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Abstract: We extend Buchberger's generalization of Newman’s Diamond Lemma to
rewrite relations modulo equations. Lifting this result to an efficient test on
superpositions, we obtain an abstract framework for confluence criteria based on
subconnectedness. An efficient specialization of the abstract test yields an improved
- version of the completion algorithm of Jouannaud and Kirchner, which now enforces the
more general subconnectedness modulo E instead of local E-confluence. Rule-deletions
and other intermediate reductions are succinctly justified by showing that reducible rules
can only produce subconnected critical pairs. We offer a new view of Jouannaud's
multiset induction technique in the form of Noetherian induction on equational proofs,
which provides a well-structured completeness proof of our completion algorithm. As
further applications of our method, we develop a subsumption criterion for resolution
theorem proving, and a criterion for ground confluence of term-rewriting systems.
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Summary

We study improvements of the Knuth-Bendix Completion Algorithm, a proof-procedure for the
validity problem in equational varieties presented by a finite set A of equations. Our aim is twofold:
First, we identify the KB Completion Algorithm as an instance of a transformation process on
equational proofs. This yields a characterization of the output of completion as a fixedpoint of
proof-transformation, and facilitates a simple and intuitive proof of correctness. Second, we
present effective criteria to determine if a critical pair computed by the KB Algorithm is
unnecessary for completion. Essentially, the criteria predict whether the proof-transformation
exercised by the pair will eventually be accomplished implicitly through different critical pairs.

We treat the general case of completion modulo a subset £ of A with finite equivalence classes,
using Jouannaud and Kirchner’s variant of the completion algorithm as a basis. For our theoretical
developments, we construct a well-founded ordering on equational proofs modulo E which embeds
the transformation process, and which for our comrectness arguments facilitates the use of
Noetherian induction on entire equational proofs as opposed to rewrite relations. For practical
applications, we propose a specialization of the abstract algorithm and we discuss various
refinements, based on some empirical results. The suggestions of Winkler and of Kapur et al. for
confluence criteria also fall into our framework as (different) special cases. As theoretical
applications, we develop a specific ground confluence criterion for inductive completion, and a
subsumption criterion for resolution theorem proving.

Zusammenfassung

Wir untersuchen Verbesserungen des Knuth-Bendix Vervollstandigungsalgorithmus, einem
Beweisverfahren fir das Galtigkeitsproblem in Varietaten, die durch eine endliche Menge A von
Gleichungen prasentiert sind. Wir verfolgen zwei Hauptzielsetzungen: Zum einen identifizieren wir
den KB-Vervollstandigungsalgorithmus als ein spezielles Transformationsverfahren far
Beweisketten in Gleichungstheorien. Daraus ergibt sich die Charakterisierung des Ergebnisses
einer Vervollstandigung als ein Fixpunkt der Beweistransformation und somit ein vergleichsweise
einfacher und einsichtiger Korrektheitsbeweis des Verfahrens. Zum anderen prasentieren wir
effektive Kriterien zur Feststellung, ob ein vom KB-Algorithmus erzeugtes kritisches Paar fir die
Vervolistandigung unnétig ist. Dabei sagen die Kriterien im wesentlichen voraus, ob die durch das
Paar bewerkstelligte Beweistransformation letztlich auch implizit durch andere kritische Paare
erreicht wird.

Wir behandeln hier den allgemeinen Fall der Vervollstandigung modulo einer Teilmenge E von A
mit endlichen Aquivalenzklassen, und wir benitzen den VervollstAndigungsalgorithmus in einer
Variante von Jouannaud und Kirchner als Basis. Fir unsere theoretischen Entwicklungen
konstruieren wir eine wohlfundierte Ordnung auf gleichungserzeugten Beweisketten modulo E, in
die der Transformationsprozess eingebettet ist, und die Noether’sche Induktion direkt auf ganzen
Beweisketten statt nur auf Reduktionsrelationen zulasst. Fur die Anwendung in der Praxis schlagen
wir, basierend auf einigen empirischen Ergebnissen, eine Spezialisierung des abstrakten
Algorithmus vor, und wir diskutieren verschiedene mdégliche Verfeinerungen. Die Vorschlage von
Winkler und von Kapur et al. fir Konfluenzkriterien stellen innerhalb unseres abstrakten Rahmens
andere Spezialfalle dar. Als Anwendungen theoretischer Natur entwickeln wir schliesslich ein
Kriterium das spezifisch die Grundkonfluenz eines kritischen Paares testet und bei induktiver
Vervolistandigung eingesetzt werden kann, und des weiteren ein Subsumptionskriterium fir
Resolutionsbeweiser.



1 Introduction

1.1 Background

As a general framework, we are interested in theorem proving in equational varieties; i.e., we are
presented with a finite set A of equations (axioms) between expressions (terms) in a universal
algebra T, and we want to know whether some equality A = B holds true under A. The importance of
such axiom-systems and the associated question of validity is evident from modem Algebra. From
a Computer Science point of view, computability theory tells us that every computable function has
a denotation as a finite set of equations. Therefore, equations provide a language that is general
enough for the formulation of many interesting problems. Term equations have been used e.g. for
software specification in the theory of algebraic abstract data types [G&H&M 78] and for the
formulation of consistency problems in relational data-bases [Co&Ka 85]; there is also a natural
“equational view" of first-order predicate logic and the proof procedure of resolution [Hs&De 83]
[Pa 85], including the Prolog programming language [De&Jo 84]. [Hu&Op 80] gives a survey in a
terminology that has become a virtual standard, and to which we shall adhere with minor variations.

The validity problem in equational varieties is of course undecidable in general, with the word
problem in finitely presented groups being a special case. Intuitively speaking, the problem here is
that the two sides of an equation may have different complexities, and each step in an equational
proof can either increase or decrease the complexity of an intermediate result. Owing to the
simultaneous presence of complexity increasing and decreasing derivation steps in general, there
can be no upper bound on the complexity of intermediate results, and hence no way of telling when
to abort some fruitless search for a proof.

