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Abstract

The Curry-Howard correspondence between deductive sys-
tems and computational calculi is one of the great unifying ideas.
It links purely logical investigations to practical problems in
computer science, in particular the design and implementation
of programming languages. Many aspects of this correspon-
dence are widely known, such as the correspondence between
natural deduction for intuitionistic logic and the simply typed
λ-calculus. On the other hand, the importance of the sequent
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calculus in proof-theoretic investigations is not yet reflected in
the study of programming languages, where languages based
on the λ-calculus dominate. One of the principal reasons for
this is, we think, the lack of introductory material that could
serve in helping to translate between logicians and programming
language theorists.

Our small contribution in this respect is to introduce and
expose the correspondence between two normal forms and their
respective normalization procedures: administrative normal form
and ANF-transformation on the one hand, and focused normal
form and static focusing on the other. Though invented for
different purposes, compiler optimizations in the case of the
ANF-transformation and proof search in the case of focusing,
they are structurally very similar. Both transformations bring
proofs into a normal form where functions and constructors are
only applied to values and where computations are sequentialized.
In this paper we make this similarity explicit.

1 Introduction

In 1935, Gentzen [16] introduced the two most important logical calculi
used in proof theory today: natural deduction and the sequent calculus.
Natural deduction is used widely in both proof theory and the theory
of computation and programming. Its success in the latter is due to
the Curry-Howard correspondence (cf. [23]) between natural deduction
proofs and programs, or propositions and types. The sequent calculus,
on the other hand, did not yet have a comparable impact in the theory
of programming languages. Especially in the case of the classical
sequent calculus, this can be explained by the difficulty to reconcile
those of its features that are essential for obtaining classical logic
with a good computational interpretation. Such an interpretation was
provided when the relationship between classical axioms and control
operators was discovered by Griffin [17]. This discovery led to the
development of several term systems for encoding sequent calculus
proofs. One such system is the λµµ̃-calculus, introduced by Curien
and Herbelin [4].

We will use the λ-calculus and the λµµ̃-calculus, which are related
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by a translation function from λ-terms Λ to λµµ̃-terms Λµµ̃. For the
λ-calculus we define the administrative normal form ΛANF, together
with a transformation from Λ to ΛANF. In distinction to the usual
presentation of the ANF-transformation, we divide this transformation
into two parts by using an intermediate normal form ΛQ between
Λ and ΛANF. For the Λµµ̃-calculus we define the so-called focused
normal form ΛQ

µµ̃ (which corresponds to the subsyntax LKQ of [4]).
The focusing transformation from Λµµ̃ to ΛQ

µµ̃ is adapted from [6]. We
define a new normal form ΛANF

µµ̃ for λµµ̃-terms, which exactly mirrors
the syntactic restrictions that characterize the administrative normal
form ΛANF for λ-terms.

As our main result, depicted in Fig. 1, we show how the ANF-
transformation on λ-terms corresponds to static focusing of λµµ̃-terms.
The first part of the ANF-transformation corresponds precisely to the
static focusing transformation. That is, it commutes with focusing
via the translation function up to α-equivalence. The second part
of the ANF-transformation can be simulated in the λµµ̃-calculus by
µ-reductions.

Λ Λµµ̃

ΛQ ΛQ
µµ̃

ΛANF ΛANF
µµ̃

translation

ANF-transformation (1) focusing

translation

ANF-transformation (2) µ-reduction

translation

Figure 1: The relationship between the ANF-tranformation of λ-terms
and focusing of λµµ̃-terms.

The paper is structured as follows. In Section 2 we present the main
idea using an informal example. In Section 3 we formalize the syntax
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and type assignment rules for the λ-calculus and the λµµ̃-calculus,
and in Section 4 we give the translation from the former to the latter.
In Section 5 we provide the call-by-value operational semantics for
both calculi. We introduce the ANF-transformation in Section 6 and
static focusing in Section 7. The main result is presented in Section 8
and summarized in Section 9, which also contains an outlook to future
work. The proofs of the main theorems can be found in Appendix A.

2 An informal example
We explain the main idea with an informal example. Consider the
following program

π2(π1(1, 4), 3)

which consists of natural numbers 1, 4 and 3, pair constructors (␣, ␣)
and projections π1 ␣ and π2 ␣ on the first and second element of a pair,
respectively.

We expect this program to evaluate to the natural number 3. Using
call-by-name we could immediately evaluate this program to its final
value 3. However, using call-by-value we first have to evaluate the
argument of π2 to the value (1, 3) by evaluating π1(1, 4) to 1.

There are different ways to formalize the evaluation of a term
within a context. Here we choose the method of evaluation contexts
(cf. Felleisen and Hieb [13] and Section 5.1 below). An evaluation
context E[−] is a term with a placeholder □, which is to be filled with
the outermost redex to be evaluated next. We will use the symbol ≏
throughout to express syntactic equality up to α-equivalence (i.e., up
to the renaming of bound variables).

In our example, this allows us to evaluate the outermost redex
π1(1, 4) within the context E[−] ≏ π2(□, 3) as follows:

If π1(1, 4) ▷ 1, then π2(π1(1, 4), 3) ≏ E[π1(1, 4)] ▷ E[1] ≏ π2(1, 3).

The translation (cf. Definition 4.1) of the program π2(π1(1, 4), 3)
into the λµµ̃-calculus (cf. Section 3.3) results in the program

µα.⟨(µβ.⟨(1, 4) | π1 β⟩, 3) | π2 α⟩.
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We can recognize many familiar constructs from the initial program.
We still have natural numbers 1, 4 and 3, the pair constructor (␣, ␣)
and projections π1 and π2, but they are now organized and nested in
a very different way with the help of two new constructs.

The first new construct is the cut ⟨␣ | ␣⟩ which is used to oppose a
proof (or proof term) of a proposition with its refutation (or refutation
term). In our example, we use the cut to oppose a proof (1, 4) of the
type N ∧ N with a refutation π1 β of the same type, where we assume
that the refutation variable β stands for some unknown refutation of
type N. The reduction rules of the λµµ̃-calculus always replace a cut
by another cut, and in the case of pairs the reduction rule allows to
replace ⟨(1, 4) | π1 β⟩ by the new cut ⟨1 | β⟩.

The second new construct is the µ-abstraction µα.␣. We have more
to say about this construct in Section 3.3, but for now it suffices to
say that we use µα.⟨␣ | ␣⟩ to introduce a subcomputation (represented
by the cut ⟨␣ | ␣⟩) returning to the output named by the variable α.
For example, in order to represent the subcomputation 2 + 2, we use
the term µα.⟨2 + 2 | α⟩, which evaluates to µα.⟨4 | α⟩.

We cannot evaluate the program µα.⟨(µβ.⟨(1, 4) | π1 β⟩, 3) | π2 α⟩
directly to its final value, since one can only evaluate cuts ⟨␣ | ␣⟩,
whereas this program has the form of a µ-abstraction. This can be
resolved by introducing a third construct, namely the toplevel output
Top, which enables us to embed any µ-program in a cut whose second
element is Top. Furthermore, a µ̃-abstraction µ̃x.⟨␣ | ␣⟩ has to be used,
which binds a value to the variable x in the subcomputation ⟨␣ | ␣⟩.

