬A → B1) ∨ (¬A → B2); by (∨).

As this holds for any S, condition (�) gives us ¬A → (B1 ∨ B2) � (¬A →
B1) ∨ (¬A → B2).

This means that if we have GDP(�S) for every S, then completeness fails,
since Harrop’s rule is not derivable in IPC.

Now consider the following property:

(Export) For every base S there is a set of ∨-free formulas S∗ such that for
all Γ and A: Γ �S A ⇐⇒ Γ, S∗ � A.

This condition means that the base S of non-logical consequence �S can
be ‘exported’ as a set of assumptions (S∗) of logical consequence �.

Lemma 2.2. Assume completeness of IPC. Then Export implies GDP(�S)
for every S.

Proof. Suppose completeness holds, and ∨ does not occur in Γ. Then we
obtain GDP(�S) as follows:

Γ �S A1 ∨ A2 =⇒ Γ, S∗ � A1 ∨ A2; by Export

=⇒ Γ, S∗ 	 A1 ∨ A2; by completeness

=⇒ Γ, S∗ 	 Ai for i = 1 or 2; by GDP(	)

=⇒ Γ, S∗ � Ai for i = 1 or 2; by soundness

=⇒ Γ �S Ai for i = 1 or 2; by Export.

This means that assuming completeness we obtain that Harrop’s rule
is valid. Again assuming completeness, this implies that Harrop’s rule is
derivable in IPC, which is not the case. Thus we have refuted completeness.

Note that we have not shown GDP(�S) outright, but only under the as-
sumption of completeness, which is, however, sufficient to refute complete-
ness.

Now consider the condition

(�S) Γ �S A ⇐⇒ (�S Γ =⇒ �S A).

We obtain the following interesting result. (Note that the direction from left
to right in (�S) follows already from the fact that �S is a consequence
relation.)
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Lemma 2.3. Suppose (�S). Then, using classical logic in the metalanguage,
GDP(�S) can be proved.

Proof.

Γ �S A ∨ B

=⇒ (�S Γ =⇒ �S A ∨ B); by (�S)

=⇒ (�S Γ =⇒ (�S A or �S B)); by (∨)

=⇒ (�S Γ =⇒ �S A) or (�S Γ =⇒ �S B); classical metalanguage

=⇒ Γ �S A or Γ �S B; by (�S).

(We do not need the supposition that ∨ does not occur in Γ.)

However, to show GDP(�S) we do not have to rely on a classical meta-
language, if we can make use of the following principle:

(Import) For every S, every ∨-free Γ and every A there is a base S +Γ such
that: Γ �S A ⇐⇒ �S+Γ A.

This condition means that any disjunction-free set of assumptions of logical
consequence � can be ‘imported’ into a base S of non-logical consequence �S .

Lemma 2.4. Import implies GDP(�S).

Proof. Suppose ∨ does not occur in Γ.

Γ �S A ∨ B =⇒ �S+Γ A ∨ B; by Import

=⇒ �S+Γ A or �S+Γ B; by (∨)

=⇒ Γ �S A or Γ �S B; by Import.

Import is a condition that played a crucial role in [5], where we considered
higher-level inference rules, but it is not needed in the general setting here.

Summary. For any semantics with respect to which IPC is sound, we have
shown the following.

Theorem 2.5.

1. GDP(�S) for all S =⇒ validity of Harrop’s rule,

thus: GDP(�S) for all S =⇒ incompleteness.

2. Export + completeness =⇒ GDP(�S) for all S,

thus: Export =⇒ incompleteness.

3. Condition (�S) =⇒ GDP(�S) for all S (using classical metalanguage),

thus: Condition (�S) =⇒ incompleteness.
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4. Import =⇒ GDP(�S) for all S,

thus: Import =⇒ incompleteness.

Remark 2.6. Theorem 2.5(1) and (2) continue to hold if for GDP(�S) and
GDP(	) it is only assumed that ∨ does not occur positively in Γ.

Therefore, in order to establish the incompleteness of IPC for a semantics,
for which IPC is sound, we only need to establish one of the four conditions
stated in the clauses of Theorem 2.5.

Remark on Negation. The counterexample to completeness, which is based
on Harrop’s rule, relies heavily on negation being available, in addition to
implication and disjunction. The reason why there is no principle explicitly
required of negation in our abstract semantics in Section 1 nor in the condi-
tions for incompleteness in the current section is due to the fact that for our
incompleteness results we throughout assume soundness, which means that
the principles governing negation with respect to � and �S are inherited
from those derivable in IPC. If we wanted to establish incompleteness results
for semantics for which IPC is not even required to be sound, we would have
to formulate explicit semantic principles for negation or absurdity.