In 1941, M. H. A. Newman [Ne 42] identified this as a recurring problem in, e.g., the theory of free
groups, Church’s A-calculus, and combinatorial topology; we may add combinatory calculus and
Chomsky-0 grammars to his list. In all these theories, some search space of theorems is given by a
finite number of axioms together with two kinds of derivation rules or "moves” in Newman’s terms,
an undesirable, "negative”, one that increases, and a desirable, "positive”, one that decreases
complexity. Newman’'s positive moves are what we now call reductions. Especially for an
automated treatment of such theories it is desirable to know whether each theorem can be derived
by a sequence of reductions only, i.e. whether for any equality A = B there is a common term C to
which both A and B may be reduced. Newman went on to give an important characterization of this
Church-Rosser or confluence property: a theory in which positive moves are embedded in a
well-founded partial ordering » (i.e. sequences of reductions always terminate) is Church-Rosser
ift it is lecally confluent; where Jocal confluence is the property that, for each B, C, derived by single
positive moves from some common A, they can be further reduced to a common D (by an arbitrary
number of positive moves).
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In 1867, D. E. Knuth showed [Kn&Be 70] that for equational theories defined by a finite set of
axioms over the usual term-aigebras, Newman’s local confluence can be "lifted™ to a "most
general” condition on the defining axioms alone (in contrast to the generated reduction relation),
and is therefore decidable. Axiom systems whose associated reduction relation is Church-Rosser
are called complete, because the reductions contain all information about the theory. Most
importantly, Knuth developed a completion process which deals with the usual situation of



incomplete reductions: it gradually enhances the basis of known facts in the search space by
controlled application of negative moves until a theorem is provable from the augmented basis of
facts by positive moves alone. This derivation process is called complete, if each valid theorem in
the search space can be detected in finite time. Moreover, in the rare cases in which the process
terminates it yields a complete basis of facts from which all other facts in the search space can be
derived by reductions alone without further completion steps. If sequences of reductions are
guaranteed to terminate, we then have a decision procedure for our theory by Newman's lemma.

1.2 Completion of Term-Rewriting Systems

Rephrased in the classical environment of free term-algebras, the Knuth-Bendix (KB-) completion
procedure transforms a set 4 of term equations into a finitely and uniquely terminating set R of
rewrite-rules with equal theorem-proving power. (Though it may not terminate it is usually still
called an algorithm.) In general, many more rules are needed than there were equations, to make
good the loss of computational power incurred by restricting the use of equations to one-sided
application. At each iteration of the procedure, candidates for new rules are systematically
computed as "critical pairs”, which reflect most general situations where the local confluence
property of R may be impaired; only those pairs must actually become rules that cannot yet be
reduced to a common normal form. The method constitutes a semi-decision procedure for equality
under A, viz. for any valid equality A=B it will eventually produce a rewrite system R which can
prove A =B by mere reduction of A and B to a common normal form; if completion terminates, the
final term-rewriting system alone is good for deciding each such equality in A (i.e. it has the
Church-Rosser property).

In [Bu 84], Buchberger presented a generalization of the interesting direction of Newman'’s Lemma
that allows to test for the more general local pseudo-confluence property instead of local
confluence when showing that a rewrite system is Church-Rosser.
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c) local pseudo-confluence

Although it was derived and proved in a different way (see [Bu 79), [Ba&Bu 80], [Wi&Bu 83]),
pseudo-confluence (also called subconnectedness) is best explained in the light of the technique
of multiset induction developed in [Jo&Ki 84]. The reduction ordering on terms induces via its
multiset extension an ordering on equational proofs in which the purely reductional proofs are the
least (simplest) elements. Pseudo confluence now demands that for each (minimal) equational
proof containing a negative move there is also an alternative proof which is simpler. Thus enforcing
the pseudo-confluence property amounts to performing a transformation process on equational
proofs which replaces proofs by simpler proofs until purely reductional proofs are found. The
completion procedure halts as soon as it detects a fixpoint of the transformation, which, by its very
definition, enjoys the Church-Rosser property.

Thus, pseudo-confluence suggests itself as the natural property to enforce during completion. The
only snag lies in the construction of this simpler equational proof, because it was our very problem
in the beginning that we could not deal with proofs containing negative moves; when we restrict
ourselves to finding proots with only positive moves, we get the traditional local confluence as a
special case of pseudo-confluence. Furthermore, for axiom-systems on free term-algebras,



pseudo- confluence must be lifted to a condition on axioms, i.e. we need again a kind of
Knuth-Bendix theorem. The first partial solution to this was found in 1983 by Winkler [Wi 83], who
developed a sufficient criterion for subconnectedness, which was however difficult to handle in
practice. Winkler's proposal was generalized and simplified in [KO 85] and [Wi 85] to a sufficient
criterion which is even necessary if » is the reduction relation itself. Furthermore, practicality of
completion for pseudo-confluence was demonstrated in [Ki 85] with an implementation and
encouraging empirical results with the classical Knuth-Bendix examples related to the concept of
free groups.

In [Wi 85], Winkler proved completeness for the completion algorithm with subconnectedness
criterion with an algorithm organization and proof structure based on [Hu 81]. For a different
algorithm organization based on the model of a producer-consumer process, completeness was
proved in [KO 86] with a simple proof-induction technique. In contrast to [Hu 81], the proof
appeared rather easy and well structured, owing both to the stronger induction technique and to a
concise justification of rule deletions made possible by pseudo confluence.

The basic completion method meets its limits where inherently uncrientable equations are
encountered, as e.g. the axioms of associativity and commutativity (AC) together. The idea for the
solution of these cases is to split A = E U R into the disjoint subsets E and R of unorientabie and
orientable equations, respectively, so that the application of the trouble-making axioms can be
covered by an extended unification algorithm, and rewriting is performed with the extended relation
of R modulo E which works on E-equivalence classes. After the solution of the important AC case
([Hu 80], [La&Ba 77], [Pe&St 81]), a framework for the general case of a set of unorientable
equations with finite equivalence classes and finite and complete unification algorithm was
presented in [Jo&Ki 84]: The R-confluence test is augmented by a test for E-coherence, and the
two properties can again be localized, and lifted to a most general level by E-unification.