The example program then evaluates in the following way:

⟨µα.⟨(µβ.⟨(1, 4) | π1 β⟩, 3) | π2 α⟩ | Top⟩ (1)
▷ ⟨(µβ.⟨(1, 4) | π1 β⟩, 3) | π2 Top⟩ (2)
▷ ⟨µβ.⟨(1, 4) | π1 β⟩ | µ̃x.⟨(x, 3) | π2 Top⟩⟩ (3)
▷ ⟨(1, 4) | π1(µ̃x.⟨(x, 3) | π2 Top⟩)⟩ (4)
▷ ⟨1 | µ̃x.⟨(x, 3) | π2 Top⟩⟩ (5)
▷ ⟨(1, 3) | π2 Top⟩ (6)
▷ ⟨3 | Top⟩ (7)
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Note that in step (5) we project from (1, 4) to 1 without being in
an evaluation context. The evaluation within an evaluation context
is instead simulated by steps (4) and (6). That is, steps (4) to (6)
correspond to the single evaluation step

π2(π1(1, 4), 3) ▷ π2(1, 3).

This sort of evaluation within a context, which is present in both the
λ-calculus and the λµµ̃-calculus, poses no problem from a theoretical
point of view. However, from a practical point of view, it is very
inefficient to apply this kind of operational semantics since the search
for a redex requires in general to traverse deeply into a term. Moreover,
evaluations of this kind render the implementation of various compiler
optimizations (cf. [22, 15]) more difficult. These difficulties can be
avoided by using certain normal forms, for example, the so-called
administrative normal form (A-normal form or ANF)1 for the λ-
calculus, and the focused normal form for the λµµ̃-calculus.

The ANF of the first example program

π2(π1(1, 4), 3)

is
let x = π1(1, 4) in (let y = π2(x, 3) in y), (A)

whereas the focused normal form of the second program

µα.⟨(µβ.⟨(1, 4) | π1 β⟩, 3) | π2 α⟩

is
µα.⟨µβ.⟨(1, 4) | π1 β⟩ | µ̃x.⟨(x, 3) | π2 α⟩⟩. (F)

Comparing the ANF (A) with the focused normal form (F) makes
the structural similarity between the two normal forms apparent: in
both cases the subcomputation π1(1, 4) (resp. ⟨(1, 4) | π1 β⟩) was lifted
out and then bound to the variable x in the subsequent computation

1While the “A” in “A-normal” originally had no special meaning, it was later
given the meaning of “administrative normal form”, due to the administrative
redexes it introduces.
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π2(x, 3) (resp. ⟨(x, 3) | π2 α⟩). The difference between (A) and (F)
consists in the use of let-constructs in the λ-calculus on the one hand
and the use of µ- and µ̃-constructs in the λµµ̃-calculus on the other
hand.

3 Syntax and type assignment
We present the syntax and type-assignment rules of the λ-calculus and
of the λµµ̃-calculus. The syntax for types is the same in both calculi.

Definition 3.1 (Types). There are three kinds of types τ :

τ ::= X | τ → τ | τ ∧ τ.

That is, we have atomic types X, implication types τ → τ and con-
junction types τ ∧ τ .

3.1 The λ-calculus

We use the standard simply typed λ-calculus with conjunction and
a let-construct (cf., e.g., [20]). Since we only consider a call-by-value
evaluation strategy, the values consist of variables, λ-abstractions and
tuples of values.

Definition 3.2. The syntax Λ of the λ-calculus is defined as follows,
where x are term variables:

1. Terms: e ::= x | λx.e | e e | (e, e) | π1 e | π2 e | let x = e in e.

2. Values: v ::= λx.e | (v, v) | x.

A judgement is a sequent of the form Γ ⊢ e : τ , where Γ is a (possibly
empty) set of declarations {x1 : τ1, . . . , xn : τn}.

Definition 3.3. The type assignment rules of the λ-calculus are:
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VarΓ, x : τ ⊢ x : τ

Γ ⊢ e1 : σ Γ, x : σ ⊢ e2 : τ
LetΓ ⊢ let x = e1 in e2 : τ

Γ, x : σ ⊢ e : τ
AbsΓ ⊢ λx.e : σ → τ

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ
AppΓ ⊢ e1 e2 : τ

Γ ⊢ e1 : σ Γ ⊢ e2 : τ
PairΓ ⊢ (e1, e2) : σ ∧ τ

Γ ⊢ e : τ1 ∧ τ2 ProjΓ ⊢ πi e : τi

Note that rule Proj comprises the two cases where either i = 1 or
i = 2.

There are no structural rules since weakening and contraction
are implicit. Note that the rule Let is derivable since any term
let x = e1 in e2 can be replaced by (λx.e2)e1 without changing the
type in the conclusion of a type assignment. However, let-bindings are
used to make the evaluation order explicit; we will come back to this
point in Section 7.

3.2 Towards the λµµ̃-calculus

The λ-calculus corresponds to natural deduction for the {→, ∧}-
fragment of intuitionistic logic. The λµµ̃-calculus [4] was introduced
as a system that corresponds to the classical sequent calculus, in which
sequents have the form Γ ⊢ ∆ with (possibly empty) sets Γ, ∆ of
formulas on either side of the sequent symbol ⊢.

The usual interpretation of a valid classical sequent Γ ⊢ ∆ can be
expressed as “If all the formulas in Γ are true, then at least one of the
formulas in ∆ is true.” This interpretation has to be refined in order
to understand the correspondence between the λµµ̃-calculus and the
classical sequent calculus. The refinement consists in distinguishing
three variants of the sequent Γ ⊢ ∆:

1. Γ ⊢ [φ], ∆
“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then φ is true.”

2. Γ, [φ] ⊢ ∆
“If all γ ∈ Γ are true and all δ ∈ ∆ are false, then φ is false.”

156



ANF and Focusing for Lambda Calculi

3. Γ ⊢ ∆
“The assumption that all γ ∈ Γ are true and all δ ∈ ∆ are false
is contradictory.”

The formula in square brackets [φ] is called the active formula of the
sequent. There can be at most one active formula in any sequent.

The λµµ̃-calculus has one syntactic category and one judgement
form for each of these three interpretations:

1. The active formula φ in the succedent of a sequent Γ ⊢ [φ], ∆ is
assigned to a term e, and the corresponding judgement form is

Γ ⊢ e : φ | ∆.

Here the symbol | singles out a formula φ for which the proof e
is currently constructed (cf. [4]).

2. The active formula φ in the antecedent of a sequent Γ, [φ] ⊢ ∆ is
assigned to a coterm s, and the corresponding judgement form is

Γ | s : φ ⊢ ∆.

In this case, the symbol | singles out a formula φ for which the
refutation s is currently constructed.

3. A sequent Γ ⊢ ∆ with no active formula is interpreted by a
command c, and the corresponding judgement form is

c : (Γ ⊢ ∆).

This judgement form can be read as follows: “If all γ ∈ Γ are
true and all δ ∈ ∆ are false, then c is a contradiction and a
well-typed command.”

3.3 The λµµ̃-calculus

We consider the syntax of the λµµ̃-calculus. We have to partition
the set of λ-terms into the three syntactic categories of the λµµ̃-
calculus, namely terms, coterms and commands. The basic idea is
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that the introduction forms λx.e and (e, e) (which correspond to the
introduction rules in natural deduction) will remain terms of the
λµµ̃-calculus. On the other hand, the elimination forms πie and e e
(which correspond to the elimination rules in natural deduction) will
become coterms. The terms of the λµµ̃-calculus therefore comprise
the introduction forms λx.t and (t, t) of the λ-calculus, whereas the
coterms comprise the elimination forms πi s and t · s.

There are different ways to understand a coterm t ·s. First, since an
implication φ → τ is false if φ is true and τ is false, one can interpret
t · s as a constructive refutation of an implication φ → τ , consisting of
a proof t of φ and a refutation s of τ . Alternatively, in a computational
context, t · s can be thought of as a stack frame in a call stack with
argument t on top and s being the rest of the stack.