3. Incompleteness Results for Concrete Proof-Theoretic Semantics

By a concrete semantics we understand a semantical approach in which
bases S are explicitly specified, and in which consequence relations � and
�S are defined in such a way that the result is a semantics in the abstract
sense of Section 1. The specification of � and �S can proceed by explicit or
inductive definition. Another possibility would be to start with a different
fundamental concept in terms of which �S is then defined. The latter is
the case in Prawitz’s definition of the validity of a derivation or derivation
structure, on which the definition of valid consequence is based.

We consider certain types of concrete semantics. All of them are proof-
theoretic semantics in the sense that bases are understood as atomic systems
generating valid atomic formulas by means of inference rules.

Definition 3.1. An atomic system S is a deductive system with rules of
the form

a1 . . . an

b
where a1, . . . , an, b are atoms. As a limiting case, n can be 0, in which case
we have a rule without premisses, that is, an axiom. The set of rules may
be empty, in which case S takes the form ∅.
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The atoms a1, . . . , an, b can be of a specific form different from the atomic
formulas (= propositional variables) of IPC. In that case, in order to inter-
pret IPC semantically, one would have to consider valuations which interpret
propositional variables by such atoms. Alternatively, one might consider the
atoms of an atomic system S to be just the propositional variables. By
giving rules for propositional variables and a notion of derivability 	S p of
propositional variables p in S one obtains a way of interpreting propositional
variables in an atomic system S in analogy to truth valuations in classical
logic. This is how we proceed in the following. That is, the atomic formulas
derived by an atomic system are propositional variables.

The S-validity of an atomic formula a is defined as the derivability of a
in S:

(At) �S a :⇐⇒ 	S a.

The set S of bases considered is the set of all atomic systems, where
atomic systems are identified with the sets of their rules. The systems within
S are ordered in the usual way by set inclusion ⊆.

Remark 3.2. Different kinds of concrete semantics are obtained from differ-
ent kinds of atomic systems. Besides the kind of atomic systems considered
here, one may, for example, consider systems of higher-level rules (see [5]).
Furthermore, for a given kind of atomic systems different kinds of derivabil-
ity relations 	S can be examined. For example, an interpretation of atomic
systems as definitions justifies additional principles for deductions in atomic
systems, which yields a derivability relation which is no longer monotone
with respect to extensions of atomic systems (see [7,8]). We will not treat
such variants here.

Concrete semantics based on (any kind of) atomic systems can be clas-
sified into so-called extension semantics and non-extension semantics, de-
pending on how they interpret implication.

In extension semantics, S-consequence is defined using extensions S′ ⊇ S,
for atomic systems S and S′:

(�ext
S ) Γ �S A :⇐⇒ For all S′ ⊇ S: (�S′ Γ =⇒ �S′ A).

In non-extension semantics, S-consequence is just defined by

(�S) Γ �S A :⇐⇒ (�S Γ =⇒ �S A).

Remark 3.3. Concerning (→) this means that with (�ext
S ) we have

�S A → B ⇐⇒ For all S′ ⊇ S: (�S′ A =⇒ �S′ B),

whereas with (�S) we have �S A → B ⇐⇒ (�S A =⇒ �S B).
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Whether one should prefer one or the other kind of concrete semantics
depends on how atomic systems are to be interpreted. Note that for non-
extension semantics S-consequence fails to be monotone with respect to
atomic systems, whereas extension semantics guarantee monotonicity (for
details see [7,8]).

Remark 3.4. Obviously, in extension semantics �S is monotone with respect
to atomic systems, that is, Γ �S A =⇒ Γ �S∪S′ A for any S and S′.

Remark 3.5. In extension semantics we can strengthen (At) to

(At′) a1, . . . , an �S a ⇐⇒ a1, . . . , an 	S a.

The direction from right to left is trivial. For the direction from left to
right we consider any extension S′ of S, which has a1, . . . , an as additional
axioms. Then a1, . . . , an �S a implies �S′ a, and thus 	S′ a by (At). Now
	S′ a means the same as a1, . . . , an 	S a.

Lemma 3.6. For extension semantics we can establish

(Export) For every S there is a set of ∨-free formulas S∗ such that for all Γ
and A: Γ �S A ⇐⇒ Γ, S∗ � A.

Proof. First note that every atomic system S can be represented by a set
of ∨-free formulas S∗:

1. Axioms a are represented by the atom a.

2. Rules a1 . . . an

b
are represented by formulas a1 ∧ . . . ∧ an → b.

