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The goal of the experiment “Digital Electronics for X-ray and Gamma Detectors” is to become fa-
miliar with modern electronics development in the field of X-ray and gamma astronomy.

In this experiment, electronics for operating and reading out a phoswich detector are to be designed
using the hardware description language VHDL. Typical steps of a hardware synthesis are: sketch-
ing the necessary components and modules, programming and integration of the individual control
and analysis processes, simulation of the design on the computer, synthesis process for a XILINX
Spartan-3 FPGA and commissioning of the hardware as interface between the detector and a data
acquisition system (PC). The detector is then calibrated and its energy resolution determined. Fi-
nally, a collimator is used to turn the detector into a gamma-ray telescope and the achievable angular
resolution is measured.

In the introductory part of this guide, we have included short tasks to help you understand the
instructions. Tasks 1-7 should be prepared or solved by you before the day of the experiment. If
you have problems solving the tasks, please bring at least your solution attempts along, we will then
discuss the tasks together.

Have a great time experimenting:
Jörg Bayer, Henry Gebhardt, Thomas Schanz, Christoph Tenzer

Translation to English by Inga Saathoff
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1 Introduction

X-ray astronomy deals with a part of the electromagnetic spectrum at photon energies from 0.1 keV
to about 100 keV, gamma astronomy with energies above it up to the GeV range. Compared to
observational astronomy at lower energies, this area of astronomy is characterized by other types of
telescopes, detectors and a slightly different type of data analysis.

Radiation in this energy range is almost completely absorbed in the Earth’s atmosphere, which is why
instruments used for observations have to be brought to very high altitudes (Figure 1).

This necessity makes us understand why X-rays of the sun could not be detected until 1948 with a
rocket experiment in New Mexico. Until the discovery of the source Sco X-1 in 1962, the detection
of further cosmic objects in the X-ray light was considered highly unlikely due to the low measured
X-ray luminosity of the sun. With the discovery of this source, whose emission in the X-ray range
exceeds that in the optical range by a factor of 104, a window was opened to a new field of research
that revolutionized the basic understanding of astrophysics about the structure of stars and the
physical processes inside them.

Today, very high-energy gamma radiation (E > 1 GeV) can be detected indirectly via the formation
of extensive particle cascades (so-called air showers) in the atmosphere using ground-based telescopes.
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Figure 1: Attenuation of electromagnetic radiation of different wavelengths in the Earth’s atmo-
sphere (reproduction of a graphic from Giacconi et al. (1968)).
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1.1 Astronomical sources in X-ray and gamma astronomy

Which physical processes exist that generate photon energies above 0.1 keV? According to Wien’s
law of displacement, a body of temperature T emits the maximum of its radiation at a photon energy
of Emax = 2.8 kT.

With k ≈ 8.6× 10−8 keV/K follows:

Emax = 2.4× 10−7 keV

K
× T (1)

Photons with energies in the range of 50 to 100 keV are emitted by bodies with temperatures in the
range of about 100 million degrees! High energy astrophysics therefore deals with the explanation
of observations of material under very extreme conditions that normally cannot be produced in the
laboratory.

In addition to thermal radiation, there are also non-thermal radiation processes in which photons
are also emitted in the keV and MeV range. Some typical examples of thermal and non-thermal
astrophysical processes in gamma astronomy are:

• Bremsstrahlung

• Radioactive decay

• Synchrotron radiation

• Inverse Compton effect

• Mass accretion

Typical objects that can be seen in the sky in the X-ray and gamma range are:

• Stars (mostly their hot coronae)

• X-ray binary stars with compact objects

• Supernova remnants

• Gamma-ray bursts

• Galaxy clusters

• Active galaxies (AGN)

Some of the processes mentioned above occur in these objects in combination.

Task 1: Look up the terms (unknown to you) mentioned in the two lists on the Internet
and make yourself sufficiently familiar with them so that you can answer the question
“What is...” reliably at the beginning of the experiment!
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Material that falls from a normal star onto a compact companion, i.e. a neutron star or a black hole,
in a double star system converts a large part of the potential energy of the material into radiation in
the X-ray and gamma range during “accretion”. The observed photon spectrum can be used to draw
conclusions about the physical mechanisms involved. Accretion is by far the most efficient process
in the universe for the conversion to radiation energy (per converted mass).

Accreting black holes often show jets - collimated matter ejections in which the outflowing gas can
have velocities close to the speed of light. Such phenomena occur equally in stellar black holes (ob-
jects with masses in the stellar mass range) and in supermassive black holes in the centers of active
galaxies, which can reach masses of 109 solar masses.

In neutron stars with strong magnetic fields, a large part of the accreted material will fall along the
magnetic field lines onto the magnetic field poles of the neutron star. The magnetic fields prevail-
ing there are so strong that the movement of electrons perpendicular to the magnetic field lines is
quantized (Landau effect). This enables the absorption of high-energy radiation by electrons that
transition from one Landau level to the next. This is noticeable as absorption lines in the observed
X-ray spectrum. For the transition from the ground state, the line energy is E ' 12 keV ·B12, where
B12 indicates the magnetic field strength in units of 1012 Gauss1. The observation of such lines is
the only direct method known to date for measuring the pole field strength of neutron stars.

In supermassive black holes in the centers of active galaxies, which can reach masses of 109 solar
masses, the accretion of material is also considered responsible for the high luminosity of these
objects. It is estimated that active galaxies have an accretion rate of 1-3 solar masses per year. With
the exception of supernova explosions and gamma-ray bursts, these objects are the most luminous
in the entire universe. Furthermore, jets are frequently observed in active galaxies: collimated
matter outflows in which the outflowing gas can have velocities near the speed of light. These jets
emit synchrotron radiation in the radio range, but are also very bright in the X-ray and gamma
range. The reason for the high luminosity is that the electrons emitting lower energy synchrotron
radiation also scatter this same radiation again to very high energies via the inverse Compton effect
(Synchrotron Self-Comptonization).

Task 2: (Also in the “X-ray CCD” experiment) Calculate the maximum luminosity
that a spherically symmetrical body can have through accretion. This is achieved when
the radiation pressure on the accreted matter is greater than the gravitational force with
which the accreted matter is attracted. To calculate this so-called Eddington luminosity,
you can assume that the accreted matter consists only of hydrogen (why is that a good
assumption?) and falls on an object of mass M . The gravitational force on each accreted
proton is

Fgrav =
GMmp

r2
(2)

(G: gravitational constant, M : mass of the accreting object, mp: rest mass of the proton,
r: distance of the proton from the accreting object). This is opposed to the force exerted
by the radiation pressure. It is mainly exerted on the accreted electrons and is given by
(cgs-system!)

Frad =
σT S

c
(3)

1As you may have noticed during this practical course, astronomers are quite conservative and still use the units
of the cgs system (cm, g, second...) and not the units of the SI you are probably more familiar with. In all likelihood,
this will continue to be the case in the future. So please familiarize yourself with such units!
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where σT = 8πe4/(3m2
ec

4) = 6.652× 10−25 cm2 is the Thomson cross section and

S =
L

4πr2
(4)

(S: energy flux, L: luminosity).

Why can you equate the two forces here, although Fgrav acts on protons and Frad on
electrons? Specify a formula for the Eddington luminosity and calculate it for an object
with M = 1M�. The value obtained is in the typical order of magnitude of the luminosity
of stellar objects observed in X-ray astronomy. Compare this luminosity with that of the
sun (M� = 2× 1033g, L� = 3.8× 1033 erg s−1).