There is only one form of command in the λµµ̃-calculus: the cut
⟨t | s⟩, which combines a term with a coterm. The cut rule can be
interpreted as a primitive way to construct a contradiction, namely by
providing both a proof and a refutation of the same formula.

This leaves us with the two remaining constructs of µ- and µ̃-
abstraction, which, again, can be understood in two different ways.
First, from a logical point of view, the µ-construct encodes a form of
reductio ad absurdum at the level of judgements:

[φ is false]

..
.

contradiction (µ)
φ is true

This explains why the addition of µ-abstraction makes the logic classi-
cal. The µ̃-construct, on the other hand, encodes the logical inference

[φ is true]

..
.

contradiction (µ̃)
φ is false

Both inferences are on the level of judgements and do not involve
logical constants; neither absurdity ⊥ nor negation ¬ are used.
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Second, from an operational point of view we see that µ̃ behaves
very similarly to the let-construct of the λ-calculus. In a command
⟨t | µ̃x.c⟩, the µ̃-abstraction is used to bind the term t in the remaining
computation c. The µ-construct behaves similarly to control operators
like call/cc or C (cf. [2, 17]).

Definition 3.4. The syntax Λµµ̃ of the λµµ̃-calculus is defined as
follows, where x are term variables and α are coterm variables:

1. Terms: t ::= x | λx.t | (t, t) | µα.c.

2. Coterms: s ::= α | t · s | π1 s | π2 s | µ̃x.c.

3. Commands: c ::= ⟨t | s⟩.

4. Values: w ::= λx.t | (w, w) | x.

In addition to term variable contexts Γ ≏ {x1 : τ1, . . . , xn : τn},
we now have to consider also coterm variable contexts ∆ ≏ {α1 :
τ1, . . . , αn : τn}.

Definition 3.5. The type-assignment rules of the λµµ̃-calculus for
the three judgement forms

1. term typing: Γ ⊢ t : τ | ∆,

2. coterm typing: Γ | s : τ ⊢ ∆, and

3. command typing: c : (Γ ⊢ ∆)

are the following:

Term typing Coterm typing

VarxΓ, x : τ ⊢ x : τ | ∆ VarαΓ | α : τ ⊢ α : τ, ∆

Γ, x : σ ⊢ t : τ | ∆
AbsΓ ⊢ λx.t : σ → τ | ∆

Γ ⊢ t : τ | ∆ Γ | s : σ ⊢ ∆
AppΓ | t · s : τ → σ ⊢ ∆
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Γ ⊢ t1 : τ1 | ∆ Γ ⊢ t2 : τ2 | ∆
PairΓ ⊢ (t1, t2) : τ1 ∧ τ2 | ∆

Γ | s : τi ⊢ ∆
ProjΓ | π1 s : τ1 ∧ τ2 ⊢ ∆

c : (Γ ⊢ α : τ, ∆)
MuΓ ⊢ µα.c : τ | ∆

c : (Γ, x : τ ⊢ ∆)
Mu∼Γ | µ̃x.c ⊢ ∆

Command typing

Γ ⊢ t : τ | ∆ Γ | s : τ ⊢ ∆
Cut⟨t | s⟩ : (Γ ⊢ ∆)

4 Translating λ-terms to λµµ̃-terms
We introduce a compositional translation from λ-terms to λµµ̃-terms
and show that it preserves typeability.

Definition 4.1. The translation J−K : Λ → Λµµ̃ is defined as follows:

JxK :≏ x (T1)
Jλx.eK :≏ λx.JeK (T2)

J(e1, e2)K :≏ (Je1K, Je2K) (T3)
Je1 e2K :≏ µα.⟨Je1K | Je2K · α⟩ (T4)
Jπi eK :≏ µα.⟨JeK | πi α⟩ (T5)

Jlet x = e1 in e2K :≏ µα.⟨Je1K | µ̃x.⟨Je2K | α⟩⟩. (T6)

In the last three clauses, the coterm variable α has to be fresh.

Let e be any expression of the λ-calculus typeable with type τ in
a context Γ. Then the translation JeK is a term of the λµµ̃-calculus
that is typeable with the same type τ (in the same context Γ of term
variables and with an empty context of coterm variables).

Theorem 4.2. For all e, τ and Γ: if Γ ⊢ e : τ , then Γ ⊢ JeK : τ | ∅.

Proof. The proof is by induction on the derivation of Γ ⊢ e : τ in
the λ-calculus. The cases for variables, tuples and λ-abstractions are
trivial; we will only discuss the following interesting cases.
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The first case is for projections. Assume that the last rule in
the typing derivation of e is Proj. Then e has the form πi e, whose
translation is defined as µα.⟨JeK | πi α⟩. We replace the λ-calulus
derivation by the following λµµ̃-calculus derivation:

IH
Γ ⊢ JeK : τ1 ∧ τ2 | ∅

Varα∅ | α : τi ⊢ α : τi Proj∅ | πi α : τ1 ∧ τ2 ⊢ α : τi Cut⟨JeK | πi α⟩ : (Γ ⊢ α : τi) MuΓ ⊢ µα.⟨JeK | πi α⟩ : τi | ∅
The second interesting case is for function applications. Assume

that the last rule in the derivation of Γ ⊢ e : τ is App. Then e must
have the form e1 e2, whose translation is defined as µα.⟨Je1K | Je2K · α⟩.
We replace the original derivation by:

IH
Γ ⊢ Je1K : σ → τ | ∅

IH
Γ ⊢ Je2K : σ | ∅ Varα∅ | α : τ ⊢ α : τ

App∅ | Je2K · α : σ → τ ⊢ α : τ
Cut⟨Je1K | Je2K · α⟩ : (Γ ⊢ α : τ)

MuΓ ⊢ µα.⟨Je1K | Je2K · α⟩ : τ | ∅
The last case is for let-bindings. Assume that the last rule in

the derivation of Γ ⊢ e : τ is Let. Then e must have the form
letx = e1 ine2, whose translation is defined as µα.⟨Je1K | µ̃x.⟨Je2K | α⟩⟩.
We replace the original derivation by:

IH
Γ ⊢ Je1K : σ | ∅

IH
Γ, x : σ ⊢ Je2K : τ | ∅ Varα∅ | α : τ ⊢ α : τ

Cut⟨Je2K | α⟩ : (Γ, x : σ ⊢ α : τ)
Mu∼Γ | µ̃x.⟨Je2K | α⟩ ⊢ α : τ

Cut⟨Je1K | µ̃x.⟨Je2K | α⟩⟩ : (Γ ⊢ α : τ)
MuΓ ⊢ µα.⟨Je1K | µ̃x.⟨Je2K | α⟩⟩ : τ | ∅

We will also need the following lemma about the translation of
values:

Lemma 4.3 (Translation preserves values). An expression e is a value
of the λ-calculus if, and only if, JeK is a value of the λµµ̃-calculus.
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Proof. By inspection of the relevant cases.

5 Call-by-value operational semantics
We introduce the evaluation rules for the λ-calculus and for the λµµ̃-
calculus.

5.1 Evaluation in the λ-calculus

For the λ-calculus we first have to define how to reduce immediate
redexes. We do this in Definition 5.1. One can note how all three rules
implement the call-by-value strategy: a function application (λx.e1)e2
can only be reduced if e2 is a value; a projection πi(e1, e2) can only be
reduced if both e1 and e2 are values; and a let-binding let x = e1 in e2
can only be reduced if e1 is a value.