In the following we carry the results of [K{ 86] over to the general case of non-empty E, deriving an
E-completion algorithm that contains the one of [Jo&Ki 84] as a special case. In Chapter 2, we give
an introduction to the proof-induction method used in most of the proofs. Our proof ordering
immediately suggests the definitions of pseudo-E-coherence and pseudo-E-confluence, which,
by a generalization of the equational Buchberger-Newman Lemma, imply the Church-Rosser
property. From this lemma we obtain a new Church-Raosser test for non-Noetherian term-rewriting
systems. The special case where the reduction ordering > embeds the rewrite relation - yields the
equational form of the Buchberger-Newman Lemma and the foundation of our completion method.
Chapter 3 renders an adaptation of the main theorem of [Jo&Ki 84], which specifies the sets of
critical pairs whose pseudo-E-confluence and pseudo-E-coherence implies the global
Church-Rosser property. In Chapter 4, we first give the abstract criteria on critical pairs which
imply their subconnectedness modulo E. Furthermore, we show that reducible ruies generate only
subconnected critical pairs. We then present our version of the equational Knuth-Bendix Algorithm
with a general framework for the utilization of the abstract criteria, of which, e.g., the proposals of
[Wi 83] and [K&M&N 866] are special cases. The complete proof of correctness follows in Chapter
5. In Chapter 6, we suggest various ways in which the abstract test can be put to work in practice.
We treat explicitly the special case of empty E, for which we have the most thorough computational
experience. We discuss various strategy refinements suggested by the different specializations of
the abstract criterion together with empirical results. Chapter 7 contains two immediate
applications of the theory of subconnected completion: For resolution theorem proving, an
analogue to the subconnectedness test gives a subsumption criterion which predicts whether a
resolvent is eventually going to be subsumed by other clauses; for the method of inductionless
induction proposed in [Jo&Ko 85] we develop a ground subconnectedness criterion which is a
sufficient test for the subconnectedness of all ground instances of a critical pair without requiring
subconnectedness on the general ievel.



2 Abstract Subconnectedness ModuloE

We first concentrate on the set-theoretic part of our method where no knowledge of terms is
required. In the following, let S be any non-empty set, and t € S; we will be concerned with binary
relations on SXS.

DEFINITION: Let g be a relation on SXS, called reduction to emphasize that it is non-symmetric.
R+ denotes the inverse of -, and ge* = > U g¢. For simplicity we write = instead of g if
no ambiguity arises. =+, =*, and «* denote the transitive, and the reflexive and transitive, and
reflexive, transitive and symmetric closure of -, respectively. Let g+» be a symmetric relation on
SXS, whose reflexive transitive closure g<»* is called E-equivalence. g/g= is the relation
E+**°Rp—°c+* which corresponds to the relation induced by g— in E-equivalence classes. Let
A+ = g+ U p+; the reflexive-transitive closure 4 ++* is correspondingly called A-equivalence.

DEF: Let » be a binary relation on SXS. b is Noetherian, if there is no infinite sequencetht’ b ... A
binary Noetherian transitive relation is a well founded (and strict) partial ordering; for abbreviation,
it will be called a Noetherian ordering.

Our overall goal is theorem proving in A, i.e. we want to infer relationships such as t; 4 +* t;. Now,
working with A itself in an automated manner is difficult, because it is not Noetherian and hence
derivations may e.g. run into cycles. The main idea in completion methods is to single out a subset
R C Asuchthat A = R U E and R/E is a Noetherian reduction relation, and then to complete R/E
such that each theorem provable in A becomes provable in R/E through a finite number of
reduction steps that can readily be automated.

DEF: t € Sis »-reducible if I €S :t > t, otherwise t is = -irreducible or in - -normal form. A
reduction g— is terminating if it is Noetherian; it is E-terminating, or terminating modulo E, if R/E>
is Noetherian.

From now on, we will use the prefix E- and modulo E as synonyms. For brevity we often only define

the general notions modulo E, and we will tacitly assume that whenever we omit £- or modulo E we
refer to the corresponding property forthe case of E = @,

Assume we have t; «»* t); then t; and t; are actually connected by a finite chain C=<t; +»
Uperup 4> .. Uy U, « D, which proves that t) and t, are related in the reflexive-transitive
closure of +». In general there can be many different proofs of t; «* t;; we shall use the notation
P =<t «* 1> to indicate that P is any (fixed) proof, whereas we refer to a specific proof P =<t; «»
UperUp e .. +oUp U, « b by its connecting sequence C=<uj+ru > ... «»up ;+>U,>, which
we abbreviate as P =<t; ++¢ t,>. Of course we identify C and C =<uy e»up 1 ¢+ ... esU;eou;D.

DEF: By transitivity, proofs can be concatenated if the last element of one proof is the first of the
other. So, if P=<{x «»* y> is a proof that x relates to y, and Q =<y +** 2> is a proof that y relates to z,
then W = P.Q = <x +* 2> is a proof that x relates to z. Correspondingly, W contains P and Q as

subproofs. We denote the empty proof by <>; trivial proofs are of the form <t>, and elementary
proofs are of the form <u; < uy>.

Qur notation P=<x «* y> alone makes no reference to the proof sequence. So several proots
denoted all by <x +«+* y> will in general have different connecting sequences. However, they all
prove that x relates to y, and are hence called equivalent proofs for this fact; the corresponding
equivalence relation on proofs is denoted by =.



DEF: Let A = R U E. B(A) = (4; ., <) is the monoaid of proof chains, i.e. the set of all proofs in the
reflexive transitive symmetric closure of A, augmented by the empty proof; note that there is no cut
rule. A proof W=<x 4 +** 2> is said to be in V-form modulo E, it I P, Q € B(R), M E B(E), P=<x g~*
Y12, M=<y; g+ * ¥, Q=<y; g« * 2: W=P.M.Q. Bvg(A) C B(A) is the subset of reductional proofs
in A, i.e. proofs that are in V-form modulo E; we write Bv(A) if E=@.

Our overall goal being automatic deduction techniques for valid relationships in equivalence
relations, we are interested in producing simple proofs for these relationships, transforming com-
plicated into simpie proofs, if necessary. The key concepts for proof orderings are the following:

DEEF: For a given set S, a multiset M(S) is a collection of elements from S that may have multiple
occurrences of identical elements. For a partially ordered set (S, »), the muftiset ordering » on
M(S) is defined as follows: For M, N E M(S),M> Niff 3 X,Y EM(S), =X CM, Y finite: N = (M -
XYUYandVy€Y3IXEX: x>y Le, M > N if we can replace a number of elements in M with a
finite number of elements in Y, each of which must be less (in terms of ») than some replaced
element.