1.2 Requirements for astronomical detectors and electronics in the X-
ray and gamma range

As Task 2 has shown, the sources of interest to us here can have a very high luminosity. Nevertheless,
considerable efforts are needed to obtain information about such sources. The following task should
clarify why this is the case:

Task 3: According to Task 2, an astronomical X-ray source has a typical luminosity of
1038 erg s−1. For simplicity’s sake, assume that one tenth of this luminosity is emitted
in the energy range of 10 to 100 keV and that the average photon energy in this range
is 20 keV. How many photons per second and square centimeter can you expect in this
energy range? Suppose a source distance of 4 kpc and assume that the luminosity is
emitted isotropically in all spatial directions.

Consequently, the signal we have to measure is anything but strong. Apart from these low counting
rates, another major obstacle is that X-ray and gamma radiation is very well absorbed by the Earth’s
atmosphere. In order to be able to conduct X-ray and gamma astronomy, one must therefore be
above a large part of the Earth’s atmosphere, depending on the energy of the photons to be observed.
The instruments can be on research balloons (flight altitudes about 40 km), research rockets (flight
altitudes up to 100 km) or satellites (above 300 km). Due to these technical difficulties, X-ray and
gamma astronomy are very young research areas. The first balloon and rocket experiments were
conducted by Herbert Friedman of the Navy Research Laboratory in the 1950s and were dedicated
to solar astrophysics. At the beginning of the 1960s, research programs on extrasolar objects were
increasingly carried out, first in the USA and later also in other countries such as Germany.

In Germany at the time, balloon-based X-ray and gamma astronomy was funded by a priority pro-
gram of the German Research Foundation in the 1970s with the Tübingen Astronomical Institute
and the Max Planck Institute for Extraterrestrial Physics in Garching near Munich (Figure 2). Since
the 1980s, X-ray astronomy has been almost completely dominated by satellites and balloons are
only used for testing new technologies and for rapid observation of special events (e.g. supernovae)
with particularly suitable instruments.

The low signal of the astronomical sources to be observed and the fact that observations in space are
made in the presence of a high detector background generate the following requirements, which are
also reflected in the most important parameters of a detector.
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Figure 2: Two experiments in the X-ray range, which were accomplished 1977 with strong partici-
pation of the IAAT. Left: Launch of the High Energy X-ray Experiment (HEXE) in Palestine, Texas;
Right: Skylark rocket on a mobile launch pad in Huelva, Spain, to observe a moon occultation of
the Crab Nebula (Photos: R. Staubert).

The detectors must...

• detect photons with a high probability (quantum efficiency),

• provide a large collection area, yet be light enough,

• have a good energy resolution,

• have a good suppression of the sometimes strong background (sensitivity),

• achieve a high spatial resolution together with the imaging part of the telescope.

Only a few detector types fulfill these properties sufficiently well. The scintillation detectors have
proven to be a particularly good “workhorse” in the energy range from > 10 keV up to several
100 keV, which will therefore play an important role in this experiment. Detectors that are mainly
used at energies < 10 keV are examined in the “X-ray CCD” experiment.
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2 Detection of X-ray / gamma radiation above 10 keV

With the telescopes commonly used in X-ray and gamma astronomy today, 1) the time of impact,
2) the direction from which the photon arrived and 3) the energy deposited in the detector can be
measured for each photon detected in the detector. Special detectors also allow the measurement
of another property: 4) the polarization plane. Today’s knowledge of the X-ray and gamma sky is
based on measurements of these properties of countless photons.

2.1 Scintillation detectors

Scintillators can be organic and inorganic. Organic scintillators are characterized by a very fast
response to a signal, but have lower light output than inorganic scintillators and a very poor stopping
power for the incident photons which are measured (proportional to the atomic number Z of the
material). Therefore, inorganic scintillators are normally used in gamma astronomy.

2.1.1 General principles

The detection of ionizing radiation using scintillation detectors is one of the oldest methods2. The
available literature is correspondingly large. We particularly recommend chapter 8 of Knoll (1999),
the English standard work on detectors. The very well-made slides of a lecture by Christian Joram
on particle detectors for summer students at CERN can also be recommended (Joram, 2001).

Scintillation is the emission of light through a body that has been excited by radiation. In our case,
this radiation will be gamma radiation, but scintillators are also used to detect electrons, protons
or neutrons. The generic term “scintillation” sums up many physical mechanisms, important in the
following are in particular

Fluorescence: the emission of visible radiation directly after excitation of the material.

Phosphorescence: the emission of longer wavelength radiation over a period of time longer than the
typical period at which the fluorescent light is emitted.

Delayed fluorescence: triggered by the same physical mechanism as fluorescence, but also with a
slower time constant; it occurs in organic scintillators.

A good scintillator material should radiate as much of the absorbed energy as possible in the form
of fluorescent light so that the photons to be detected can be detected as quickly as possible and so
that it is also possible to distinguish photons arriving shortly after each other in time (short dead
time). In other words, we want to generate the sharpest possible impulse of optical light from the
incident photon.

In a scintillation detector, the weak pulse of visible fluorescence light is amplified by a photomul-
tiplier and converted into an electrical signal (Figure 3). This signal is then further processed by
downstream electronics.

2According to Grupen (1993), the first scintillation detectors were zinc sulfide screens on which charged particles
triggered scintillation flashes, which were then registered with the eye. This method is relatively sensitive: in the
green spectral range, even the smallest photon numbers of a few photons/second can be detected with the eye. The
sensitivity can be increased even further with strong coffee or strychnine (Grupen, 1993).
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In the following, we will first take a closer look at the scintillation mechanisms described above and
the materials used in the experiment. Then we will describe the mechanism of signal amplification
in the photomultiplier and the post-processing of the signal.

Figure 3: Schematic structure of a scintillation detector (Figure: M. Dahlbohm).

2.1.2 Inorganic scintillators

The most important inorganic scintillators are the halide crystals NaI(Tl) and CsI(Na), i.e. sodium
iodide or cesium iodide, to which thallium or sodium is added as an activator. Other scintillator
materials you may encounter in physics are CsI(Tl), BGO (bismuth germanate) with the chemical
formula Bi4Ge3O12, the above mentioned zinc sulfide, ZnS(Ag), and barium fluoride (BaF2). A com-
plete list can be found in Knoll (1999, p. 235).

The band model3 of these crystals is suitable for understanding the scintillation mechanism in inor-
ganic scintillators. Inorganic scintillators are insulators or semiconductors, i.e. the valence band and
the conduction band are separated from each other. If a photon is absorbed by an insulator, then
its energy can be sufficient to transport electrons from the valence band into the conduction band
so that electron-hole pairs are formed (Figure 4).

In a pure crystal, the electrons and the holes would diffuse independently through the crystal and
recombine at some point. This recombination produces light of an energy corresponding to the band
gap of the crystal. The mechanism just described is comparatively inefficient. On the one hand, a
long time passes before recombination takes place, on the other hand, the crystal is not transparent
for the recombination light - after all, the energy of the resulting photon is sufficient to transport an
electron from the valence band to the conduction band!

Therefore, in scintillators impurities are produced by the admixture of so-called activators. These
are selected so that the crystal lattice is disturbed by the activators and energy states arise within
the band gap. The (positive) holes that are formed when a gamma quantum hits the scintillator
ionize the activator ions because the ionization energy of the activator is lower than that of a typ-
ical crystal ion. The electrons that are also formed during the absorption of the photon can then
recombine through these luminescence or recombination centers. If the activator material is cleverly
selected, the resulting scintillation light is in the visible range and can easily be further processed
with a photomultiplier. Furthermore, the energy of the scintillation light is smaller than the band
gap, i.e. the crystal is transparent to the scintillation light.

3If you really don’t know the band model yet, you should definitely change this by at least reading up on the basics.
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Figure 4: The generation of scintil-
lation light in an inorganic scintillator
(Joram, 2001).