Definition 5.1. The call-by-value evaluation rules for the λ-calculus
are:

(λx.e) v ▷ e[v/x] (β→)
πi(v1, v2) ▷ vi (β∧)

let x = v in e ▷ e[v/x]. (β let)

These rules are not sufficient, since none of the rules are applicable
to the term (π1(v1, v2), v3), for example. We therefore need to extend
them to allow for the reduction of redexes within a term. Furthermore,
since we want evaluations to be deterministic, we must extend Defini-
tion 5.1 in such a way that there is always exactly one redex within a
term which can be evaluated next. For example, in a tuple (e1, e2) we
must specify whether we want to evaluate e1 or e2 first (and similarly
for function applications e1 e2).

We specify deterministic evaluations within a context by using
the concept of evaluation contexts, introduced in [13]. An evaluation
context E[−] is a term with one argument place marked by the sym-
bol □, which indicates where we evaluate the next immediate redex.
Deterministic evaluation is ensured by a unique decomposition lemma:
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Every term e that is not a value can be uniquely decom-
posed into an evaluation context E[−] and an immediate
redex e′ such that e ≏ E[e′].

Definition 5.2. The syntax of evaluation contexts E[−] is defined as
follows:

E[−] ::= □ | E e | v E | (E, e) | (v, E) | let x = E in e | πi E.

Evaluation contexts now allow us to properly define evaluation
within a context:

e ▷ e′ =⇒ E[e] ▷ E[e′]. (Congruence)

5.2 Evaluation in the λµµ̃-calculus

For the Λµµ̃-calculus, we again first introduce the rules for evaluating
immediate redexes. The choice of the call-by-value evaluation strategy
is manifested in the following ways: first, a redex ⟨λx.t | e · s⟩ can
only be reduced if the function argument e is a value; second, a redex
⟨(e1, e2) | πi s⟩ can only be reduced if both e1 and e2 are values; third,
the critical pair ⟨µα.c1 | µ̃x.c2⟩, which could a priori be reduced to
either c1[µ̃x.c2/α] or c2[µα.c2/x], is resolved by requiring in the rule
(µ̃) that a redex ⟨e | µ̃x.c⟩ can only be reduced if e is a value.

Definition 5.3. The call-by-value evaluation rules for the λµµ̃-calculus
are:

⟨λx.t | v · s⟩ ▷ ⟨t[v/x] | s⟩ (β→)
⟨(v1, v2) | πi s⟩ ▷ ⟨vi | s⟩ (β∧)

⟨µα.c | s⟩ ▷ c[s/α] (µ)
⟨v | µ̃x.c⟩ ▷ c[v/x]. (µ̃)

These rules are, again, not complete. For example, there is no
rule applicable to the cut ⟨(µα.c, v) | πi s⟩, since the first element
of the tuple is not yet a value. Instead of the evaluation contexts
E[−], we will add focusing contexts F [−] and dynamic focusing rules
ς. The focusing contexts play the role of the evaluation contexts for
the λ-calculus, while the ς-rules correspond to the rule (Congruence).
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Definition 5.4. The syntax of focusing contexts F [−] is defined as
follows:

F [−] ::= (□, t) | (w,□) | □ · s.

Definition 5.5. We extend the evaluation rules of Definition 5.3 by
the following dynamic focusing rules:

⟨F [t] | s⟩ ▷ ⟨t | µ̃x.⟨F [x] | s⟩⟩ (if t is not a value) (ς1)
⟨v | F [t]⟩ ▷ ⟨t | µ̃x.⟨v | F [x]⟩⟩ (if t is not a value). (ς2)

6 The ANF-transformation
While the evaluation rules presented in Section 5 are sufficient for
purely theoretical investigations into the reduction theory of the λ-
calculus and the λµµ̃-calculus, they are less ideal for other purposes.
In particular, they are not ideal for generating efficient code that can
be run on a real computer. For example, consider the congruence
rule in Definition 5.1. Its operational meaning implies that we have
to search for the next redex in the term, and this redex can appear
nested at an arbitrary depth within the term. If we implemented this
search procedure naively for each reduction step, then the resulting
program would be very inefficient indeed.

Various methods to efficiently evaluate terms of the λ-calculus have
been proposed, for both the call-by-value and call-by-name evaluation
orders. One of these methods is the compilation to abstract machines2,
like the SEK, SECD or Krivine machine, which provide much more
efficient means of evaluating λ-terms. The evaluation of commands of
the λµµ̃-calculus is, in fact, very similar to the evaluation of machine
states of an abstract machine. Another class of methods for compiling
terms of the ordinary λ-calculus is based on a translation into the
so-called continuation-passing style (CPS), which was introduced in a
seminal paper by Reynolds [21]. These translations have been studied

2For an introduction to the theory of abstract machines, cf. [14].
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both in logic, where they correspond to double negation translations
(cf. [23]), and in the theory of optimizing compilers (cf. [1]).

One important variation of these CPS translations is the so-called
ANF-transformation, which was introduced by Sabry and Felleisen
[22] and later elaborated by Flanagan et al. [15]. We first introduce
the syntax of the administrative normal form in Definition 6.1. The
ANF-transformation itself is introduced in Definitions 6.3 and 6.7.

Definition 6.1. The syntax of the administrative normal form ΛANF

is defined as follows:

1. Values: v ::= λx.e | (v, v) | x.

2. Computations: c ::= v | v v | π1 v | π2 v.

3. Terms: e ::= c | let x = c in e.

The administrative normal form has two characteristic properties.
The first is reflected in the syntax of computations c: a projection πi

can only be applied to a value, and, similarly, a function application
v1 v2 can only be formed between two values. This excludes terms
like π1(x, π2(y, z)) or (π1(f, g))(π2(x, y)). The second property is
reflected in the syntax of terms e: a let-expression let x = c in e
can only bind the result of a computation c to a variable x. Let-
expressions cannot bind other let-expressions, that is, expressions like
let x = (let y = e1 in e2) in e3 are excluded by the second property.

Usual presentations of the ANF-transformation enforce both prop-
erties in a single transformation from Λ to ΛANF. Instead, we present
the transformation to administrative normal form as a two-part trans-
formation:

Λ ΛQ ΛANF.A L

The first part consists of a function A : Λ → ΛQ that enforces only the
first of the two characteristic properties described above. A second
transformation L : ΛQ → ΛANF then enforces the second property.
By presenting the ANF-transformation in this way, we can make the
relation to focusing clearer. In Section 8 we will show that the first part
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of this transformation corresponds to focusing, whereas the second
part of the transformation can be simulated by µ-reductions in Λµµ̃.

Definition 6.2. The syntax of the intermediate normal form ΛQ is
defined as follows:

1. Values: v ::= λx.e | (v, v) | x.

2. Terms: e ::= v | let x = e in e | e v | π1 e | π2 e.

Note that Definition 6.2 only guarantees that pairs (v, v) consist of
values, and that functions are always applied to values in a function
application e v. The two transformations A and L are introduced in
turn.

6.1 From Λ to ΛQ

Recall that the first property that we want to enforce is that pairs
consist of syntactic values, and that in function applications the func-
tion argument is already a value. The transformation A defined next
guarantees the first property by binding any non-value argument which
would violate this property to a fresh variable in a let-binding. For
example, the term π1(π2(x, y)) is transformed by generating a fresh
variable z, and binding the computation π2(x, y) to z in the computa-
tion π1 z: A(π1(π2(x, y))) :≏ let z = π2(x, y) in π1 z.

