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Abstract. Modularization is a promising direction for the further de-
velopment of artificial neural networks (ANNs), and a large variety of
modularized ANNs have been proposed. Possibly the main advantage of
modularization is that, due to the wiring and learning mechanisms, dif-
ferent modules in the ANN can be biased towards developing particular
problem solution substructures – allowing the incorporation of a priori
problem knowledge. We present a modular Echo-State Network (mESN)
architecture, where modules process independent recurrences. The struc-
ture enables the modeling of complex, periodic functions by means of an
additive combination of elementary oscillations. We compare the mESN
to monolithic networks on problems of different complexity and confirm
superior performance. Finally, we sketch out potential applications and
future work directions.
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1 Introduction

Artificial Neural Networks (ANNs) are very general machine learning systems,
which have been applied in many areas of science and engineering. To tune ANNs
for solving particular problems, researchers have proposed numerous ANN ar-
chitectures, with different topologies, types of neurons involved, learning mech-
anisms, and modularizations by constraining neural connections.

Modularity typically groups neurons in an ANN towards specific functional-
ities and restricts communication between the groups of neurons in a particular
manner. For example, in [7] and [8] ANNs are composed of several feed-forward
neural networks. These modules are mediated by a gating network, which chooses
the output of the most relevant module. The modules are combined either hi-
erarchically or recursively depending on the problem to be solved. Such modu-
lar networks have been applied to engineering applications, such as trajectory
modeling [8] and recognition [3, 7]. More complex modularized ANNs have been
considered in cognitive science for understanding processes in the human brain
[9] or for controlling complex humanoid robots [1].

In this work we propose a modular, recurrent ANN (RNN) architecture for
modeling time series. Although our architecture generally allows the usage of any
type of RNN as a module, we focus on Echo-State Networks (ESNs). Thus, we



call the investigated architecture modular ESN (mESN). As it was shown in [10],
despite their compact size, ESNs are able to model quite complex oscillators.
They are flexible and can be driven either by a signal from alternative input
neurons or operate as autonomous oscillators.

The possibility to use ESNs as autonomous oscillators makes them especially
suitable for applications where once learned target dynamics must be reproduced
on request. In such applications the networks can serve as a memory for complex
time series. Compactness of ESNs would bring added value to such devices.
Despite this potential benefit, applications for input-less reproductions of time
series are sparse. They include applications for cyclic rehearsal [4], [5] and for
artificial problems [4], [5], [11].

In the next section we detail the mESN architecture. Section 3 evaluates the
mESN in the task of reproducing of mixtures of periodic signals and analyzes its
performance. Section 4 sketches possible practical applications of the presented
model. In the conclusions, we summarize our work and draw future research
perspectives.

2 Modular ESN

The modular Echo-State Network (mESN) consists of several modules, each of
them being an ESN. These modules do not have direct connections to each
other and therefore operate independently. The mESN is shown schematically
in Figure 1. The output of an mESN is computed as a linear combination of
outputs of its modules as follows.

o(n) =

M∑
i=1

rioi(n) (1)

where M is the number of modules, oi(n) is the output of the ith module at time
step n, and ri is its responsibility for generating the output.

Using standard ESNs as modules in mESN is particularly advantageous for
modeling time series that consist of multiple oscillators. ESNs have been shows
to be able to produce accurate, oscillating output signals for a long period of time
without further external stimulation, solely drive by their own output feedback.
In mESN, the output signal oi(n) of one ESN module i is computed as follows:

oi(n) = WOUT,i[fi (Wixi(n− 1) + WOFB,ioi(n− 1))], (2)

where n is the current time step, xi(n − 1) is the vector of reservoir states at
the previous time step, Wi is the matrix of reservoir weights, fi is the vector
of activation functions of all reservoir neurons, WOUT,i is the matrix of output
weights, and WOFB,i is the matrix of output feedback weights. Expression (2) is
derived from the more general expression of ESNs, ignoring signals from possibly
additional input neurons. The general expression for updating an ESN output,
rules for designing the matrix W as well as a training procedure for the standard
ESNs can be found in [6].