LEMMA: (Dershowitz, Manna 1979)

Let (S, ») be a partially ordered set. Then (M(S), ») is a partially ordered set whose ordering » is
well founded iff » is well founded.

PROOF: By Konig's lemma, see [De&Ma 79]

We are now in a position where we can (partially) order our proofs, if we are only given an ordering
on S, because » immediately induces an ordering on proofs when we take as multisets the sets of
intermediate results. We will say that proof N=<u; ++ U «» ... «» u, | «* u,> is simpler than proof
M =<t1 > t2 - . f.m>, iff M= {tli tz, by tm} > N= {Ul, Uz, -y Un}. Because of this 1-1
correspondence, we will also write M » N (or N € M if that is more convenient). In our applications,
we shall take for > a superset of the well-founded termination ordering for g/g— that is needed
anyway to keep reductions Noetherian. For the remainder of this section, we simply assume that >
is a Noetherian partial ordering on E-equivalence classes.

PROPOSITION 1: LetP = w1.p.w, and g be proofs, g=p, q € p. Then w;.q.w; < wy.p.w,

DEeF: R is Church-Rosser modulo E (A is Church-Rosser in R/E U E)yif VWEBA)IVE
BVE(R/E):V =W,

The Church-Rosser property for a reduction relation requires that for each (complicated) proof in
the symmetric closure there are also two reduction chains in the relation itsetf, which constitute an
equivalent simpler proof. if we can decide E-equivalence, and if R is Church-Rosser modulo E,
then we can decide A-equivalence by purely reductional proofs in R/E, and a single E-equivalence
test. Unfortunately, it turns out to be in general impracticable to work with the R/E— relation itself,
because of the arbitrary location of impiicit g+*-steps involved. The idea is now to contain
occurrences of these E-subproofs in such a way that they can be built into the application
procedure (matching) for g -steps. l.e., effectively we compute with some relation R, where
R? € p—= C p/e~ (weset A’ = R’ U E). So we are interested in more specific connecting
sequences which must still be in V-form but use only R’ reductions. Consequently, our notation
must be capable of expressing that the subconnecting sequence belongs to a specific subset of
proofs.

DEF: R is R*-Church-Rosser moduio E (Church-Rosser modulo E in R) iff YV W € B(A) 3 V €
Bvg(R): V=W.



We are mainly interested in transforming proofs into simpler, but still equivalent ones. Furthermore,
our transformations will be applied locally, hence the following definitions.

DEeF: P €= Q (P is simpler, but equivalent to, Q) iff bothP € QandP = Q.

A proof is a rewriting ambiguity, iff ithas one of the forms <X « y =2 D, X« y = D, or{X > y >
.

R’is locally pseudo-confluent withRin A'iff V a=<{x g« yp=2> 2 IWEBA):w<L= a

R’ is locally pseudo-coherentin A'iff V a=<x g« yge» 22 IWEBA)RW<= a

If w is non-trivial and non-empty, it can always be assumed to be free of trivial (or empty)
subproofs; we shall implicitly make this assumption in the sequel. Our definition of a rewriting
ambiguity is by an abuse of the notation for the case of empty «». When, for a rewriting ambiguity a,
there exists w €< a, we also say that w subconnects (the side-elements of) a, or that w is a
subconnecting chain. We use subconnectedness as the common notion for pseudo-confluence

and pseudo-coherence. Local pseudo-confluence and pseudo-coherence are suggested by the
method of proof induction. Now proofs in A’ still contain g<+»-steps at arbitrary locations, so that a

slight specialization is necessary.

DEF: BWwg(R) = {w €B(R’U E)| W=p;.ps- - Pn-1-Pn» B; € BVE(R}.

R’ is locally pseudo-confiuent modulo Ewith Riff YV a=<{x g« yp2> 2 IWEBWE(REw<€=< a

R’ is locally pseudo-coherent modulo E iff V a=<{xpe yge 2 IWEBWER):w<€=< a

R'is pseudo-coherent modulo Eiff Va=<xpgrey e ' pe»* D IWEBWEREW<= a

We also write pseudo-E-confluent for pseudo-confluent modulo E. These conditions may at first
look very special. However, when we immediately require w to be in V-form (modulo E) we receive
the focal confluence, local coherence, and coherence properties of [JO&Ki 84], respectively.
Furthermore, Lemma 1 below shows that local pseudo-E-coherence in A’ already gives us these
special connecting sequences in Bwg(R") composed of subproofs in Bvg(R"). In this case we know
where ge»-steps occur in the subconnecting sequence, so we shall also say that R’ is
pseudo-E-confluent in R’.

LEMMA 1: Let R" be locaily pseudo-E-coherent. Then Y P €B(A) I Q€ Bwg(R"): eitherQ = P, or
elseQ €= P.

PROOF: Let P € B(A". If P has already the special form required for Q, we are done. Otherwise,
assume for proof induction the hypothesis for all P* € P. Now P = Pj.a.P, must have a subproof
a=<X g« Y g+ z g+ 2> with a € B(R"). By local pseudo-E-coherencs, there exists w € BWg(R?),
W= xg+ Yo D, andhence b=w<z g+* 7> €a Now P’ = P;.b.P, €P,P’ EB(R’U E), so
that, by hypothesis, we are done

COROLLARY: LetR’be locally pseudo-E-coherent in A”. Then R’ is pseudo-coherent modulo E.
PROOF: Leta=<{x g« yg+*>.ByLemma1,3Q €EBwg(R), Q<= P

LEMMA 2: Let R be E-terminating and let R’ be locally pseudo-coherent modulo E. Then t is
Rs/E=* - reducible iff it is g-— -reducible.