Definition 6.3. The transformation A : Λ → ΛQ is defined as follows:

A(x) :≏ x (A1)
A(λx.e) :≏ λx.A(e) (A2)

A(let x = e1 in e2) :≏ let x = A(e1) in A(e2) (A3)
A(πi e) :≏ πi(A(e)) (A4)

A((v1, v2)) :≏ (A(v1), A(v2)) (A5)
A((v1, e2)) :≏ let x = A(e2) in (A(v1), x) (A6)
A((e1, v2)) :≏ let x = A(e1) in (x, v2) (A7)
A((e1, e2)) :≏ let x = A(e1) in (let y = A(e2) in (x, y)) (A8)
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A(e1 v2) :≏ A(e1) A(v2) (A9)
A(e1 e2) :≏ let x = A(e2) in A(e1) x. (A10)

Remark 6.4. Among the clauses of Definition 6.3, the clauses (A5)
to (A7) are subsumed by (A8). Similarly, the clause (A9) is subsumed
by (A10). This redundancy is an optimization which guarantees that
the transformation behaves as the identity function on terms that are
already in ΛQ.

Example 6.5. The result of the transformation

A(π1(π1(π1(x1, x2), x3), x4))

is the term

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4),

where z1 and z2 are variables that are generated during the transfor-
mation. This example shows that the result of A is, in general, not
yet in ΛANF.

6.2 From ΛQ to ΛANF

The second property which we want to enforce is that in a let-construct
let x = c in e the computation bound to the variable x must be of
a restricted form. This will be guaranteed by the transformation L,
given by Definition 6.7. In order to define this transformation, we need
to define a meta-level operation @ that operates on continuations k
and values v from ΛANF:

Definition 6.6. Continuations are defined as follows:

k ::= id | λv.let x = πi v in e | λv.let x = v v in e | λv.let x = v in e,

where e and v range over expressions and values from ΛANF.
The meta-level operation @ takes a continuation k and a value

v from ΛANF and returns an expression of ΛANF. It is evaluated as
follows:

id @ v :≏ v (@1)
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λv.let x = πi v in e @ v :≏ let x = πi v in e (@2)
λv.let x = v v2 in e @ v1 :≏ let x = v1 v2 in e (@3)

λv.let x = v in e @ v :≏ let x = v in e. (@4)

Using this technical tool we can now define the transformation L.

Definition 6.7. The transformation L : ΛQ → ΛANF is given as
follows:

Values
L(x) :≏ x (L1)

L(λx.e) :≏ λx.Lid(e) (L2)
L((v1, v2)) :≏ (L(v1), L(v2)) (L3)

Terms
L(e) :≏ Lid(e) (L4)

Lk(e1 v2) :≏ Lλv.let x=v L(v2) in k @ x(e1) (L5)

Lk(πi e) :≏ Lλv.let x=πi v in k @ x(e) (L6)
Lk(v) :≏ k @ L(v) (L7)

Lk(let x = e1 in e2) :≏ Lλv.let x=v in Lk(e2)(e1). (L8)

Example 6.8. As an example of the transformation L, consider the
term (from Example 6.5)

let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4),

which can be transformed into ΛANF as follows:

Lid(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4))

= Lλv1.let z1=v1 in Lid(π1(z1,x4))(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv1.let z1=v1 in π1(z1,x4)(let z2 = π1(x1, x2) in π1(z2, x3))

= Lλv2.let z2=v2 in L
λv1.let z1=v1 in π1(z1,x4)(π1(z2,x3))(π1(x1, x2))
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= Lλv2.let z2=v2 in (let z1=π1(z2,x3) in π1(z1,x4))(π1(x1, x2))

= let z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

The term was transformed into ΛANF by (in a certain way) moving
the let-binding of z2 to the outside of the let-binding of z1.

7 The focusing transformation
In distinction to the dynamic focusing rules of Definition 5.5, we now
consider only static focusing. We first introduce the focused subsyntax
ΛQ

µµ̃ as a subset of Λµµ̃ (Definition 3.4).3

Definition 7.1. The focused subsyntax ΛQ
µµ̃ for the call-by-value

evaluation strategy is defined as follows:

1. Terms: t ::= w | µα.c.

2. Coterms: s ::= α | w · s | π1 s | π2 s | µ̃x.c.

3. Commands: c ::= ⟨t | s⟩.

4. Values: w ::= λx.t | (w, w) | x.

The focused subsyntax ΛQ
µµ̃ differs in two respects from Λµµ̃. First,

terms t must now either be values w or abstractions µα.c. This excludes
terms like (µα.c, t) and (t, µα.c) from the subsyntax ΛQ

µµ̃, which are part
of the syntax of terms of Definition 3.4. This corresponds precisely to
the restriction that constructors can only be applied to values. Second,
the syntax of coterms has been changed by requiring the function
argument in a coterm t · s to be a value; that is, we require w · s. This
corresponds to the requirement that functions can syntactically only
be applied to values.

Lemma 7.2. For any term e ∈ ΛQ, JeK ∈ ΛQ
µµ̃.

Proof. By induction on e.
3ΛQ

µµ̃ corresponds to the subsyntax LKQ defined in [4].

169



Binder and Piecha

1. Case e ≏ letx = e1 ine2: the translation of e is µα.⟨Je1K | µ̃x.⟨Je2K |
α⟩⟩. Using the induction hypothesis for e1 and e2, this term is in
the subsyntax ΛQ

µµ̃.

2. If e is of the form e1v2, then the translation of e is µα.⟨Je1K | Jv2K·α⟩.
By Lemma 4.3, Jv2K is a value, and by the induction hypothesis
both Je1K and Jv2K are in the subsyntax ΛQ

µµ̃, so the resulting term
is in the subsyntax ΛQ

µµ̃.

3. If e is of the form πi e1, then Jπi e1K is µα.⟨Je1K | πi α⟩. Using the
induction hypothesis for e1, Je1K is in ΛQ

µµ̃. Therefore Jπi e1K is also
in ΛQ

µµ̃.

4. If e ≏ v, then we have to distinguish the following cases:

(a) If v ≏ x, then JxK ≏ x, which is in ΛQ
µµ̃.

(b) If v ≏ (v1, v2), then J(v1, v2)K ≏ (Jv1K, Jv2K). By Lemma 4.3,
both JviK are values, and by the induction hypothesis they are
in the subsyntax ΛQ

µµ̃. Therefore JvK is also in ΛQ
µµ̃.

(c) If v ≏ λx.e, then Jλx.eK ≏ λx.JeK. By the induction hypothesis
JeK is in ΛQ

µµ̃, therefore JvK is also in ΛQ
µµ̃.

The subsyntax does not restrict the set of derivable sequents, since
any term, coterm or command in the unrestricted syntax can be
translated into the focused subsyntax ΛQ

µµ̃ by using the following static
focusing transformation.