Fig. 1. Structure of the mESN consisting of M modules. Responsibilities ri of the
modules define a portion of each module in the total network output o(n), which is
computed as a linear combination of the individual module outputs.

The design of the mESN requires the choice of macro parameters for each
ESN module as well as a the independent training of the output weights WOUT,i.
To train the modules, a preliminary decomposition of a training sequence Y into
a set of sequences is necessary:

Y = (Y1 ⊕ Y2 ⊕ ...⊕ YM ) (3)

where Yi is the time series assigned to the ith module. The operator ⊕ denotes
an application-dependent split of every value y(n) of the sequence Y into a set
of values yi(n), each of them belonging to the corresponding component Yi at
the current time step n.

In our study the decomposition was performed by an expert using a priori
knowledge about the target time series. Thus, additional information about a
problem was incorporated into the model during the design phase. A similar
approach was described elsewhere [12, 2]. In these studies feedforward neural
network modules were trained independently of each other on already segmented
sequences. In our study, ESN modules were also trained independently of each
other using the training procedure

WOUT,i = M−1
i Ti, (4)

where M−1
i is the inverted matrix of states of the ith module on its training

sequence and Ti is the corresponding sequence of target outputs.
Modularity provides an opportunity to choose the macro parameters inde-

pendently for each module. These parameters include the module’s reservoir size,
a spectral radius of the matrix Wi, and an interval for initialization of the feed-
back weights WOFB,i. An independent parameter choice is especially useful for
time series that consist of components with very different characteristics, such
as very slow and fast dynamics – where larger and smaller spectral radii are



more suitable, respectively – or differing component complexities – where the
reservoir sizes should be adapted accordingly [10].

3 Experiments

In this section we demonstrate the merit of mESNs when modeling time series of
different complexity. We focus on smooth sine waves and triangular signals. The
latter are not continuously differentiable and consequently more challenging. We
compared the performance of our mESN implementation with our corresponding
single-reservoir ESN implementation.

3.1 Experimental Setup

In the experiments we focus on dynamic reservoirs that were randomly gen-
erated for different combinations of ESN parameter settings. These parame-
ters were reservoir size, connectivity of a dynamic reservoir, and scaling of the
feedback weights WOFB . Ranges of connectivity and of WOFB were the same
for standard ESNs and for the mESNs, and were set to {0.1, 0.2, ..., 1.0} and
{10−10, 10−9, ..., 3.9, 4.0}, respectively. Ranges of reservoir sizes were different
for the evaluated ESNs and mESNs. Modules in mESNs were equipped with
only 4 to 10 reservoir neurons. The single-reservoir in the ESNs had from 10 to
100 neurons. For each combination of the parameter values, 500 networks were
generated, trained, and evaluated on a test sequence. Networks with the smallest
normalized root mean squared errors (NRMSE) were chosen as ESN modules for
the mESN. The mESN performance was compared with the performance of the
best single-reservoir ESN.

We considered three sets of target dynamics. The first time series was com-
posed of sine waves, the second was composed of triangular signals, and the third
was composed of a mixture of the two. For each target dynamics, a sequence of
700 time steps was generated, which was split into a washout sequence (the first
100 time steps), a training sequence (following 300 steps), and a test sequence
(the last 300 time steps).

Mixtures of sine waves are known in the literature as Multiple Superimposed
Oscillators (MSO). The number of sine waves defines the complexity of a dy-
namics: more sine waves constitute more difficult dynamics. The whole family
of the MSO dynamics can be described as follows:

y(n) =

s∑
i=1

sin(αin), (5)

where s is the number of sine waves and αi specify their respective frequencies.
We generated the sequences for the following standard set of the frequencies
α1 = 0.2, α2 = 0.311, α3 = 0.42, α4 = 0.51, α5 = 0.63, α6 = 0.74, α7 = 0.85,
and α8 = 0.97. Because of the smoothness of the individual components, the
MSOs are moderately non-linear and continuously differentiable over the whole
time axis.