Obviously �S S∗ holds true.
To show Γ, S∗ � A =⇒ Γ �S A for sets S and S∗ as described, assume

Γ, S∗ � A. By monotonicity with respect to atomic systems (Remark 3.4),
this implies Γ, S∗ �S A for any S. Since �S S∗, we get Γ �S A by transitivity
of �S .

To show Γ �S A =⇒ Γ, S∗ � A, assume Γ �S A. By (�ext
S ) it holds that

Γ �S A ⇐⇒ For all S1: (�S∪S1 Γ =⇒ �S∪S1 A).

Now assume �S2 Γ, for an arbitrary S2. Thus �S∪S2 Γ by monotonicity with
respect to atomic systems (Remark 3.4). Hence �S∪S2 A, and Γ �S∪S2 A
by (�ext

S ).
Assuming �S2 S∗, we can infer Γ �S2 A by using

(�S2 S∗ and Γ �S∪S2 A) =⇒ Γ �S2 A.

We prove this implication by induction on the joint complexity of Γ and A.
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For atomic formulas we have �S∪S2 a ⇐⇒ 	S∪S2 a by (At), and
a1, . . . , an �S2 b ⇐⇒ a1, . . . , an 	S2 b by (At′). The latter implies for �S2 S∗

that all rules of S are derivable in S2. Hence 	S2 a, and thus �S2 a by (At).
For non-atomic formulas A we consider the case where A is an implication

B → C (the cases where A has the form B ∧ C or B ∨ C are similar):

�S∪S2 B → C ⇐⇒ B �S∪S2 C; by (→)

=⇒ B �S2 C; by �S2 S∗ and induction hypothesis

=⇒ �S2 B → C; by (→).

For S-consequence we have the following:

Γ �S∪S2 A ⇐⇒ For all S3 ⊇ (S ∪ S2): (�S3 Γ =⇒ �S3 A)

⇐⇒ For all S4: (�S4∪S∪S2 Γ =⇒ �S4∪S∪S2 A)

⇐⇒ For all S4: (�S4∪S2 Γ =⇒ �S4∪S2 A); by �S4∪S2 S∗, i.h.

⇐⇒ Γ �S2 A; by (�).

Having assumed �S2 Γ and �S2 S∗, we can conclude �S2 A, and thus
Γ, S∗ � A by (�ext

S ).

Remark 3.7. For extension semantics one can also establish Import. How-
ever, this presupposes atomic systems of higher-level rules, that is, rules
which allow at least for the discharge of atomic assumptions (cf. [7,8]).
Whereas in Export we proceed, in the first place, from rules to implica-
tional formulas, we proceed in Import from implicational formulas to rules.
To establish Import we thus have to be able to translate left-iterated impli-
cations into rules, which in general can only be done by using higher-level
rules.

Remark 3.8. Suppose we formulate completeness in a stronger way as

Γ �S A ⇐⇒ Γ, S∗ 	 A

where S∗ is chosen as in Export, that is, as a set of ∨-free formulas. Then
this strong completeness (which implies completeness in the sense of Def-
inition 1.4) is refuted outright, since it gives us GDP(�S), which can be
directly inferred from GDP(	).

Corollary 3.9. In view of Theorem 2.5 we have the following results:

1. By Lemma 2.3 we obtain by classical reasoning that IPC is incomplete
with respect to non-extension semantics.

2. By Lemma 3.6 we obtain that IPC is incomplete with respect to extension
semantics.
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3. By Remark 3.7 IPC is incomplete with respect to extension semantics
based on higher-level atomic systems.

These results pertain to proof-theoretic semantics that do not directly
specify �S and �, but define some other basic concept which then leads to
relations �S and � in the sense of non-extension or extension semantics.
A prominent example is Prawitz’s definition of validity for derivations or
derivation structures (which was adopted to some extent by Dummett). Here
one defines the S-validity of a derivation structure, that is, a tree structure
of formulas which results from the application of rules in natural deduction
style. These rules can be any rules, possibly discharging free assumptions,
and do not necessarily have to be the introduction and elimination rules
used in standard natural deduction.

A definition of S-validity along these lines can be given as follows:

1. Every closed derivation in S is S-valid.

2. A closed canonical derivation structure is S-valid, if all its immediate
substructures are S-valid. (“Canonical” means ending with an introduc-
tion rule.)