Definition 7.3. The static focusing transformation F : Λµµ̃ → ΛQ
µµ̃ is

defined as follows:

Terms
F(x) :≏ x (F1)

F(µα.c) :≏ µα.F(c) (F2)
F(λx.e) :≏ λx.F(e) (F3)

F((w1, w2)) :≏ (F(w1), F(w2)) (F4)
F((w1, t2)) :≏ µα.⟨F(t2) | µ̃x.⟨(F(w1), x) | α⟩⟩ (F5)
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F((t1, w2)) :≏ µα.⟨F(t1) | µ̃x.⟨(x, F(w2)) | α⟩⟩ (F6)
F((t1, t2)) :≏ µα.⟨F(t1) | µ̃x.⟨µβ.⟨F(t2) | µ̃y.⟨(x, y) |β⟩⟩ |α⟩⟩ (F7)

Coterms
F(α) :≏ α (F8)

F(µ̃x.c) :≏ µ̃x.F(c) (F9)
F(πi s) :≏ πi F(s) (F10)

F(w · s) :≏ F(w) · F(s) (F11)
F(t · s) :≏ µ̃x.⟨F(t) | µ̃y.⟨x | y · F(s)⟩⟩ (F12)

Commands
F(⟨t | s⟩) :≏ ⟨F(t) | F(s)⟩ (F13)

F(⟨t1 | t2 · s⟩) :≏ ⟨F(t2) | µ̃x.⟨µα.⟨F(t1) | x · α⟩ | F(s)⟩⟩. (F14)

In general, when several clauses are applicable, the most specific
clause should be applied. The clauses (F4), (F5) and (F6) are sub-
sumed by the more general clause (F7), and (F11) is subsumed by the
clause (F12). The presence of these additional clauses guarantees that
F behaves as the identity function when it is applied to a term, coterm
or command that is already in the subsyntax ΛQ

µµ̃. With these opti-
mizations, our definition corresponds to the one given in [6, Fig. 18],
with the exception of the clause (F14). The additional clause (F14)
is necessary to guarantee that the functions J−K, A and F commute
up to α-equivalence, as shown by Theorem 8.1. Without the clause
(F14), Theorem 8.1 has to be slightly weakened to Theorem 8.2.

Lemma 7.4 (F preserves typeability). For all terms t, coterms s and
commands c:

1. If Γ ⊢ t : τ | ∆, then Γ ⊢ F(t) : τ | ∆.

2. If Γ | s : τ ⊢ ∆, then Γ | F(s) : τ ⊢ ∆.

3. If c : (Γ ⊢ ∆), then F(c) : (Γ ⊢ ∆).

Proof. By simultaneous structural induction on t, s and c, respectively.
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8 The main result

As explained in Section 6, the ANF-transformation can be split into a
purely local transformation A and a global transformation L. We show
what these two parts correspond to in the λµµ̃-calculus, and prove
how the ANF-transformation on λ-terms relates to static focusing of
λµµ̃-terms.

8.1 The correspondence between A and F

Theorem 8.1 (Focusing reflects the ANF-transformation). For all
λ-terms e, we have F(JeK) ≏ JA(e)K.

Proof. See Appendix A.

If we omit the focusing rule (F14) from Definition 7.3, then The-
orem 8.1 no longer holds up to syntactic equality (≏). Instead, the
following weaker result (Theorem 8.2) holds for ηµ-equality ≡, which
includes η-equivalence

µ̃x.⟨x | s⟩ ≡η s (for x not free in s).

Theorem 8.2 (Focusing reflects the ANF-transformation; case ≡).
For all λ-terms e, we have F(JeK) ≡ JA(e)K.

Proof. See Appendix A.

8.2 Simulating L in the λµµ̃-calculus

Our main contention in this section is that a special purpose transfor-
mation like L is not necessary in Λµµ̃. In order to transform from ΛQ

µµ̃

to ΛANF
µµ̃ we only have to apply µ-reductions and µ̃-expansions. More

concretely, the effect that L has on a term, namely to globally reorga-
nize the ordering of let-bindings, can be simulated by simply reducing
µ-redexes in the image of the translation. In order to illustrate this
central point, let us come back to Examples 6.5 and 6.8. Recall that
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we showed in Example 6.8 that L has the effect of changing the order
of the two let-bindings of z1 and z2:

L(let z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4))
≏ let z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4)).

This can be simulated as follows:

Jlet z1 = (let z2 = π1(x1, x2) in π1(z2, x3)) in π1(z1, x4)K

≏ µα.⟨µβ.⟨Jπ1(x1, x2)K | µ̃z2.⟨Jπ1(z2, x3)K | β⟩⟩ | µ̃z1.⟨Jπ1(z1, x4)K |α⟩⟩

▷ µα.⟨Jπ1(x1, x2)K | µ̃z2.⟨Jπ1(z2, x3)K | µ̃z1.⟨Jπ1(z1, x4)K | α⟩⟩⟩

◁ µα.⟨Jπ1(x1, x2)K | µ̃z2.⟨µβ.⟨Jπ1(z2, x3)K | µ̃z1.⟨Jπ1(z1, x4)K | β⟩⟩ | α⟩⟩

≏ Jlet z2 = π1(x1, x2) in (let z1 = π1(z2, x3) in π1(z1, x4))K.

Next, we define the subsyntax ΛANF
µµ̃ , which differs from ΛQ

µµ̃ (Defi-
nition 7.1) in two aspects. First, commands are now required to consist
of a value and a coterm instead of a term and a coterm, i.e., they do
not contain any µ-redexes. Second, the coterms for projections and
function applications are required to give an explicit name to the value
they bind in the coterm they contain, i.e., they are µ̃-expanded.

Definition 8.3. The focused subsyntax ΛANF
µµ̃ for the call-by-value

strategy is defined as follows:

1. Terms: t ::= w | µα.c.

2. Coterms: s ::= α | w · µ̃x.c | π1 µ̃x.c | π2 µ̃x.c | µ̃x.c

3. Commands: c ::= ⟨w | s⟩.

4. Values: w ::= λx.t | (w, w) | x.

We have to refine Definition 4.1.
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Definition 8.4. The refined translation J−K∗ : ΛANF → ΛANF
µµ̃ is

defined as the first function in the following set of mutually defined
recursive functions:

First function (on expressions)

∗JeK∗ :≏ µα.JeK∗
α (T ∗

1 )

Second function (on expressions)

∗Jlet x = c in eK∗
s :≏ JcK∗

µ̃x.JeK∗
s

(T ∗
2 )

Jv1 v2K∗
s :≏ ⟨Jv1K∗ | Jv2K∗ · s⟩ (T ∗

3 )

Jπi vK∗
s :≏ ⟨JvK∗ | πi s⟩ (T ∗

4 )

JvK∗
s :≏ ⟨JvK∗ | s⟩ (T ∗

5 )

Third function (on values)

∗JxK∗ :≏ x (T ∗
6 )

J(v1, v2)K∗ :≏ (Jv1K∗, Jv2K∗) (T ∗
7 )

Jλx.eK∗ :≏ λx.JeK∗. (T ∗
8 )

Lemma 8.5. For all terms e ∈ ΛANF, JeK∗ ∈ ΛANF
µµ̃ .

Proof. By induction on terms e.

Theorem 8.6. For all terms e ∈ ΛQ, JL(e)K∗ ≡µ JeK.

Proof. See Appendix A.

9 Summary and outlook

We can summarize our results in the following diagram, where both
the lower and the upper part are commutative.
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Λ (Def. 3.2) Λµµ̃ (Def. 3.4)

(Theorem 8.1)

ΛQ (Def. 6.2) ΛQ
µµ̃ (Def. 7.1)

(Theorem 8.6)

ΛANF (Def. 6.1) ΛANF
µµ̃ (Def. 8.3)

J−K

A (Def. 6.3) F (Def. 7.3)

J−K

L (Def. 6.7) µ-reduction

J−K∗

These results are embedded in a wider conceptual context. By
the Curry-Howard correspondence, natural deduction for intuitionistic
logic (more precisely, the {→, ∧}-fragment) corresponds to the λ-
calculus on the one side, and the sequent calculus for classical logic
corresponds to the λµµ̃-calculus on the other side. Our results thus
establish a bridge between natural deduction for intuitionistic logic
with its computational interpretation on the one side and the classical
sequent calculus with its computational interpretation on the other
side.