Like the MSOs, the mixtures of triangular signals (MTS) are linear com-
binations of their components. Each component is a periodic triangular signal
characterized by a period and an amplitude. The amplitude of all components
was one. The periods were set to the following integers {32, 24, 20, 12, 8, 4},
which yields periods similar to the MSO ones. Despite this similarity, the MTS
are more difficult because of much higher non-linearity at peaks of the triangular
signals. Figure 2 shows curves of the least and most complex MTS dynamics,
MTS2 and MTS6. As can be seen, an MTS with more components resembles a
chaotic attractor. But in contrast to known chaotic attractors, both MSOs and
MTSs have internal structures that are very suitable for modularization.

For example, MTS2 consists of two distinct components Y1 and Y2, with
periods 32 and 24 time steps, respectively. To model MTS2 with mESN, two ESN
modules are employed. Each module is then trained on one of the components
and the best ESN is chosen, respectively, by means of the stochastic search
procedure detailed above. A dynamic reservoir for every candidate was updated
using the formula (2) at every time step of the washout and training sequences.
The output weights WOUT,i of module i were trained using formula (4) given
the training sequence Yi, that is, the corresponding target values oi(n) and Ti,
which appear in formulae (2) and (4), were taken from the sequence Yi.

Fig. 2. Mixtures of triangular signals showing the simplest (MTS2, blue curve) and
most complex dynamics (MTS6, red curve) considered. The sequences are split into
washout, training and test intervals.

4 Results

Table 1 shows reached performances and sizes of the best mESNs and ESNs
found for time series with two, four, six, and eight dynamic components. Per-
formance of the standard ESNs varies over a wide range from 10−12 to 10−2.
Standard ESNs had big difficulties on more complex dynamics and could not
model the most difficult target MST4.4 at all. At the same time, as expected,



Table 1. Performance of the best mESN and ESN on the respective target dynamics of
different complexity. MSOs are mixtures of sine waves, ”TriX” stands for a mixture of
X different triangular signals, and ”MSTX.Y” stands for a combination of X sine waves
with Y triangular signals. The number of neurons is the summed number of reservoir
neurons in all modules in the best mESN / ESN found for the respective problem.