The typical recombination time (half-life) is between 50 and 1000 ns, depending on the material.
Since the drift time of the electrons through the crystal is negligible, this half-life determines the
resulting light signal: It increases quasi instantaneously and then becomes exponentially weaker with
the above-mentioned half-life. In some inorganic scintillators, the resulting pulse is more complicated
and can for example be represented by the sum of several exponentially decreasing pulses.

This simple behavior can be disturbed by various mechanisms. The most important one is phospho-
rescent light. In this case, the electron is captured by the activator, but into an excited state, from
which the transition to the ground state is quantum-mechanically forbidden. In order to de-excite
such a state, the electron must first be excited again, for example by thermal shocks, into a higher
state, from which a transition to the ground state is then possible.

This takes a long time compared to the typical length of the scintillation pulse, which is why we
are talking about phosphorescence. Furthermore, it is possible that electron and hole do not diffuse
independently through the crystal, but as an electron-hole pair, as a so-called exciton. Excitons are
also de-excited by scattering on activators. The relevant time scale is in the order of magnitude of
the time scales for the de-excitation of single electrons or holes. Finally, the excited electrons can also
return to the valence band through nonradiative transitions (“signal quenching”), e.g. by releasing
their energy through collisions with the crystal lattice.

Due to the complicated band structure of the scintillator crystal, a broadband scintillation spectrum
is produced during the excitation of the activators, which has its maximum in visible light for most
materials (Figure 5).

The mechanisms just described are quite complicated, but scintillation detectors are very efficient
detectors: As the following task shows, about one optical photon is produced in NaI(Tl) per electron-
hole pair.
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Figure 5: Spectra of typical inorganic scintillators (according to Bicron Technical Note “NaI”).

Task 4: As a rule of thumb, it can be assumed that the average energy used to generate
an electron-hole pair is three times the band gap of the material. For NaI(Tl) the band
gap is about 8 eV, which means that 25 eV are needed to generate an electron-hole pair.
Measurements show that the light yield of NaI(Tl) is 12 %, i.e. 12 % of the total energy
of the incoming photons is converted into light. For simplicity’s sake, assume that all the
light is emitted at the maximum of the spectrum (Figure 5).

For a 50 keV photon, calculate the number of electron-hole pairs formed in the crystal and
compare these with the number of optical photons generated. Is it true that in NaI(Tl)
about one optical photon is produced per electron-hole pair?

In inorganic scintillators the light yield is in good approximation proportional to the number of
electron-hole pairs formed. Thus the total number of measured scintillation photons is proportional
to the energy of the gamma quantum. This means that scintillation counters can be used for energy
measurements. Since the number of scintillation photons increases linearly with the gamma energy
(neglecting quenching), scintillation counters are called “linear detectors”.

Due to its excellent light yield, NaI(Tl) is the standard detector in gamma spectroscopy. The molar
ratio of the thallium admixture is 10−3, the refractive index of NaI(Tl) is 1.85. NaI(Tl) can also be
produced in larger volumes (crystal diameter in the meter range).

Due to the high atomic numbers of NaI, NaI(Tl) efficiently absorbs the incident gamma radiation
- even in a smaller volume the gamma radiation can be detected well, which is an advantage for
satellite experiments. A disadvantage in the handling is that NaI(Tl) is strongly hygroscopic and
must therefore be packed airtight.
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2.2 Phoswich detectors

As we have seen in Section 2.1.2, NaI(Tl) and CsI(Na) are very similar in their principal properties,
such as the spectral form of the scintillation spectrum and the refractive index. The most impor-
tant distinguishing feature of these scintillators is the different duration of the scintillation pulse.
In astrophysical applications, very weak signals must be detected in an environment containing a
large number of high-energy particles. Strategies must therefore be developed to reduce the radiation
background as much as possible. In a phoswich detector, the just mentioned different durations of
the scintillation pulses of NaI(Tl) and CsI(Na) are used for background reduction to identify the
origin of the measured scintillation pulse.

Phoswich detectors (from “Phosphor Sandwich”) consist of a thin NaI(Tl) crystal that is optically
coupled to a thick CsI(Na) crystal. The NaI(Tl) crystal is the actual detector, while the CsI(Na)
crystal is used for background reduction: Particles entering the detector “from below or from the
side” provide a signal in the CsI(Na). Electronics connected downstream of the photomultiplier
analyze the pulse shape and can thus eliminate these events (pulse shape discrimination or rise time
discrimination). You will develop such electronics in the first part of this experiment.

Figure 6 shows schematically what a phoswich detector that was actually flown looks like, Figure 7
shows the housing of an array of the detectors used in the experiment. In the High Energy X-ray
Timing Experiment (HEXTE) on the Rossi X-ray Timing Explorer (RXTE) shown in Figure 6, the
sky section visible by the instrument is limited to just under one square degree (four full moons) by
means of a collimator. Furthermore, an 241Am source is mounted in front of the detector4. This can
be used to monitor the energy calibration of the phoswich detector.

241Am radiation sources are also used in this experiment. This isotope decays into 239Np while emit-
ting an α particle with a half-life of 432.7 years. At the same time as the α particle, a γ photon is
emitted at 59.5 keV.

Outside astronomy, phoswich detectors are used for example in medical radiation diagnostics. For
medical reasons, it is essential to be able to measure even the lowest possible amount of radioactive
materials.

A photomultiplier tube (PMT) is connected downstream of the phoswich detector to detect the
scintillation light. It consists of a photocathode from which electrons exit upon irradiation with
the scintillation light and several dynodes, between each of which a voltage is applied (Figure 3).
The electrons (photoelectrons, pe) primarily generated by the photocathode are focused on the first
dynode in the PMT and accelerated by an applied electric field. When hitting the dynode, further
electrons are knocked out of there, which are then accelerated to the next dynode, etc. Since the
acceleration voltage is high, the number of these secondary electrons is considerably higher than
the number of primary electrons, i.e. the initial signal is strongly amplified. If we designate the
gain factor of a dynode with Q and the photomultiplier has n dynodes, then the average number of
electrons tapped at the last dynode is given by

Nsignal = NpeQ
n (5)

4This americium isotope is not only of interest in science: Just under 0.1 mg 241Am are also contained in standard
household smoke detectors.
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Typical dynode gain factors are Q = 6 . . . 8, altogether gain factors of 106 to 108 are achieved.

As we had seen, the number of emitted scintillator photons is proportional to the energy of the
gamma quantum:

Nph ∝ E (6)

These primary photons are converted into photoelectrons (pe, Npe) by the photomultiplier with
a certain (quantum) efficiency, and the photoelectrons are “counted” in the detector electronics.
Counted means that a certain (mean) number of charge carriers per photoelectron is generated and
measured at the anode. This means in particular that

Npe ∝ Nph ∝ E (7)

Due to Poisson statistics, the measurement of a counting rate is subject to a certain uncertainty.
The measurement with the smallest number of events, i.e. the number of photoelectrons, is relevant
for the error. If ∆N is the Full Width at Half Maximum (FWHM) of the measured signal, then it is

∆Npe = 2.36
√
Npe ∝ ∆E (8)

The pre-factor 2.36 is explained by the conversion of the Poisson variance (= N1/2) into FWHM.
Because of Equation 7 and with ∆E as FWHM of the energy measurement it is

∆E ∝ ∆Npe. (9)

If the error from the photoelectron count statistics were the only error in the energy measurement,
the result would be

∆E

E
=

∆Npe

Npe

or more generally
∆E

E
≥ ∆Npe

Npe

(10)

Thus the relative energy resolution of a scintillation detector is given by

∆E

E
≥ ∆Npe

Npe

= 2.36

√
Npe

Npe

=
2.36√
Npe

∝ 1√
E

(11)

Please note that the energy resolution of the detectors is energy-dependent, i.e. must be specified for a
given energy! The statistics described here normally dominates the energy resolution. However, other
systematic effects, such as the energy gain in the photomultiplier, variations in voltage, quenching,
inhomogeneities in the crystal as well as deviations from the linearity of the detector, etc. can worsen
the energy resolution.
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Figure 6: Schematic structure of the
HEXTE instrument on the American Rossi
X-ray Timing Explorer - the typical structure
of an astronomical phoswich detector.