PROOF: The if-part is trivial. Now if t is g /= -reducible there is some proof r=<t g /g t'>. By the
definition of R/E, there is a corresponding proof r' € B(A’) for which by Lemmma 1 there is a proof b
starting with a non-trivial subproof p € Bvg(R"). Now p € B(E) or p=<t g++* t">.<t" gr«* "> would
both contradict E-termination of R, whence t must be R’-reducible O



Our proof ordering » has by its definition as a multiset ordering the embedding property of
proposition 1: p » q implies w;.p.w, » w;.qQ.w,. For our applications to term-rewriting systems, we
shall have to work with stronger orderings for which embedding does not hold in general. Instead, it
is sufficient, but essential, to have embedding for our transformations on proofs, so that they can
be applied locally. So we shall require of a proof-ordering that it be stable under embedding of
rewriting ambiguities, i.e., p » q implies wy.p.w, » w;.qQ.w; if p is a rewriting ambiguity. This
property was first given special consideration in [Ba&De 86}, where it is calied monotonicity.

We are now ready for the main result of this chapter, which is a generalization of the interesting
direction of the Buchberger-Newman Lemma.

THEOREM 1: (Equational Generalized Buchberger-Newman Lemma)

Let > be a proof ordering which is stable under embedding of rewriting ambiguities. Then R is
R’-Church-Rosser modulo E if R’ is locally pseudo-E-confluent with R and locally
pseudo-E-coherent.

PROOF: Let P € B(R U E); clearly, P € B(R" U E). We assume for proof induction the hypothesis
that VW < P 3V € Bvg(R"): VW. Now if P € Bvg(R”), we are done. Otherwise P contains at least
one rewriting ambiguity a as subproof. So there exists, according to the premises, a proof &’ €= a,
a €EBR'UE). SoW = pj.a.py € P = p.ap, by embedding and hence, by our induction
hypothesis, we are done

Note that we did not require that > contain g/£—. For example, g /- may not be Noetherian, so
that we get a new confluence test for non-Noetherian rewriting systems.

EXAMPLE 1: Theorem 1 (but not Newman's Lemma) implies each of the following:

a) Let R consist of infinitely many rules 1 - 2,2 - 3, .... Ris clearly CR, taking > = 9.

b) Let R be such that Vx,y, z: x+z-y implies x+»y. Then R is CR, taking » = @.
cjLetR={A->B,A->C,C->DD->BB—-1,1222-3,..}. RisCR,taking» = {A>D}.
Note that the system in c) is not even strongly confluent (but clearty CR) ]

Under these weak assumptions, the Church-Rosser property does not imply that there exists a
Noetherian ordering according to which the rewriting ambiguities of A’ are subconnected.
However, the implication stated in the theorem is still the one that is most interesting, becatse our
aim is to prove the Church-Rosser property. For our application to term-rewriting systems we shall
utilize the special case where » 2D n /-, so that default confluence implies subconnectedness.

COROLLARY: (Equational Buchberger-Newman Lemma, EBNL)

Let > 2 /e~ be an E-termination ordering and » the associated proof ordering. Then R is R’-
Church-Rosser modulo E iff R’ is locally pseudo-E-confluent with R and locally
pseudo-E-coherent.

PROOF: The only-if-part holds by definition and » D Rs/g~*, the if-part is covered by Theorem 1

Obviously, Theorem 1 implies EBNL under the condition - C ». EBNL generalizes the interesting
direction of Newman’s Diamond Lemma in that it requires a local property (subconnectedness) that
is strictly weaker than local confluence. The corresponding lemma for the case of empty E was first
stated in [Bu 84] as the Generalized Newman Lemma, and proved in [Wi&Bu 83]. Globally, of
course, subconnectedness and local confluence are equivalent properties, so that the name may
have been misleading. Incidentally, in [Wi&Bu 83] the lemma also used a definition of
“connectedness” that implies = C » if it holds globally (for every rewriting ambiguity).



The following is again the generalization to subconnectedness of a lemma in [Jo&Ki 84].

LEMMA 3: Let R be E-terminating. Let R’ be locally pseudo-E-coherent and locally
pseudo-£-confluent. Then normal forms of t with respect to g/g— and with respect to g~ are
E-equivalent.

PROOF: Let W=<t) g/p«*t g=° t>; let W = <t; p++* t)> be the corresponding proof in B(A")
which exists according to the definition of g /e—=. By Theorem 1, R is R’-Church-Rosser modulo E,
so 3V € Bvg(R): V=<t 4r+* t2>. Now t, is g—=-irreducible, and t; is R/E~ -ireducible, hence
also g-» -ireducible; so necessarily V=<t g=*t,>



3 Subconnectedness in Term Rewriting Systems Modulo Equations

We shall now apply the results of the previous section to equational theories, i.e. congruence
relations on free term-algebras, which are particular instances of equivalence relations. To make
the presentation self-contained, we also reproduce necessary terminology from [Hu&Op 80], [Hu
81], and [Jo&Ki 84].

3.1 Basic Definitions

DEF: Let ¥ be a denumerable set of variables. Let T be a finite or denumerable set of operator
symbols disjoint from ¥, and arity a function from Z to INy. The set T of terms is defined as the free
arity-graded Z-algebra generated by V.

DEF: Lett € T. O(t) denotes the set of subterm occurrences in t, a subset of a tree domain.
Occurrences are called positions throughout this paper. Positions are represented as strings of
natural numbers, with concatenation operator - and identity £. Two positions u and v are disjoint,
ulv, if neither is a prefix of the other. ¢ is the top position in any term, i.e. t = t| gltate) VLET.
Term s occurs in t (as subterm), which we write t[s], if 3 u € O(t): tu =s.Gt):= {ueow] tlu ¢V}
is the set of all non-variable positions in t.

DEF: An axiom-system is a finite set A of pairs of terms <g, d> called equations and written g=d.
A** is the smallest symmetric relation that contains A and is closed under substitution and
replacement. 4=, equality under A, is the transitive and reflexive closure 4+*°. It is the finest
congruence containing A and closed under substitution.

DEF: Let W(t) be the set of all variables occurring in t. An A-substitution ¢ is amapping V- T. In
the special case of an injection where all terms of ¢ are variables, we call ¢ a permutation, or
renaming of variables. For a set of variables V7, UIV' is the restriction of ¢ on V. Substitutions ¢

and r over the same domain D C V are A-equal, if xa 4= xr V x € D. Let S be the set of
A-substitutions. 4< denotes the subsumption preorder modulo Aon T, i.e.s 4<tiff 3o € S:so
A= L s 4< t we say that s A-matches t with A-matching substitution ¢; we say that s and t are
A-unifiable, s 4V t, iff 3 p € S:sp 4= tp. A set of A-unifiers p* of s and t for which sp* 4< sp, for
each A-unifier p, is called a complete set of most general A-unifiers (CSU(s, t, A)), and for each p*,

sp* is a most general common instance (mgci), of s and t. Of course we omit subscripts if no
ambiguity arises.