mESN
Number of
Components

MSO & NRMSE &
size

Triangular &
NRMSE & size

MST & NRMSE & size

2 MSO2: 5.62 × 10−10

with 8 neurons
Tri2: 7.99 × 10−7

with 10 neurons
MST1.1: 8.08 × 10−7

with 10 neurons

4 MSO4: 6.47 × 10−10

with 16 neurons
Tri4: 8.37 × 10−7

with 18 neurons
MST2.2: 8.63 × 10−7

with 18 neurons

6 MSO6: 7.83 × 10−10

with 24 neurons
Tri6: 9.45 × 10−7

with 26 neurons
MST3.3: 1.04 × 10−6

with 26 neurons

8 MSO8: 1.07 × 10−9

with 32 neurons
- MST4.4: 1.59 × 10−6

with 34 neurons

ESN
Number of
Components

MSO & NRMSE &
size

Triangular &
NRMSE & size

MST & NRMSE & size

2 MSO2: 2.51 × 10−12

with 5 neurons
Tri2: 2.42 × 10−6

with 30 neurons
MST1.1: 3.29 × 10−6

with 20 neurons

4 MSO4: 5.72 × 10−8

with 9 neurons
Tri4: 7.31 × 10−4

with 90 neurons
MST2.2: 3.16 × 10−3

with 90 neurons

6 MSO6: 8.43 × 10−5

with 14 neurons
Tri6: 1.83 × 10−3

with 100 neurons
MST3.3: 5.80 × 10−2

with 90 neurons

8 MSO8: 2.73 × 10−4

with 68 neurons
- MST4.4: no ESN could

model the dynamics

the complexity of the time series had only a minor impact on the performance of
the mESNs. Their test errors varied only within four orders of magnitude. Also
the most difficult dynamic, MST4.4, which consists of four sine components and
four triangular components, was solved with high accuracy. The high perfor-
mance of the mESNs was also reached thanks to an individual choice of critical
parameters for each component, which was especially helpful on mixtures of
MSOs and MTSs. Whereas the sine waves needed similar WOFB settings below
10−6, some triangular signals required reservoir neurons to operate in a satura-
tion range with WOFB up to 3.8. Such a wide parameter spread is infeasible for
a single-reservoir ESN.

Besides the performance gain, modularity is very favorable for the genera-
tion of compact models of complex target dynamics. The largest reduction in
model size was observed in the sequence ”Tri4”, where mESN required 18 neu-
rons whereas 90 neurons were needed with standard ESNs. In order to reach
higher performance, a single-reservoir ESN increases a variety of reservoir states
through formation of complementary neural paths. This automatically requires a
larger reservoir. On the contrary, in the mESN splitting target components leads
to decoupling of internal dynamics. As a result, smaller ESN modules provide a
sufficient variety of internal dynamics for the corresponding target component.
However, splitting the components causes a slight size overhead in mESNs. This
can be seen in the easiest target dynamics, such as MSO2, where mESN re-



quired 8 neurons while a single-reservoir ESN solved the problem best with only
5 neurons.

5 Discussion

The experiments showed advantages of an mESN ensemble over a single-reservoir
ESN. The main advantage is the possibility to decouple internal dynamics from
each other. Like other modular architectures, it allows incorporating a priori
knowledge to do a focused choice of modules’ parameters and to reach higher
accuracy with more compact models. Besides that, such an organization offers
flexibility and robustness for potential applications. Modules of different types
can be plugged into the ensemble. Switching off a malfunctioning module allows
avoiding an abrupt reduction in system performance.

The mESN is useful for modeling periodic patterns of any complexity and
any period, especially when consisting of different components. Currently we see
at least three potential applications. The first one is an analysis of a time series
through mESN synchronization. It will produce an mESN whose active ESN
modules will indicate which components are present and how they are mixed
with each other.

The second application is a flexible control of a robot arm shown in Figure 3.
Its end effector may be required to draw a complex trajectory periodically. Each
ESN module may be linked to its own joint and produce a specific trajectory
independently of the other modules – leading to the generation of the overall,
target trajectory with the end effector. Alternatively, the end-effector trajectory
may be controlled by selectively switching mESN components on and off over
time, possibly enabling the generation of digits on any surface and with any
surface orientation that is reachable with the robot arm.

Another relevant application is the generation of central pattern generators
(CPG), where primitive rhythmic signals are combined into more complex pat-
terns. An mESN will represent a CPG with a population of tiny ESN modules.

Fig. 3. mESN-based loopless control of a robot arm. Coordinates (xT , yT ) of the end
effector (red point) on a trajectory (thick line) are a sum of projections of coordinates
of individual joints. (xi, yi) are coordinates of ith joint in a coordinate system with the
origin at the (i− 1)th joint. Coordinates (xi, yi) are output of the ith ESN module.



A linear combination of their outputs will be used to tune the CPG to a target
behavior. CPG parameterization may be realized by augmenting the individual
neural oscillators with input neurons.

6 Conclusions and Outlook

In this paper we presented the modularized echo state network architecture
mESN. In mESN modules are combined without a switching block common
for mixtures of experts. The independent operation of the neural oscillators
realizes component decoupling, enabling local parameter and meta parameter
optimization for each module and time series component. The proposed model
is useful for practical applications that deal with decomposable and switching
processes. Currently, we are investigating possibilities to tune an ensemble of
neural oscillators after changes in the target dynamics, such as amplitude and
phase. Moreover, we are working on automatizing the mESN modularization.
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