Figure 7: Housing of one of the phoswich
detectors used in the experiment.

2.3 Other detectors for radiation above 10 keV

In addition to scintillation detectors, semiconductor detectors have increasingly been used in recent
years for the detection of X-ray and gamma photons. Semiconductor detectors have a much smaller
band gap, so that a significantly larger number of electron-hole pairs are generated for the same en-
ergy of the incident photon. This leads with the above reasoning to an improved energy resolution. A
disadvantage, however, is that the detectors often have to be cooled in order to suppress thermal noise.

Semiconductor materials with a high atomic number (Z) are particularly suitable for photon energies
above 10 keV (absorption ∝ Z5) in order to efficiently detect high-energy photons with relatively
thin detectors. In addition to silicon (Si, Z = 14), germanium (Ge, Z = 32) and cadmium telluride
(CdTe, Z = 48− 52) have proven their value. Since CdTe has a relatively large band gap of 1.47 eV
(for comparison, germanium has a band gap of 0.74 eV), it can also be used at room temperatures.

2.4 Imaging methods above 10 keV

As you have already learned or will yet learn in the “X-ray CCD” experiment, X-ray radiation at
energies ≤ 15 keV can easily be focused on mirrors by grazing incidence. Therefore, an image can
still be achieved in this energy range with focusing optics and position-resolved detectors. Above
about 15 keV this is no longer so simple. Up to now, other imaging methods have been used for
the energy range from ∼ 10 keV to some MeV. By “imaging” we mean all methods by which radia-
tion is detected only from a certain region of the sky. This may well be larger than the full moon.
Nevertheless, such an “image” is important because it allows to separate the source signal from the
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Figure 8: Various collimators that are used in X-ray and gamma astronomy. Left: Static honeycomb
collimator; Center: Rotation modulation collimator; Right: Coded mask imaging principle.

(isotropic) background and to represent a spatial distribution of the radiation intensity. Since the
particle background is usually very strong, this is absolutely necessary in order to obtain information
about the observed sources (source spectrum, temporal variability, etc.).

The methods used for this can be roughly divided into three classes:

1. The field of view of the detectors can be limited with the help of so-called static collimators,
i.e. only X-rays from a small region of the sky can fall on the detector, radiation from other
regions is absorbed in the material of the collimator. This greatly reduces the radiation back-
ground in comparison to the source radiation. The simplest collimator consists of an X-ray
absorbing material, which is attached as a tube around the detector. The imaging property
of such a collimator has a triangular shape: Sources located directly on the optical axis are
detected with full flux, the further away the source is from the axis, the fewer photons are
detected by it. The angle at which a source with half its flux is detected (parallel incidence of
light) is given by

tanϑ =
d

2h
(12)

where d is the width of the detector and h is the height of the collimator.

Task 5: A collimated instrument should have a field of view (= 2ϑ) of less than 2◦

for bright X-ray sources. Take a square detector with 4000 cm2 collection area. How
long does the collimator have to be?

To limit the field of view to a reasonable level with such a simple collimator, very long colli-
mators would be necessary, thus a simple tube collimator is impractical. Since the field of view
is proportional to d/h according to equation 12, it is better to place many small collimators
in front of the detector. Such a layout is shown in Figure 8 on the left. Here, many small
collimators cover the detector, which have the same aspect ratio as a “long” collimator.

The telescope therefore has the same field of view, but is much more compact. Therefore, such a
design is better suited to be implemented e.g. on a satellite, because instruments there have to
be as space-saving and as light as possible. In practice, collimators are either honeycomb-shaped
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because this provides great stability, or they are manufactured in one piece from microchannel
plates. In both cases, it must of course be ensured that the wall thickness of the individual
collimator cells is as small as possible in order to keep the amount of non-sensitive detector
surface small. An example of an instrument using collimators is the aforementioned HEXTE
experiment on the Rossi X-ray Timing Explorer. Although collimators can limit the field of
view, it is not possible to separate sources that lie within the field of view of the collimator.

2. Real imaging is possible by temporal aperture modulation. A temporal modulation of the
source signal can be achieved by tilting the collimator over the source. A better solution are
so-called modulation collimators, in which the image is also achieved with a scanning movement
of the satellite, or the rotation-modulation collimators (Figure 8, center), in which the source
signal is modulated in time by rotating the collimator. The latter were mainly used in balloon
experiments in the 1980s. Here, the intensity of sources located at different points in the field
of view is uniquely and periodically modulated depending on their position: If the two grids
are rotated against each other, the sources - from the collimator’s point of view - are covered
by the bars with different frequencies and phases. The intensity of the detector signal is then
a superposition of the modulated intensities of all sources in the field of view. The position of
each source can be determined later on the computer from the period and the phase shift of
the light curve.

3. As an alternative to time modulation of the signal, spatial aperture modulation is also an
option. The image with coded masks (Figure 8, right) is based on the principle of shadow
casting from sources: using a mask made of absorbent material, the shadows of all sources in
the field of view are recorded in the image plane with a spatially resolved detector. If more than
one source is visible, the position and strength of the sources responsible for the modulation of
the signal in the image plane must be recalculated with the aid of complex algorithms. This
method offers in comparison to temporally modulated collimators the advantage that even
time-varying sources can be reliably reconstructed. Such a mask made of opaque tungsten is
used on the INTEGRAL satellite, for example.
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3 Modern electronics design for astronomy

The trend in the design of electronic components for scientific and industrial applications has been
clearly moving towards increasingly miniaturized components for years. Due to better reproducibil-
ity in production, higher reliability and compatibility with IT systems, digital technology has long
replaced analog electronics in control and measurement applications. Therefore, electronic design
today is almost exclusively concerned with the design of digital circuits.

Another advantage of digital electronics hardware is that complex circuit functions can be described
with the aid of mathematical formulas and can be built up from simple, inexpensive elements. Some
of these basic components of digital circuits will be briefly introduced in this section.

3.1 Components

3.1.1 IC and ASIC

An IC (integrated circuit) is a chip component only a few millimeters in size, which, depend-
ing on its function, is made up of up to millions of semiconductor elements - mostly transistors -
but also passive components such as capacitors. ICs are characterized by their small dimensions,
reliability, short switching times and suitability for mass production. Which function a certain IC
executes later is already defined during design and can no longer be changed. In the course of time,
a wide range of different ICs has been developed for all conceivable requirements - from simple gates
(digital basic circuits such as AND, OR, NAND, Inverter or FlipFlops) to the microprocessors used
in mobile phones and computers today. The best-known and most widely used series is the 74-TTL5

family, which contains many basic digital circuits that can be wired by the developer to complex
applications on PCBs6. Analog and mixed signal circuits (analog and digital) are also available as ICs.

An ASIC (application-specific integrated circuit) is an IC that - in contrast to other ICs
that can be used for many purposes - has been designed and manufactured specifically for a particular
application. For smaller applications or the production of small quantities, ASICs have already been
replaced by FPGAs (see below), which offer more and more space and are becoming faster.