DEF: An equational term-rewriting system (ETRS) R A is an axiom-system whose elements, called
rules and pictured as oriented equations, all satisfy V{d) C V{g). Given the equations of any A4, we
say that rule R = <g, d> is A-applicable totermtif Ju € O(t): g 4< tlu. We say that t A-reduces to
tinu, and we write ' = tfu « do], andt g 4- [u, o, g=d] V', if g is the A-matching substitution of g
on tlu. Again, we shall usually list only the indispensible subscripts. R,A4~ is the smallest relation
that contains R 4 and is closed under 4-substitution and replacement. tis in g 4~ -normal form if
no rule in R is A-applicable to t. We also write R,A4 for R 4, and, since g RA™ dif<g, D € Ry, we
also denote rules by <g » .

DEF: A term-rewriting system R is said to be locally confluent (Church-Rosser, Noetherian, etc) iff
R~ is locally confluent (Church-Rosser, Noetherian, etc). It is said to be subconnected, if all
rewriting ambiguities in g— are subconnected. R is interreduced, if foreach<l - > € R, ris in
R-normalform andlisin R - {<1 = r>}-normal form.
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DEF: Let s be a non-variable term and t a term with position u in G{(t). Then s A-superposes on t at
position u in G(t) with a complete set © of A-superposition substitutions iff there exists a set of
unifiers © = @, s.th. © = CSU(tIu, s, A). In this case there also exists a complete set of
A-superpositions SP(tlu, s, A) = {t8 | @ € ©}. In the case of empty A there is one superposition
which is unique up to variable permutation. Following [Jo8Ki 84] we also call the superposition
substitutions overfappings. Given rules <1 - r> and <g = d> such that F{I) N ¥{g) = &, and 1
overlaps g at position u in G{(g) with the complete set of A-overlappings ©, then the set {<<p, > |p
= gl[e<df] = d8, q = ghu«rf]} is called a complete set of A-critical pairs of the rule <1 -» > on
the rule <g = @ at position u. {g#| & € 8} is the corresponding set of A-superpositions. Critical
pairs are trivial it {g = d> = <1 = > and the overlap position is &.

3.2 Subconnectedness and the Church-Rosser Property for Term-Rewriting Systems

We closely follow [Jo&Ki 84], using their terminology, but we generalize their results to the use of
pseudo-E-confiuence and pseudo-E-coherence. In addition, we employ our notation of proofs. In
fact, our generalization is immediately apparent from the proof diagrams given in [Jo&Ki 84], which,
due to the method of proof induction, we need not close completely; instead, we are done with
each rewriting ambiguity as soon as we have constructed an equivalent, but simpler, proof for it.

We intend to work with the reduction relation R* = RI U RnLE generated by two rewrite-systems
Rl and Rnl, with linear and non-linear rules, respectively, and an axiom-system E; furthermore we
have RIU Rnl = R,andweset A = RU Eand 4 = R’U E. We assume that equivalence classes
in gp= are finite, and that we have a finite and complete unification algorithm for the theory E. In
addition, we assume that we are given a Noetherian ordering on E-equivalence classes, the
reduction ordering > 2 r/g—, which is stable under substitution and replacement; in particular s )
timplies s’ > ' if s’ p= sand t' g= t. We shall at first work with the proof ordering » given by the
multiset extension of ». Note that > D g-—, which immediately gives us

LEMMA 4: (Default subconnectedness)

Any R’-confluent rewriting ambiguity is ®»-subconnected modulo E in R”.

PROOF: Let P=<p 4-+* u 4-++ q> be a rewriting ambiguity and Q = Q.M.Q" = <p g—=* P1><p1
E+"qpPq; «* @ inBvg(R). fP=<p « u- q, thenclearlyu -+ foralitemst €Q U Q"
(Q’" and Q" may be trivial, but not empty), and hence u > t; by > D R/E D R’. Furthermore, ¥ LEM
IseQ:t E“" s, which gives u » t; in this cass, too, by a property of >. f P=<p R UE+ qQ,we
have again P » Q' and P » M by the same reasoning as above. Now Q" cannot be trivial, for
otherwise p; g= q, which, with u g= q and u > q, yields the contradiction q > q. So we haveq -» *
t, and hence u > t;, for all remaining terms q#t; € Q". Altogether we get u » t; for all terms in the
connecting sequence C = Q\ {p, q} of Q, and therefore P » Qbecause Q = (P-{u}) UC

Note that in the coherence case the peak term u is not greater than each term in the new proof Q,
but it is indeed greater than all new elements that are not already in P. Here we really need
something stronger than Buchberger’s original definition of connectedness, in the manner of
Theorem 1. The additional result that Q" is not trivial in the coherence case will be needed again
below.

In complete analogy to the case of empty E accomplished by Knuth, we shall be able to lift the
treatment of rewriting ambiguities to the most general level of critical pairs.
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LEMMA 5: (E-Critical Pairs Lemma [Jo 83])

Assume <t R=Te, g, g-»d] 11> OF <t E**[¢, g, g»d] 11>, and <t g g— [n, o, 1-1] 122, with n € G(g),
and n=¢ if g d € E. Then there exists a critical pair <<p, @>»> = <<d@, g[n+r]6>> in a complete set
of E-critical pairs of the rule 1-r on the rule g- d at occurrence n, and a substitution r such that ©
€ CSU(g|n: 1, £), and t) g+>* prand ¢ g+»* Or|(ng) U V). therefore t; pes* qr.

PROOF: By the definition of a complete set of E-unifiers, see [Jo 83]

For empty E, the E-critical pairs specialize of course to the usual critical pairs. Following again
Jouannaud and Kirchner, let SCP(R, R), SCP(E, R), and SCP(R, E) be the sets of non-trivial critical
pairs for respectively: all <I-r> and <g->d both in R, all I-1> and <r=D for d=r> in E with all
{g->d in R, and all<]=r> in R with all {g— d> and <d-g> for <g =d> in E. Top critical pairs are not
considered in SCP(R, E) because they duplicate those in SCP(E, R). Furthermore, let CSECP(R, R)
and CSECP(R, E) be the complete sets of non-trivial E-critical pairs for respectively all I-1> in R
with all <g—»>d> in R, and all <1-1> in R with all <g—»d> and <d- g> for <g = in E. Top critical pairs
will not be needed in CSECP(R, E).