We would like to extend this work in two directions. The first
concerns the asymmetry of the translation J−K, which is only a mapping
from Λ to Λµµ̃, but not vice versa. In order to provide a translation
in the opposite direction, from Λµµ̃ to Λ, we will have to extend the
λ-calculus with control operators. The seond extension concerns the
treatment of evaluation orders other than call-by-value. While the
treatment of call-by-name seems to be straightforward, the study of
call-by-need (cf. [3, 19]) and its dual call-by-co-need (cf. [5]) in both
the λ-calculus and the λµµ̃-calculus seems to be promising.
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A Proofs of the main theorems
Theorem 8.1 (Focusing reflects the ANF-transformation). For all
λ-terms e, we have F(JeK) ≏ JA(e)K.

Proof. By induction on the structure of e.

1. Case e ≏ x: F(JxK) ≏ x ≏ JA(x)K.

2. Case e ≏ λx.e1:

F(Jλx.e1K) ≏ λx.F(Je1K)
IH
≏ λx.JA(e1)K ≏ JA(λx.e1)K.

3. Case e ≏ πi e1:

F(Jπi e1K) ≏ F(µα.⟨Je1K | πi α⟩) (T5)
≏ µα.⟨F(Je1K) | πi α⟩ (F2, F13, F10, F8)
≏ µα.⟨JA(e1)K | πi α⟩ (IH)
≏ Jπi A(e1)K (T5)
≏ JA(πi e1)K. (A4)

4. In case e ≏ e1 e2, we have to distinguish two subcases:

(i) Subcase e ≏ e1 v2:

F(Je1 v2K) ≏ F(µα.⟨Je1K | Jv2K · α⟩) (T4)
≏ µα.⟨F(Je1K) | F(Jv2K) · α⟩ (F2, F13, F11, F8)
≏ µα.⟨JA(e1)K | JA(v2)K · α⟩ (IH)
≏ JA(e1) A(v2)K (T4)
≏ JA(e1 v2)K. (A9)

(ii) Subcase e ≏ e1 e2:

F(J(e1 e2)K) ≏ F(µα.⟨Je1K | Je2K · α⟩) (T4)
≏ µα.⟨F(Je2K) | µ̃x.⟨µβ.⟨F(Je1K) | x · β⟩ | α⟩⟩

(F14, F2, F8)
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≏ µα.⟨JA(e2)K | µ̃x.⟨µβ.⟨JA(e1)K |x · β⟩ |α⟩⟩ (IH)
≏ Jlet x = A(e2) in A(e1) xK (T4, T6)
≏ JA(e1 e2)K. (A10)

5. In case e ≏ (e1, e2), we have to distinguish four subcases:

(i) Subcase e ≏ (v1, v2):

F(J(v1, v2)K) ≏ F(Jv1K, Jv2K) (T3)
≏ (F(Jv1K), F(Jv2K)) (F4)
≏ (JA(v1)K, JA(v2)K) (IH)
≏ J(A(v1), A(v2))K (T3)
≏ JA((v1, v2))K. (A5)

(ii) Subcase e ≏ (v1, e2):

F(J(v1, e2)K) ≏ F((Jv1K, Je2K)) (T3)
≏ µα.⟨F(Je2K) | µ̃x.⟨(F(Jv1K), x) | α⟩⟩ (F5)
≏ µα.⟨JA(e2)K | µ̃x.⟨(JA(v1)K, x) | α⟩⟩ (IH)
≏ Jlet x = A(e2) in (A(v1), x)K (T3, T6)
≏ JA((v1, e2))K. (A6)

(iii) Subcase e ≏ (e1, v2):

F(J(e1, v2)K) ≏ F((Je1K, Jv2K)) (T3)
≏ µα.⟨F(Je1K) | µ̃x.⟨(x, F(Jv2K)) | α⟩⟩ (F6)
≏ µα.⟨JA(e1)K | µ̃x.⟨(x, JA(v2)K) | α⟩⟩ (IH)
≏ Jlet x = A(e1) in (x, A(v2))K (T3, T6)
≏ JA((e1, v2))K. (A7)

(iv) Subcase e ≏ (e1, e2):

F(J(e1, e2)K)
≏ F((Je1K, Je2K)) (T3)
≏ µα.⟨F(Je1K) | µ̃x.⟨µβ.⟨F(Je2K) | µ̃y.⟨(x, y) | β⟩⟩ | α⟩⟩ (F7)
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≏ µα.⟨JA(e1)K | µ̃x.⟨µβ.⟨JA(e2)K | µ̃y.⟨(x, y) | β⟩⟩ | α⟩⟩ (IH)
≏ Jlet x = A(e1) in (let y = A(e2) in (x, y))K (T3, T6)
≏ JA((e1, e2))K. (A8)

6. In case e ≏ let x = e1 in e2 we have:

F(Jlet x = e1 in e2K) ≏ F(µα.⟨Je1K | µ̃x.⟨Je2K | α⟩⟩) (T6)
≏ µα.⟨F(Je1K) | µ̃x.⟨F(Je2K) | α⟩⟩

(F2, F13, F9, F8)
≏ µα.⟨JA(e1)K | µ̃x.⟨JA(e2)K | α⟩⟩ (IH)
≏ Jlet x = A(e1) in A(e2)K (T6)
≏ JA(let x = e1 in e2)K. (A3)

Theorem 8.2 (Focusing reflects the ANF-transformation; case ≡).
For all λ-terms e, we have F(JeK) ≡ JA(e)K.
Proof. We only have to modify subcase 4(ii) in the proof of The-
orem 8.1. The modified proof is as follows (evaluated redexes are
underlined).
4. In case e ≏ e1 e2, we have to distinguish two subcases:

(i) Subcase e ≏ e1 v2: identical to the proof of Theorem 8.1.
(ii) Subcase e ≏ e1 e2:

F(J(e1 e2)K) ≏ F(µα.⟨Je1K | Je2K · α⟩) (T4)
≏ µα.⟨F(Je1K) | µ̃y.⟨F(Je2K) | µ̃x.⟨y | x · α⟩⟩⟩

(F2,F13, F9, F1, F8, F11)
▷ µα.⟨F(Je2K) | µ̃x.⟨F(Je1K) | x · α⟩⟩
IH≡ µα.⟨JA(e2)K | µ̃x.⟨JA(e1)K | x · α⟩⟩
◁ µα.⟨JA(e2)K | µ̃x.⟨µβ.⟨JA(e1)K | x · β⟩ | α⟩⟩
≏ Jlet x = A(e2) in A(e1) xK (T4 + T6)
≏ JA(e1 e2)K. (A10)

181



Binder and Piecha

In order to prove that for all e ∈ ΛQ, JL(e)K∗ =µ JeK (Theorem 8.6),
we introduce a transformation M that simulates the effect of applying
L on a term from ΛQ on its translation in ΛQ

µµ̃.