3.1.2 FPGA and CPLD

A field-programmable gate array (FPGA) is a generic form of ASIC in which the function is
defined by the user only after the manufacturing process. Depending on the technology (Antifuse7,
EPROM8, FLASH9) it can be (re)programmed one to several thousand times. FPGAs are less pow-
erful than their ASIC counterparts in terms of switching times and power consumption, but have
the advantage of shorter development times and lower manufacturing costs.

The basic structure of the FPGA is an array of standard cells, each with a simple programmable
lookup table (LUT) and a 1-bit register (flip-flop), see Figure 9. Depending on the number of available
inputs, the LUTs can implement any n-digit binary function. The desired function is programmed

5Transistor-Transistor Logic: circuit technology for logic circuits.
6Printed Circuit Board.
7Irreversible programming using the reverse fuse principle.
8Erasable Programmable Read-Only Memory: with UV light erasable and then rewritable memory modules.
9Electronically erasable and writable memory technology.
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Figure 9: Example of a logic block with LUT and flip-flop.

by storing the defining truth table in the SRAM10 cells of the LUT, the function is realized by read-
ing out the memory address as determined by the inputs. For a long time LUT structures with 4
binary inputs were common. Newer FPGAs are switching to LUTs with up to 6 inputs to reduce
the need for LUT-to-LUT connections to implement functions with more inputs. In addition to the
LUTs, the interconnection of the components can also be configured with large degrees of freedom
on the FPGA. Multiplexer structures in the standard cells often allow very fast local signal paths, for
integrating or bypassing the flip-flop, for feedback from its output, for connecting neighboring blocks
and the like. For the more distant connections, there is a grid of immense bus structures between
the standard cells to which inputs and outputs can be connected. Other programmable switching
components at the grid intersections allow signal distribution over the entire chip.

The hardware design tools described in more detail in the next section are used to define the behavior
of an FPGA. This allows the creation of a network list of connections between the standard cells
and their transfer to the FPGA. The term programming is therefore to be understood differently
in this context than in the creation of software for a processor: In an FPGA, circuit structures are
created using hardware description languages or in the form of circuit diagrams and these data are
then transferred to the device for configuration purposes. This activates or deactivates certain switch
positions in the FPGA, which results in a specifically implemented digital circuit.

Even complex structures such as processor architectures can be loaded into a modern FPGA, making
FPGAs ideal for hardware development and testing. The idea of changing programming during run-
time and adapting it to the task at hand in order to achieve optimum performance for time-critical
requirements, such as digital video and audio signal processing, has recently opened up new areas of
application for FPGAs in this area.

In contrast to the FPGA built from standard cells, a CPLD (complex programmable logic
device) consists of so-called macro cells, each of which is capable of performing a Boolean
operation11 on its binary input values and outputting the result to the output port, or storing it in a
flip-flop until the next CLK cycle. However, due to their internal structure it is often not possible to
link arbitrary macrocells, so that hardware designs often cannot be fitted into a given CPLD, even if
many macrocells are not yet occupied. Therefore, CPLDs have lost some of their importance lately.

10Static Random Access Memory: electronic memory type. Its content is volatile, i.e. the stored information is lost
when the operating voltage is switched off.

11AND, OR, NAND, etc.
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3.1.3 Digital Signal Processors

A digital signal processor (DSP) is a microprocessor specialized in real-time signal processing with
an instruction set optimized for this task. DSPs have been available as single chips since 1979 and
have become increasingly important since then. Their enormous performance in signal processing
has recently also influenced the processor development of CPUs for commercially available PCs, e.g.
the MMX expansion, where image and video processing are increasingly coming into the foreground.
DSPs are also used to process signals in X-ray astronomy. Since DSPs are basically just micropro-
cessors, programs can be written in programming languages such as C++ or machine language.

3.2 Hardware design tools

With the evolution of the hardware elements, the design tools used for their development were also
adapted to the new technical challenges and possibilities. Electronic circuits that used to be de-
signed on the drawing board are now planned on the computer using CAD software. Design editors
and hardware description languages embedded in development environments offer the possibility to
unravel circuits, create circuit board layouts and check the finished designs for functionality and
correctness by simulation before they are implemented as hardware.

Modern design editors (schematics editors) provide extensive libraries with graphical representations
of electronic components, which can be dragged onto a drawing surface with a mouse click and ar-
ranged there to form complex circuit designs. These libraries, which contain both standard elements
and high-end components, can be continuously expanded and updated via the Internet. The finished
circuits can then be analyzed and their behavior simulated with test signals. Some editors offer
useful functions, e.g. to process the design to a board layout, or to create (if possible) network lists
for programming FPGAs or CPLDs.

An alternative to graphic design are hardware description languages (HDLs12), which can be used
to describe entire circuits or even individual hardware components in the form of a model. An
advantage over schematics is that not only existing modules can be connected to each other to
create new applications, but also the function of one’s own modules can be defined in a program by
logical, possibly clock-controlled linkage of input and output signals. Similar to the procedure for
programming languages, components are instantiated from libraries, functions accessed and values
assigned to variables in an ordinary text editor with specially developed syntax. The finished design is
synthesized to the network list with a hardware compiler. There are also development environments
for HDLs that allow the analysis and simulation of the design before the hardware implementation.

12Hardware Description Language.
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4 Hardware synthesis with VHDL

In this experiment, electronics for operating and reading out a phoswich detector will be designed
using the hardware description language VHDL, which is described in more detail in the next para-
graph. First we would like to give you a short introduction to the hardware description language
VHDL, which will show you the similarities and differences to programming languages you may know.

4.1 VHDL

The abbreviation VHDL stands for VHSIC13 Hardware Description Language. VHDL contains many
elements of the common, procedurally working programming languages, extended by the parallelism
of the processes and other typical constructs for the hardware circuit design. Also the syntax is
quite comparable with that of higher programming languages, so that developers with well-founded
programming knowledge have an easier entry into modern hardware design with VHDL than de-
velopers with classical electronic know-how. VHDL has been developed by Intermetrics, IBM and
Texas Instruments since 1983 and standardized by IEEE14 in 1987.

4.2 Language concept

VHDL offers the possibility of a complete description of digital electronic circuits. Both their struc-
ture (structure of individual components and their wiring to each other) and their function (descrip-
tion with the help of logical operators) can be mapped in a design. A VHDL design is independent
of the hardware and software components used; it can be easily exchanged between developers with
different system platforms and target hardware.

Each VHDL design is divided into an entity part and at least one architecture. If there are
several architectures for a circuit in the design, a configuration statement is required, which
allows the selection between the architectures. This basic structure of a VHDL design is shown
schematically in Figure 10.

The entity part describes the external interface of the design. All inputs and outputs of the future
hardware are specified with their respective signal types, regardless of whether it concerns the design
of an FPGA, an IC or an entire circuit board.

The configuration allows the developer to choose from several architectures. If only one archi-
tecture is available, the configuration part becomes optional (this is the case with most applications
in everyday life - configuration is only mentioned here for the sake of completeness).

The architecture contains the actual hardware description of the VHDL design. Two main forms
of description are distinguished:

• functional description

• structural description

13Very High Speed Integrated Circuit.
14Institute of Electrical and Electronics Engineers.
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Figure 10: Structure of a VHDL design with only one architecture (left) and with configura-
tion for several architectures (right). Even if there are multiple architectures in a design, all use the
same entity.

Electronic circuits generally consist of components mounted on a printed circuit board (PCB). The
functional description is used to model these components. The entity corresponds to the interface
of the component (the input and output pins of the IC), the architecture describes the function
(therefore functional description) of the component instead. With a structural description, however,
it is possible to model an entire circuit board. The entity then corresponds to the PCB connector
and the architecture describes the wiring of the components.