Again we take some convenient liberties with these notations; so, e.g., SCP(Kg>d, u, <1-1>)
represents the critical pair of equation <g=>d> on rule <I-r> at position u in 1. If it is unknown
whether <g—d> is a rule or an equation, or whether <1-r> is in Rl or Rnl, we write CP(Kg-> D, u,
<1->r>) for the set of critical pairs according to the true gender of the superposition partners.

We intend to show that subconnectedness of the critical pairs implies subconnectedness of all
rewriting ambiguities. We face the difficulty that the subconnecting sequence (after substitution
and replacement) alone is not an equivalent proof to the rewriting ambiguity, but that we also need
the equality steps Q" = <t} p+* pr> and Q" = <t, g+* qr>. For confluence situations this
presents no problem, because both Q' € P and Q" <€ P, so that we obtain a proof of =t
completely below P, For coherence situations, however, t E+** 1] and the proof Q" is not simpler
than P in our proof ordering.

Here it is essential to notice that do = t; g+** pr = dOr, and that the substitutions ¢ and Or are
E-equal, so that there is a proof <deo E+** dOr> in which the E-steps take place within the
substitution part of d. So, obviously, there must be a stronger proof ordering which takes
occurrences of E-applications into account. A new class of orderings of this type has recently been
introduced in [Ba&De 86]. Within the class, stronger Brderings are obtained through lexicographic
extensions by additional Noetherian orderings. While the orderings of Bachmair and Dershowitz
are based on complexity comparisons of elementary proofs, we shall extend our term-comparisons
to stay compatible with [KO 86]. Alternatively, we could also give the subsequence Q" separate
treatment, leaving the ordering weaker but complicating proofs of our theorems.

DEF: we define the complexity of an intermediate result t in an equational proof as a tuple (t, S),
where t is a term and S is the multiset of subterms which are replaced by the affixed proof steps. To
each subterm we adjoin one of the modes r or e, according to whether it is replaced by a rule or an
equation, respectively, and we write (r, s) to denote the pair of mode and term. So in a proof with
subproof <s R***[h,, ]t E**[n, , ] W, t has complexity (t, {(r, tlh), (e, t|n)}). Occasions where we
need the mode information will be rare, and usually we will only write the subterm for simplicity, and
think of the mode as additional information available on demand. Of course, S contains a single
term if t is in an elementary proof, and S is empty if t is in a trivial proof. E? is an ordering on terms
with mode, defined as s > t iff either the mode of s is e and the mode of tis r, orelse Ju = e: s,
E= sTt]; ie. there exists a strict subterm of s which is E-equal to a term that contains t
(equivalently, there is a term s™ in the E-equivalence class of s, s. th. t is a strict subterm of s7). g
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is the multiset extension of g>. The complexity ordering » is the lexicographic orcering obtained
when comparing term complexities by » in the first component, and, if first components are
E-equal, comparing second components by g»’. Finally, the extended proof ordering g» is defined
as the multiset extension of ».

E? is actually a subterm relation on E-equivalence classes. To see this, we note that its definition is
representation independent: lets g t, and s; g= s, t; = t. Then by definition 3s: s g= ’[t], so
thats) g= s’[t]. Now t g= t; implies s’[t] g= s'[t;] by congruence, so thats; g= s'[t;] with a strict
subterm occurrence, and hence s; g» t;.

LEMMA 6:
E® is a Noetherian ordering on term-complexities if E-equivalence classes are finite.

PROOF: By assumption, » is a Noetherian ordering on E-equivalence classes. We first show that
E? is Noetherian: let uy g» ... w; g> 1, ... be an infinite sequence. There is some index j s. th. the
modes of all u; with i > j are the same. For all i > j, we have uy; = u;"[u;41]. So, by stability of g=
under replacement, there is a sequence of terms u; = u;"[u; 1] p= v"[u";1[v42]] E= - in
which subterm occurrences are strict by definition and therefore term sizes cannot be bounded. So
the sequence must be infinite, contrary to our assumption that E-equivalence classes are finite.
Consequently, both g> and its multiset extension g}’ are Noetherian. Now ». is Noetherian as a

lexicographic extension of Noetherian orderings: Assume to the contrary that there exists an
infinite sequence C >¢ C' > ... . We cannot have an infinite subsequence of only g’ steps. So in
the first component we have a sequence of » steps interspersed with finite subsequences of
E-equivalent terms. The latter can be factored out, however, yielding an infinite sequence of »
steps on E-equivalence classes, contradicting the first assumption. As a conclusion, E» is
Noetherian as a multiset extension of >,

Again we identify g, which is defined on the multisets of term-complexities, and its associated
ordering on proofs. Clearly, g» = 2 if comparison is only in the first component; so g» D », and
the extension preserves well-foundedness. We shall now prove that the extension also preserves
stability, a crucial result for lifting the treatment of subconnectedness to the most general level of
critical pairs in the same way as for local confluence.

LEMMA 7: (Stability of £ under substitution and replacement)

Let P=<p; g2+ Py 4°¢* ... 4> P>, Q=Kq] 47+ 3 g°+* ... g7+ q> be proofs in B(4"); lettbe a
term and o an E-substitution. Then Po = <pjo 4+* Pya g++> ... g7+> pyo> and t[P] = <t{uep,]
A tuepy] g2+ .. goe tluep, ] are also proofs in B(4"). Moreover, if P > Q for Q € B(4),
then both Pe g» Qo and t[P] g> t[Q]. Hence the proof ordering g is stable under substitution
and replacement.