3. A closed non-canonical derivation structure is S-valid, if it reduces to
an S-valid canonical derivation structure.

4. An open derivation structure
A1 . . . An

D
B

where all open assumptions of D are among A1, . . . , An, is S-valid, if for
every extension S′ ⊇ S and for every list of closed S′-valid derivation
structures Di

Ai

the closed derivation structure
D1 Dn

A1 . . . An

D
B

is S′-valid.

Once the notion of an S-valid derivation structure has been defined, the
consequence relation Γ �S A can be defined by requiring that there be an
S-valid derivation structure from Γ to A. Then Γ � A means that Γ �S A
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holds for every S. Depending on whether in the definition of an S-valid
derivation structure we define the validity of an open derivation structure
by reference to extensions S′ ⊇ S of atomic systems S or not, we obtain
an extension semantics or a non-extension semantics. If we define the va-
lidity of an open derivation by using extensions, which is certainly what
Prawitz intended in his first proposal [10] of proof-theoretic validity, then
by Corollary 3.9(2) we obtain the incompleteness of IPC for this semantics,
thus refuting Prawitz’s conjecture that IPC is complete for this semantics.
If we understand Prawitz’s semantics as a non-extension semantics (which
is not without problems, see [8]), then by Corollary 3.9(1) we again obtain
incompleteness of IPC, albeit by means of classical reasoning in the meta-
language, which, as a negative result, is as devastating for the completeness
conjecture as a constructive proof.

4. Observations on Semantics for Which IPC is Complete

Our focus has been on incompleteness. We established semantical conditions
under which IPC is incomplete and which are satisfied by basic notions of
proof-theoretic validity. Applying these results to semantics for which IPC
is not incomplete but complete, gives us nonetheless substantial insight, in
particular for the condition of Export. Theorem 2.5 tells us that if we have
a semantics for which IPC is sound and complete, then Export cannot hold.
In other words, if IPC is sound and complete, the bases S of the semantics,
which constitute S-consequence . . . �S . . ., cannot be represented by means
of sets of ∨-free formulas Γ functioning as assumptions of logical consequence
. . . ,Γ � . . .. In particular it is not necessarily true that the S-validity of a
formula A (i.e., �S A) can be expressed as the universal validity of A with
respect to some set of ∨-free assumptions Γ (i.e., Γ � A). This is a significant
result, for example for Kripke semantics of IPC.

It can easily be seen that Kripke semantics for IPC is a semantics in the
abstract sense of Section 1. A base is an entity 〈W,≥, v, w〉, where 〈W,≥〉 is
a Kripke frame for intuitionistic propositional logic, v is a valuation assigning
a truth value to every propositional variable in any reference point, and w
is a reference point. All five conditions for a semantics are satisfied if we
define logical consequence as follows:

Γ �〈W,≥,v,w〉 A :⇐⇒ For all w′ ≥ w: (�〈W,≥,v,w′〉 Γ =⇒ �〈W,≥,v,w′〉 A).

The non-validity of Export for Kripke semantics means in particular that
we cannot internalize, that is, code the validity of A in a reference point w
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(i.e., �〈W,≥,v,w〉 A) as the derivability from a suitably chosen set of ∨-free
assumptions Γ.

Within the realm of proof-theoretic semantics, Goldfarb [1] has given a
semantics for which IPC is complete. It can be reconstructed in our frame-
work as follows. Take a base S to be a pair 〈R, α〉, where α is a set of
propositional variables, and R is an atomic system (in the sense of Defi-
nition 3.1), such that α is closed under the rules of R. Then we obtain a
semantics in the sense of Section 1, if we define

�〈R,α〉 p :⇐⇒ p ∈ α, for propositional variables p

and
Γ �〈R,α〉 A :⇐⇒ For all β ⊇ α: (�〈R,β〉 Γ =⇒ �〈R,β〉 A).

Goldfarb [1] was able to show that IPC is complete for this semantics, by
interpreting standard Kripke semantics in it. Our results then show that
Export cannot hold for this semantics, that is, we cannot code 〈R, α〉-validity
as universal validity with respect to a set of ∨-free assumptions.

Final Remark. From the point of view of proof-theoretic semantics, intu-
itionistic logic has always been considered the main alternative to classical
logic. However, in view of the results discussed here, intuitionistic logic does
not capture basic ideas of proof-theoretic semantics. Given the fact that
a semantics should be primary over a syntactic specification of a logic, we
observe that intuitionistic logic falls short of what is valid according to proof-
theoretic semantics. The incompleteness of intuitionistic logic with respect
to such a semantics therefore raises the question of whether there is an in-
termediate logic between intuitionistic and classical logic which is complete
with respect to it.
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