4.3 Architectures

Functional modeling describes the behavior of components. Figure 11 shows such a description. The
entity describes the interface of the part, the architecture the function.

Functional modeling enables the tasks of the circuit to be divided into separate functional groups.
Like electronic components, these can be developed and tested in separate processes or in different
teams before they are finally assembled into a description. Due to this modular principle, complex
circuits can easily be assembled from simple groups.

The most important structure for the functional description is the process. Processes work se-
quentially like computer programs and are started by signals. Another very important structure are
sequence controls, so-called FSMs15, which will be discussed in more detail later.

4.4 VHDL syntax

The following section gives an overview of the typical constructs used in a VHDL description.

15Finite State Machine.
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Figure 11: Behavioral modeling of VHDL in architecture: This modeling generates the function of
components. Several components can then be connected to form complex systems using their entities.

4.4.1 Comments and identifiers

Comments in the program code are introduced by two simple hyphens/minus signs:

− − Comment

When selecting identifiers for variables, types, process names or functions, the usual restrictions for
programming languages apply. Upper and lower case is not important in VHDL and can therefore
be used arbitrarily.

4.4.2 Data types, declarations and instantiations

VHDL is “strictly typed” - each variable and each signal must first be declared at the beginning of
the architecture with a corresponding type, which is not dynamically/automatically adapted to its
use by the compiler. The most commonly used scalar types in VHDL are integer, boolean, std logic
and so-called enumeration types. Their definition and use is discussed below:

The type integer is predefined in VHDL and comprises all numbers from −2, 147, 483, 647 to +2, 147,
483, 647. Instantiations (i.e. the declaration of constants, variables and signals) of this type look for
example as follows:

constant number of bytes : i n t e g e r := 4 ;
constant number o f b i t s : i n t e g e r := 8 ∗ number of bytes ;
variable a := 0 ;
signal counter : i n t e g e r range 0 to 255 ;
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One of the predefined enumeration types is boolean. The following line of code represents the actual
(already implemented) type definition:

type boolean i s ( f a l s e , t rue ) ;

You can define your own types very easily by enumerating the possible states. A usage (instantiation)
of the type then looks for example as follows. To the right of := the start value (instantiation value)
of the signal or variable:

signal switch open : boolean := f a l s e ;

Since VHDL was designed to describe digital hardware, a central type representing digital values is
necessary. To take into account the electrical characteristics of our signals, the IEEE has standardized
and predefined a type std logic in the package std logic 1164, which is used in almost all designs:

type s t d l o g i c i s ( ’U’ , −− Un i n i t i a l i z e d
’X’ , −− Forcing Unknown
’ 0 ’ , −− Forcing zero
’ 1 ’ , −− Forcing one
’Z ’ , −− High Impedance
’W’ , −− Weak Unknown
’L ’ , −− Weak zero
’H’ , −− Weak one
’− ’ ) ; −− Don’ t care

signal b , c , d : s t d l o g i c := ’0 ’ ;

This is the type you will work with the most in the experiment. Only use the states ’1’ and ’0’, which
represent the values ’ON’ and ’OFF’ respectively.

To obtain multidimensional types, scalar types can be combined in arrays:

type po int i s array (2 downto 0) of i n t e g e r range 0 to 255 ;
constant o r i g i n : po int := (0 , 0 , 0 ) ;
type matrix i s array (2 downto 0 , 2 downto 0) of i n t e g e r range 0 to 255 ;

However, the std logic 1164 package mentioned above already contains an unlimited, one-dimensional
array type (’vector’) named std logic vector from several standard logic values, which can be instan-
tiated as follows:

signal my vec : s t d l o g i c v e c t o r (7 downto 0) := ” 11100011 ” ;

A vector is an ordered set of individual std logic signals, but does not yet represent a binary number,
even if it already looks like one. One type that can be used for vectors that represent numbers
is unsigned. It is very similar to std logic vector, with the difference that there are predefined
calculation and comparison operators, so that the vector can always be interpreted as a non-negative
binary number. It is defined in the numeric std package, which should be loaded as the very first
library in the second line of your code if you want to use it:

use i e e e . numer ic std . a l l ;
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The most important operators are:

• + addition

• - subtraction

• * multiplication

• < less than

• > greater than

• >= greater equal

• = equal

• /= not equal

4.4.3 Data type conversion

VHDL is, as mentioned above, a very strictly typed language. In this case, this means that signals
of different types must first be explicitly converted to the correct type (’type-casting’) before they
can be assigned to each other or compared with each other. The following examples introduce the
most important conversions.

• unsigned to std logic vector:

my vec <= s t d l o g i c v e c t o r ( my unsign ) ;

• std logic vector to unsigned:

my unsign <= unsigned ( my vec ) ;

• integer to unsigned:

my unsign <= to uns igned (23 , 8 ) ;

Note that in this case the number of bits of the unsigned vector must be specified as e.g. 8.

• unsigned to integer:

my integer <= t o i n t e g e r ( my unsigned ) ;

The functions to unsigned() and to integer() are defined in the package numeric std.

4.4.4 Assignments

Signals can be assigned values as follows, e.g.

c <= ’ 1 ’ ;
d <= b AND (NOT c ) ;
b <= Switch1 ;
my vec <= ” 00000000 ” ;
my vec2 <= (1 => ’ 1 ’ , 3 => ’ 1 ’ , others => ’ 0 ’ ) ;
my vec 3<= ”010” & ’1 ’ & ”0010” ;
my unsigned <= x”1234” + x”0001” ;
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In the second example, bits 1 and 3 of my vec were assigned a logical ’1’, and all other bits a ’0’.
The logical operators and, or, nand, nor, xor, xnor and not accept operands of type boolean or
std logic and also yield a result of each type.

The mapped assignments are translated by the compiler into direct line connections outside of pro-
cesses (see below). The code is thus not executed sequentially, but creates permanent connections.

Task 6: Consider (purely in terms of formulas, that is, without adhering to the VHDL
syntax), how you could realize the following ’voting system’ with logical operators (maybe
with the help of a truth table). The aim is to switch a lamp on when at least half of four
input switches are set to ’on’.

4.4.5 Processes

Processes are a central component of most functional descriptions. They react to signals and process
a list of commands. They modify other signals that serve as output of the process. A VHDL de-
scription can contain any number of them. Processes can start simultaneously if they are triggered
by the same signal. This maps the parallel structure of the electronics.

The most important characteristics of processes are:

• Processes are started by signals in the sensitivity list in the process header.

• Processes are parallel structures, i.e. any number of processes can start simultaneously.

• Processes manipulate signals (process output).

• Processes can declare local variables (in the declaration part).

• Process signals must be declared in the declaration part of the architecture.

• Variables of the process change at the moment of assignment.

• Signals of the process only change after the end of the process (delta cycle).

Figure 12 shows the basic structure of a process. The declaration part contains the process header
with the process name and the sensitivity list. The sensitivity list is the content of the parenthesis
after the word process. It contains the signals that start (trigger) the process. Start means that
the commands of the instruction part are processed. Each change of a signal of the sensitivity list
causes the start of the instruction part. In the example in Figure 12, this means that with each
change of state of ’CLK’ or ’RESET’ the process is restarted, i.e. twice per ’CLK’ cycle. In this
case, the ’RESET’ signal could also start the process outside of a ’CLK’ cycle (asynchronous with
’CLK’).

If ’RESET’ is removed from the sensitivity list, the reset is performed synchronously with the ’CLK’
signal edge. The state of the ’RESET’ signal is then only queried for each ’CLK’ edge.