Definition A.1. The µ-normalization operation M : ΛQ
µµ̃ → ΛANF

µµ̃ is
defined by the following clauses:

Values
M(x) :≏ x (M1)

M(λx.e) :≏ λx.M(e) (M2)
M((w1, w2)) :≏ (M(w1), M(w2)) (M3)

Terms
M(e) :≏ µα.Mα(e) (M4)

Ms(w) :≏ ⟨M(w) | s⟩ (M5)
Ms(µα.c) :≏ M(c[s/α]) (M6)

Coterms
M(α) :≏ α (M7)

M(πi s) :≏ πi µ̃x.⟨x | s⟩ (M8)
M(w · s) :≏ w · µ̃x.⟨x | s⟩ (M9)

M(µ̃x.⟨e | s⟩) :≏ µ̃x.Ms(e) (M10)

Computations
M(⟨e | s⟩) :≏ MM(s)(e). (M11)

Definition A.2. We define the operation ␣; ␣ which takes a contin-
uation k (cf. Definition 6.6) and a coterm s, and returns a coterm
k; s:

id; s :≏ s (C1)
λv.let x = πi v in e; s :≏ πi µ̃x.JeK∗

s (C2)
λv.let x = v v′ in e; s :≏ v′ · µ̃x.JeK∗

s (C3)
λv.let x = v in e; s :≏ µ̃x.JvK∗

s. (C4)
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Lemma A.3. We have Jk @ vK∗
s ≏ ⟨JvK∗ | k; s⟩.

Proof. By case analysis on k:

1. Case k ≏ id:

Jid @ vK∗
s ≏ JvK∗

s (@1)
≏ ⟨JvK∗ | s⟩ (T ∗

5 )
≏ ⟨JvK∗ | id; s⟩. (C1)

2. Case k ≏ λv.let x = πi v in e:

Jλv.let x = πi v in e @ vK∗
s ≏ Jlet x = πi v in eK∗

s (@2)
≏ Jπi vK∗

µ̃x.JeK∗
s

(T ∗
2 )

≏ ⟨JvK∗ | πi µ̃x.JeK∗
s⟩ (T ∗

4 )
≏ ⟨JvK∗ | λv.let x = πi v in e; s⟩. (C2)

3. Case k ≏ λv.let x = v v′ in e:

Jλv.let x = v v′ in e @ vK∗
s ≏ Jlet x = v v′ in eK∗

s (@3)
≏ Jv v′K∗

µ̃x.JeK∗
s

(T ∗
2 )

≏ ⟨JvK∗ | Jv′K∗ · µ̃x.JeK∗
s⟩ (T ∗

3 )
≏ ⟨JvK∗ | λv.let x = v v′ in e; s⟩. (C3)

4. Case k ≏ λv.let x = v in e:

Jλv.let x = v in e @ vK∗
s ≏ Jlet x = v in eK∗

s (@4)
≏ JvK∗

µ̃x.JeK∗
s

(T ∗
2 )

≏ ⟨JvK∗ | µ̃x.JeK∗
s⟩ (T ∗

5 )
≏ ⟨JvK∗ | λv.let x = v in e; s⟩. (C4)

The µ-normalization operation M corresponds precisely to the
transformation L:
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Lemma A.4. The following statements hold:

1. For all values v ∈ ΛQ: JL(v)K∗ ≏ M(JvK).

2. For all expressions e ∈ ΛQ: JL(e)K∗ ≏ M(JeK).

3. For all e ∈ ΛQ, continuations k and coterms s:

JLk(e)K∗
s ≏ Mk;s(JeK).

Proof. We prove these three statements by simultaneous induction.
For the first statement, Lemma A.4(1), we use induction on v:

1. Case v ≏ x:

JL(x)K∗ ≏ JxK∗ (L1)
≏ x (T ∗

6 )
≏ M(x) (M1)
≏ M(JxK). (T1)

2. Case v ≏ (v1, v2):

JL((v1, v2))K∗ ≏ J(L(v1), L(v2))K∗ (L3)
≏ (JL(v1)K∗, JL(v2)K∗) (T ∗

7 )
≏ (M(Jv1K), M(Jv2K)) (IH for Lemma A.4(1))
≏ M((Jv1K, Jv2K)) (M3)
≏ M(J(v1, v2)K). (T3)

3. Case v ≏ λx.e:

JL(λx.e)K∗ ≏ Jλx.L(e)K∗ (L2)
≏ λx.JL(e)K∗ (T ∗

8 )
≏ λx.M(JeK) (IH for Lemma A.4(2))
≏ M(λx.JeK) (M2)
≏ M(Jλx.eK). (T2)
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For Lemma A.4(2), we show the following:

JL(e)K∗ ≏ µα.JL(e)K∗
α (T ∗

1 )
≏ µα.JLid(e)K∗

α (L4)
≏ µα.Mid;α(JeK) (IH for Lemma A.4(3))
≏ µα.Mα(JeK) (C1)
≏ M(JeK). (M4)

For Lemma A.4(3), we perform induction on e:

1. Case e ≏ v:

JLk(v)K∗
s ≏ Jk @ L(v)K∗

s (L7)
≏ ⟨JL(v)K∗ | k; s⟩ (Lemma A.3)
≏ ⟨M(JvK) | k; s⟩ (IH for 1)
≏ Mk;s(JvK). (M5)

2. Case e ≏ let x = e1 in e2:

JLk(let x = e1 in e2)K∗
s ≏ JLλv.let x=v in Lk(e2)(e1)K∗

s (L8)

≏ Mλv.let x=v in Lk(e2);s(Je1K) (IH)

≏ Mµ̃x.JLk(e2)K∗
s
(Je1K) (C4)

≏ Mµ̃x.Mk;s(Je2K)(Je1K) (IH)
≏ MM(µ̃x.⟨Je2K|k;s⟩)(Je1K) (M10)
≏ M(⟨Je1K | µ̃x.⟨Je2K | k; s⟩⟩) (M11)
≏ Mk;s(µα.⟨Je1K | µ̃x.⟨Je2K | α⟩⟩) (M6)
≏ Mk;s(Jlet x = e1 in e2K). (T6)

3. Case e ≏ e v:

JLk(e v)K∗
s ≏ JLλv′.let x=v′ v in k @ x(e)K∗

s (L5)
≏ Mλv′.let x=v′ v in k @ x;s(JeK) (IH)

≏ MJvK·µ̃x.Jk @ xK∗
s
(JeK) (C3)

185



Binder and Piecha

≏ MJvK·µ̃x.⟨x|s⟩(JeK) (Lemma A.3)
≏ MM(JvK·k;s)(JeK) (M9)
≏ M(⟨JeK | JvK · k; s⟩) (M11)
≏ Mk;s(µα.⟨JeK | JvK · α⟩) (M6)
≏ Mk;s(Je vK). (T4)

4. Case e ≏ πi e:

JLk(πi e)K∗
s ≏ JLλv.let x=πi v in k @ x(e)K∗

s (L6)
≏ Mλv.let x=πi v in k @ x;s(JeK) (IH)
≏ Mπi µ̃x.Jk @ xK∗

s
(JeK) (C2)

≏ Mπi µ̃x.⟨x|k;s⟩(JeK) (Lemma A.3)
≏ MM(πi (k;s))(JeK) (M8)
≏ M(⟨JeK | πi (k; s)⟩) (M11)
≏ Mk;s(µα.⟨JeK | πi α⟩) (M6)
≏ Mk;s(Jπi eK). (T5)

The effect of the application of M can be achieved by applying
µ-reductions in commands and η-expansions in coterms:

Lemma A.5. For all terms, coterms and commands t ∈ ΛQ
µµ̃ we have

t ≡µ M(t).

Proof. By inspection of the relevant clauses in Definition A.1. The
combination of the clauses (M6) and (M11) corresponds to the re-
duction of µ-redexes. Coterms are η-expanded in the clauses (M8)
and (M9).

Theorem 8.6. For all terms e ∈ ΛQ, JL(e)K∗ ≡µ JeK.

Proof. By combining Lemmas A.4 and A.5.
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