[Prev][Next]|[Index][Thread]

Girard's "Fixpoint Theorem"

e To: types

Subject: Girard's "Fixpoint Theorem"

From: nnssh01(@mailserv.zdv.uni-tuebingen.de (Schroeder-Heister)
Date: Wed, 19 Feb 92 12:57:52 EST

Sender: meyer@theory.lcs.mit.edu

Date: Wed, 19 Feb 92 14:37:18 +0100
To: Linear@cs.stanford.edu

Jean-Yves Girard's "A Fixpoint Theorem in Linear Logic"

In his contribution, Jean-Yves Girard mentions our work in a somewhat
misleading way. We take this occasion to give some more detailed
references.

1. The elimination rule for atoms which is the basis of Girards work,
has been proposed by us in a similar form

since 1987 (for references see "A proof-theoretic approach

to logic programming, II. Programs as definitions",

JLC 1, 1990/91). As Girard's,

our motivation was the reading of program-

clauses of a logic program as definitional clauses. We called the new
rule the rule of "definitional reflection” or "D-rule", thus emphasizing
that when applying the rule one reflects on the fact that the clauses for
introducing an atom according to the program exhaust the means for
introducing that atom. We also called it the "P-left" or "(P /-)"-rule
("P-right" for the rule that corresponds to the resolution rule),
emphasizing what we called "computational symmetry":

The P-left-rule allows

one to introduce an atom on the left of the turnstile rather than only on
the right (the latter case, which is the standard one, corresponds to
resolution, the novel former one to a principle dual to resolution).

As an alternative theory of inductive definitions, where one deviates
>from the standard monotone case and its least fixpoint interpretation,
our approach was developed under the heading "partial inductive
definitions" (see TCS 87, 1991).

2. A logic programming language called GCLA is being developed at SICS.
It is based on that theory and incorporates the rule of definitional
reflection, including the computation of appropriate

substitutions in the case of the D-rule. It particularly

allows for bindings to variables in hypothetical or negative queries, and
also for evaluation of function definitions based on the D-rule.

3. We have basically worked with intuitionistic

(not classical!) logic. In this

system, Cut-elimination indeed fails, if the bodies of program clauses
contain implications. We are aware that for a contraction-free system
Cut is obtained. Our proof uses induction over the triple <number of
occurrences of the D-rule above a (generalized version of a)

Cut, degree of Cut formula, length

of derivations of Cut premisses> (appearing in "Non-Classical

Logics and Information Processing”, ed. D. Pearce, Springer LNAI).

http://www.seas.upenn.edu/~sweirich/types/archive/1992/index.html#00043
http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00042.html
mailto:meyer@theory.lcs.mit.edu
http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00044.html
http://www.seas.upenn.edu/~sweirich/types/archive/1992/threads.html#00043
mailto:nnssh01@mailserv.zdv.uni-tuebingen.de

4. We do not understand why deductive power should decrease in

principle in the absence of Cut. We consider it basically a pragmatic
matter whether in a certain situation one wants to have contraction or
not, so one should be able to choose various structural frameworks in
which to work. The control language of GCLA is actually

strong enough to permit such a choice to a certain extent, so

contraction and consequently cut-elimination is not a matter of principle
but is up to the choice of the programmer. When dealing with function
definitions in our system, we actually work in the contraction-free
variant.

5. As to the Girard's "fixpoint theorem", this is the basic criterion for any
interpretation of a set of formulae as the definition of an atom p(x).

Since we do not assume cut as a primitive rule of inference, it is trivially
true.

6. There seem to be a lot of examples that can be naturally interpreted in
terms of the duality between the P-right and P-left rule. Proving that an
object satisfies an inductively defined predicate relies on the P-right rule
while evaluating a function with respect to a given definition on P-left.
There is also the duality between induction

and co-induction. Also, if you want to make a distinction between

induction (global) and logical elimination rules (local, the P-left rule).

7. If we use the notion of higher level-rules we can define

first order predicate logic by reading the introduction rules of natural
deduction as definitional clauses. This process can then be iterated by

adding definitions to predicate logic, arithmetic naive set theory.
Through the Curry-Howard interpretation one sees that computationally all

this means adding recursive data-types to a given lambda calculus,

simply typed lambda calculus, system F, the lambda calculus you get from

naive set theory with extensionality .

The other way round one sees that there is a logic behind these computational
theories.

So where is the true foundation of all this?

The rule dual to resolution (the elimination of an atom

with respect to a definition) seems to be a simple and natural candidate

to be included in an interpretation of a set of formulas as a definition.

Of course, it remains to explain the interpretation of the formulas themselves.
Linear logic, BCK logic, some kind of partial interpretation

Why is cut primitive? Why is cut not primitive? Why is contraction pr1m1t1ve>
Why is contraction not primitive? What is silly and what is not? It is perhaps
a little bit early to judge.

Lars Hallnaes and Peter Schroeder-Heister.

e Prev: paper on geometry of interaction
e Next: Linear logic semantics (latex file}
e Index(es):

o Main

o Thread

http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00044.html
http://www.seas.upenn.edu/~sweirich/types/archive/1992/index.html#00043
http://www.seas.upenn.edu/~sweirich/types/archive/1992/threads.html#00043
http://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00042.html