Within processes, there are essentially two particularly frequently used conditionals - the if-then-else
instruction and the case construct. An example illustrates the use of IF. The signals are defined as
above.
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Figure 12: The example shows the structure of the process environment. Processes also consist of a
declaration and a instruction part. The process is triggered by signals in the sensitivity list of the
process header, or by a wait instruction in the instruction part.

i f unsigned ( my vec ) < my unsigned (15 downto 8) then
my vec <= s t d l o g i c v e c t o r ( my unsigned (15 downto 8 ) ) ;

e l s i f b = ’1 ’ and my vec (7 ) = ’0 ’ then
Lamp <= ’ 1 ’ ;

else
Lamp <= ’ 0 ’ ;

end i f ;
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Sometimes it is necessary to repeat several almost identical assignments. For this purpose, for loops
can be used as in the following example. Note that in this case the for loop is not run sequentially,
but the compiler simply creates eight parallel connections in the FPGA! To really do things one after
the other, you need a flow control (see below).

The two signals PHY DATAOUT and crc16 buf are vectors like my vec.

for i in 0 to 7 loop
PHY DATAOUT( i ) <= not c r c16 bu f (7− i ) ;

end loop ;

In contrast to signals, variables use ’:=’ instead of ’<=’ for assignment. The main difference to
signals is that variables change immediately. Signals are only assigned on the clockedge at the end
of the process or at the start of the process. Signals are also declared in the declaration part of the
architecture, variables in the declaration part of the process. In addition, variables do not retain
their value until the next start of the process, while signals used in the process are stored in registers.

Task 7: Suppose the following assignments concerned signals and were in a process
that had just been started for the first time. Previously, all signals were initialized with
ones. What is the value of the signals after a clock cycle? What would change if they
were variables rather than signals?

b <= ’ 0 ’ ;
my vec <= ”010” & b & ”0010” ;
my unsigned <= x”1234” + x”0001” ;
my unsigned (15 downto 8) <= unsigned ( my vec ) ;

The number of operations in a process has a critical influence on the maximum achievable operat-
ing frequency of a design. The synthesis program defines these so that all commands of a CLK-
synchronous process can also be executed within a CLK cycle. For this reason it is advisable to
distribute complex operations to several processes and to coordinate them, e.g. by a flow control or
state machines.

4.4.6 State machines

Another important structure in functional modeling are so-called finite state machines or FSMs.
An FSM is a logic circuit that runs through a sequence of states controlled by pulsed or often
periodic external signals. Their theory forms the basis of all forms of automation. Thus they also
represent a central concept for the development of digital applications with VHDL. In VHDL, FSMs
are represented by processes with a case structure.
Components of an FSM are a signal in which the current state is recorded, a transitional combi-
natorial circuit that controls the change between these states and an output combinatorial
circuit that assigns values to signals depending on the current state.

Types that describe states in an FSM, for example, can be defined and instantiated as enumeration
type in the following way:

type a l u f u n c t i o n i s ( d i sab l e , pass , add , subtract , mult ip ly , d i v id e ) ;
signal my alu : a l u f u n c t i o n ;
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Figure 13: Sequence of the states S0 to S8 of a
traffic light circuit, each of which merges into
the other after several seconds, the phases in
which a traffic light shows ’green’ being ex-
tendable by any factor ’k’. After state S6, the
transitional switching network branches once
to S7 and back again to S6 when the pedes-
trian button is pressed.

Case statements are often used (as here) to implement FSMs (see below). All values that the
referenced signal can take must always be specified in the case construct. The keyword others, which
is listed last, helps here:

case my alu i s
when d i s a b l e => −− do noth ing
when add =>

my unsigned <= my unsigned + my unsigned2 ;
when subt rac t =>

my unsigned <= my unsigned − my unsigned2 ;
when others =>

my alu <= pass ;
end case ;

The simplest example of an FSM application in electronics is a traffic light circuit. The four traffic
lights at a traffic intersection should alternately allow one street to pass through and show ’red’ for
the other street (see Figures 13 and 14).

4.4.7 Subprograms, packages and libraries

For the sake of completeness, functions, procedures, packages and libraries should be mentioned
here, which serve to make the code clearer and more modular. However, this is usually already
achieved through components and processes. Functions can be passed multiple arguments similar to
mathematical functions and they return exactly one value. Procedures are very similar to functions,
but stand for a complete VHDL statement and do not return a value.

4.5 Components

A component is a complete VHDL design from a previous development phase or a prefabricated
library. Components can also be structural descriptions and contain components themselves. This
creates a hierarchy of designs in large-scale projects whose degree of abstraction increases upwards
(see Figure 15). The lowest level is always functionally modelled, the upper level is often purely
structural. In the intermediate levels it is possible to mix functional and structural design.
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Figure 14: Block diagram of a traffic light circuit with pedestrian crossing - realized as an FSM.

Figure 15: Hierarchy of a VHDL project.

Components are declared in the declaration part of the architecture with their complete entity and
then instantiated in the instruction part. With a port Map the signals of the components are linked
to each other and also to the entity of the design.

If a component is to be instantiated several times, such as a series of FlipFlops for a counter, this
work can be automated with the generate instruction. Within a loop, the desired number of com-
ponents is generated, whereby inputs and outputs can be linked to each other via the port maps. In
many cases, however, a functional description is simpler and more space-saving than the numerous
instantiation of components.

The use of both modeling techniques (functional and structural) allows the tasks of a circuit to be
developed and tested in separate work processes or in different teams. The result is a kind of modular
principle with which complex circuits can be assembled from simpler modules.
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5 Experimental setup

This experiment is intended to provide an overview of the steps necessary for the development of
modern operating and readout electronics for an X-ray/gamma detector.

Starting from the analog detector signal of a photomultiplier, its output is first digitized using an
ADC (analog-to-digital converter). The control of this device as well as the digital processing of the
signals will be realized in an FPGA16 with the help of the hardware description language VHDL. This
task includes designing a “sequencer” to operate the ADC, analyzing the waveform (determining the
rise time and the maximum value of the detector signal) necessary to suppress background events,
and then formatting and transmitting the data as “event packets” to a data acquisition system. You
will get to know the typical elements of a “hardware synthesis”: Sketch of the necessary components
and modules, programming of the individual control and analysis processes (ISE Webpack), simula-
tion of the design on the computer with ModelSim or iSim, synthesis process for a XILINX Spartan-3
FPGA and commissioning of the hardware as interface between detector and data acquisition system
(see Figures 16 and 17).

The measurement and control of the analog detector signals as well as the testing of the characteristics
of the developed digital electronics is carried out with a “mixed signal” (analog + digital) oscilloscope.
Finally, the radiation background and the properties of various radioactive sources are measured with
the resulting experimental setup. The data obtained in this way is analyzed with the aid of software;
you will determine the properties of the detector (energy/time resolution) and of the radioactive
sources used.

Figure 16: The individual components of the experimental setup.

5.1 Commissioning of the detector

Set the phoswich detector into operation (by connecting it to the high voltage source) and take a
look at the output signal on the oscilloscope.

Task 8: Measure the rise times and the maximum amplitude in NaI and CsI when
irradiating the detector with 241Am.

Task 9: Determine the field of view of the collimator on the basis of its dimensions.

16Field Programmable Gate Array.
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Figure 17: The circuit board shown is the heart of the experiment. It also carries the FPGA board
and the ADC and acts as the interface between the detector and the data acquisition system.

5.2 VHDL programming

In the VHDL part of the experiment you will write and test some designs. The first ones should
give you the opportunity to use simple VHDL constructs for the first time and to understand their
function better. In the central design you will integrate the component “usb serial” to send and view
the ADC data directly to the computer. The last part is the actual objective: It is your task to write
a VHDL process that processes the ADC values already in the FPGA, so that only the amplitude
and the rise time of a γ event have to be transferred to the computer via the USB. Then you will
analyze the properties of the phoswich detector with the resulting data acquisition system.

Task 10: In your first line of code, write the instruction that the LED0 should be
permanently on. Add a comment to the line above, e.g. - - Task 8, Lamp permanently
on.

Task 11: Write in your next line of code the instruction that the LED1 should assume
the state of SWITCH0 (i.e.: if the switch is set to ’1’, the lamp should also be on; if the
switch is set to ’0’, the lamp should be off). Try to stay as simple as possible - can you
possibly do without the IF statement?
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Task 12: Add to your design so that you make the state of LED2 dependent on the
switches SW1 to SW4. It makes sense to implement your design from Task 6. Can you
solve the task with a single assignment?

Now add an external clock signal to your design to realize time-controlled behavior: The FPGA
in the practical course experiment has access to a configurable clock line that provides the 60 MHz
clock frequency if you follow the appropriate steps:

1) Expand your entity with the following signal:

CLK: in STD LOGIC;

2) Insert the corresponding pin for the CLK signal into the UCF constraint-file:

NET ”CLK” LOC = D9 ;

Now you can use the clock signal in the next task!

Task 13: Switch LED3 on and off with a frequency of 1 Hz. To do this, write your
first process ’frequency divider’ in VHDL, which is best implemented with a counter that
counts rising edges of the CLK signal and is reset to zero at a certain value. Then switch
the LED on or off depending on the counter reading.

Task 14: Now read in the values digitized by the ADC. The ADC (just like the LEDs)
must be clocked with a std logic signal to digitize the voltages on each rising edge. Note
that you clock the ADC at 30 MHz, which is the fastest frequency the ADC can operate
at. Simply copy the process of the previous task and adjust the values and the signal
names. For test purposes, output the lower bits of the data read in on the LEDs that are
still free.

Task 15: You can use a pre-built component from the Internet to transfer the data to
your computer. This is done very often in practice. You can find it in the “templates”
directory. Add the files to the project as a copy using the “add source” button. You must
also consider how to send the 10 bit of an ADC value via the USB interface, which only
allows 8 bits at a time. If you follow the instructions below, you can use the unpacking
programs that have already been written: These expect the top two bits to indicate which
byte is currently being transmitted, “00” stands for the low byte and “0100” for the high
byte.

Task 16: Write a component that continuously checks the ADC values and, in case
of a γ event in the detector, determines the amplitude and rise time and sends it to the
computer. Just like the amplitude, the rise time is to be transmitted as 10 bits (or 11 bits)
unsigned. The program on the computer now always expects 4 bytes, with the first two
bytes “00” and “0100” being the maximum amplitude, the two following bytes, marked
with “10” and “1100” are the upper bits of the rise time. To determine a threshold
criterion for an event (trigger level), use the results from Task 14.
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5.3 Measurement of detector properties

Now that the data acquisition and transmission to the PC is working, you can perform some mea-
surements on various detector properties. First, you should optimize the data acquisition on the PC
so that only the pulses from the NaI scintillator are registered and the CsI pulses are suppressed as
far as possible. This selection is made by defining a valid time window for the rise times.

Task 17: Create histograms of the rise times when the detector is irradiated with the
source from the front (NaI) and then from above (CsI). In this way you can identify the
signals from the NaI. Determine the position of the maxima in the plots and convert them
into times. Compare the results with those from Task 8 and set a lower and upper limit
for the time window in the NaI.

The next step is to calibrate the energy scale. For this it is necessary to convert the ADC channels
into photon energies. Afterwards the relative energy resolution ∆E/E of the detector should be
determined.

Task 18: Create a histogram of the maximum amplitudes when the detector is irradiated
with the source from the front in the center at a distance of a few centimeters. Use the
two peaks in the spectrum to determine the conversion to the energy scale and specify
the relative energy resolution. Perform the same steps for irradiating the detector from
the front in a corner. How will the energy resolution change? Why?

Task 19: Determine the background count rate and record a spectrum of the background
in the laboratory.

Now complete the structure of the gamma telescope with a tube collimator.

Task 20: By what factor is the background reduced by the tube collimator?

Task 21: By measuring the count rate of the detector as a function of the rotary table
angle, you have another way to check the collimator’s field of view. First, point the
collimator exactly at the source and then turn it 4° to the left. From there, at every half
degree, measure the number of events in 30 seconds until you reach 4° on the right and
evaluate the curve when preparing the protocol. Compare the result with that of the
geometric measurement of the collimator in Task 9.
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6 Notes on the preparation of the protocol

In this last part of the guide we give a few tips for the preparation of the protocols. Although some
of them may seem obvious and self-evident, we ask you to look at them again when writing and
above all to heed the points in the last paragraph.

The protocol should begin with an introduction summarizing the contents and objectives of the ex-
periment. Always use your own words. Don’t copy from anywhere else. It is considered fraud to copy
text from someplace else for your protocol. After this, a short theoretical part should be inserted in
which the astrophysical connection and the basics of the detector principle are outlined. Here it is
recommended to go along the tasks 1 - 7 and answer them. Then add a part of the experimental pro-
cedure which describes the steps performed in the experiment sequentially - each with a few sentences,
what to do in this part and why, how the measurement/step was performed, what came out of it and
what can be concluded and learned from it. Finally, a section “Conclusion” or “Summary” would be
appropriate, which reiterates the most important results in relation to the objectives described above.

Before submitting the protocol, an electronic spell check should be carried out. This is presently
available on all computer platforms. After that, ALL members of the practical course group should
read the protocol and agree to the submission. This is a process that scientists should make a habit
of. Before a document with your name on it leaves your desk or is placed on the Internet, you should
make sure that it is not only qualitatively correct in terms of content but also in terms of external
impressions - especially if you are not the author yourself!
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A Description of the command line programs

The command line programs are described here in the order in which they are needed in the experi-
ment. Programs starting with “./” are located in the directory “/home/student/usb-utmi-cdc-acm/-
programs”. With the command “make” all can be re-compiled if necessary. Not all programs in this
directory are needed for the experiment.

First, a brief overview. With ./rdwr the data is received from the hardware via USB or sent to the
hardware. They must then be unpacked with a conversion program and shaped with a print program
that can use the following tools.

./rdwr: This program reads the data from the USB and writes it unchanged to stdout.
It waits for stdin to send data to the USB peripheral device.

pv: With pv, the amount of data transferred during operation can be displayed.

./vra convert: This takes the data from ./rdwr and unpacks it as it has been packed
in the FPGA. It always expects two bytes per integer, whereby the first two bits are
used as markers for whether it is the high byte or the low byte.

./vra print: Prints the data from ./vra convert in ASCII, one integer per line.

./vrdbl convert: Similar to ./vra convert, it unpacks the data from the FPGA. It al-
ways expects four bytes – two for the first integer, two for the second – each marked
by the highest 2 bits.

./vrdbl print: Similar to ./vra print, it prints the data of ./vrdbl convert in two integers
per line.

./bin.py: Determines the bin to which a line belongs.

./copycol.py: Copies a column.

grep: The General Regular Expression Parser is used to select lines.

cut: Selects one or more columns of the input stream.

./histogram.py: Counts how often each input line occurs.

sort -g: Sorts the lines of the input stream by a general numeric sort.

./prepend time.py: Inserts a time stamp at the beginning of each line.

tee <filename>: Writes the input to the file “<filename>” and to stdout.

gnuplot: A powerful plot program.

The tools can be called together in a UNIX pipe and their output can be redirected to a file, for
example

$ . / rdwr | pv | . / v ra conver t | . / v r a p r i n t > data . txt
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