PROOF: We look at the associated multisets, and we note that subterm modes do not change under
substitution and replacement. We have pie 4>+ ;10 if D; 4°¢* D;, 1, and tluep;] 4o+ tluep 4]
if p; 4°+* P;4 1, because of stablity of 4-«+ under substitution and replacement, respectively; so the
multisets of terms associated to Po and t[P] are indeed proofs. Let Q = <q; 4:¢> qy g« ... go¢»
Gm>. Now p; » q; implies both pje > gjo and tfu«p] > t{u «q;] by stability of > under substitution and
replacement, so we already have the result for », by its definition as the multiset extension of ». For
comparison in the second component, we have PiE= Q) and positions u, v, s.th. Pilu = T, quV =5,

with r g> s; so by definition t|n g= tls] for some h = e. By stability of g=, comparison after
substitution and replacement is again in the second component. Replacement, i.e. adding context
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in a proof, does not change the subterms to which the proof steps are affixed, so second
components remain unchanged, which trivially preserves the ordering; in the case of substitution
we have re = (r]n)e £= telsol, hence also stability

As remarked earlier, stability of g» under embedding is no longer trivial, because term
complexities are now sensitive to the context, i.e. to the adjacent proof. In terms of multiset
orderings, this means that the middle term of a rewriting ambiguity no longer gets replaced by the
subconnecting sequence, but the complexities of all three terms get replaced by the complexities
of the new proof. To obtain stability under our proof-transformations, we must now even take into
account just how coherence ambiguities will get subconnected.

LEMMA 8: (Stability of E>® under embedding of rewriting ambiguities)

Let A be a rewriting ambiguity, and A’ €= A, where A’ is constructed by the completion process.
Then W.A'W,; p<€= W.AW,.

PROOF: [Confluence ambiguity] Let A=<t" g t g t), A’ = <t" 4-+>* t"> (note that A’ must be
equivalent to A, so that both side terms must be present in A’). Sincet > t” and t * t’, comparison
for > is solely in the first component, which is unchanged by adding context.

[Coherence ambiguity] Let A =<t" R<[n,,1-1]t E¥*[h, , g=»d] 12 A" = <t g-+>* t. Again, t”
poses no problems.

(i) HA’=<Lt" 4s+»*u g+« t'>, the mode of t'Ih changes from e tor, so complexity decreases in g»’.
(i) F A’= P.Q" = <t" gr+e* u g« U0 pes® t, we must assume that p+»-applications in Q'
are at strict subterms of h, in order to get t’ g’ uy; for v’ = u; € Q'. This will be guaranteed during
completion. Embedding the rewriting ambiguity adds the same context subterm to {t‘|h} in both

complexities, and so preserves the ordering. The complete analysis for the coherence case is done
in the proof of lemma 9, where the form of subconnecting sequences is discussed in detail m|

To emphasize that a subconnecting sequence for a coherence ambiguity fulfiils the extra condition
for case (ii) in the above proof, we shall speak of the standard subconnectedness of a coherence
ambiguity.

COROLLARY (Default E<-subconnectedness):

Any R’-confluent rewriting ambiguity is g<€-subconnected modulo E in R”.

PROOF: We have either a confluence ambiguity or case (i) of a coherence ambiguity O

In the following, we shall keep in mind that the ordering problem is confined to the treatment of
coherence. So, e.g., the weak proof-ordering suffices to obtain the complete correctness proof for
empty E; this was done in [Ka 86]. Moreover, the weak ordering suffices if we can always assume
coherence: subconnecting proofs are then in Bwg(R"), so that we always have case (i) for
coherence ambiguities. Working with >, we do not replace t’, and all terms of the subconnecting
sequence are less than t because » is an ordering on E-equivalence classes. Coherence may be
assumed, e.g., if we work with a particular form of Jouannaud and Kirchner's E-completion
algorithm which uses automatic Peterson-Stickel extensions instead of coherence pairs. This
aigorithm is available in Reve 3.4 through a "strategy"” option; it still contains the Peterson-Stickel
algorithm as a special case. We shall not treat these special cases separately, but we shall indicate
in the following proofs where we need the extension of the weak ordering. All our definitions will be
assumed for g< from now on; all previous results, with the exception of proposition 1, hold for
E<-subconnectedness, too.

We are now ready for the generalization of the main result of [Jo&Ki 84] to subconnectedness,
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which we do in the following three steps, closely following the case analysis of [Jo&Ki 84].

LEMMA o

Let R = R! U Rnl be an E-terminating set of rules such that Rl is left-linear, a complete and finite
unification algorithm exists for the theory E, and E-congruence classes are finite.

Then R* = Rl U RnlE is locally pseudo-E-coherent in A’ iff all coherence pairs <{p, @>> in
SCP(RL, E) U SCP(E, Rl) U CSECP(Rnl, E) are subconnected in 4’

PROOF: By definition, R’ is locally pseudo-E-coherent in A*itf ¥ A=<t" R+c[n, ¢,1-1r] E**[h, o,
g-d] > 3 W € B(A): W g<= A. The only-if part is now trivial, because coherence pairs have the

form of A.
For the if-part, we show p<€-subconnectedness.

1)
2)

3)

4)

5)

6)

7

8)

h and n are disjoint; we then have default subconnectedness.

For the remaining cases, one occurrence is prefix of the other. If neither occurrence is &, we
strip the context of the smaller occurrence from all terms in the rewriting ambiguity A. This
gives us a rewriting ambiguity A’, for which we shall construct a proof W' <2< A’ below.

Adding the stripped context to W’ then gives a proof W g<=<A by stability of g<€. Note that this
argument also holds if we get €-subconnectedness from below.

n is a prefix of h (thereforen = ¢), and1->r € Rnl
Sotges U, hencet’ Ryl = [n,, 1-r] 1", giving default subconnectedness.

n is a prefix of h (therefore n = ¢), and1-r € R, and h € G(1).
We have again default subccnnectedness, through reduction with a variable prefix.

n is a prefix of h (thereforen = ¢), and1-r € R, and h € G(1).

Here we have a (classical) critical pair by Lemma 5, whose €- or g<-subconnectedness
immediately implies the €- or p<-subconnectedness of our rewriting ambiguity by stability of
E>, because there are no extra E-steps.

h is a prefix of n (therefore h = ¢), and n € G(1), thusn # &.
We have default €-subconnectedness through reduction with a variable prefix.

h is a strict prefix of n (therefore h = ¢), and n # ¢, and n € G(g) with1-r € RL

The result follows from <- or g<€-subconnectedness of a classical critical pair of SCP(RI, E);
there are no extra E-steps in this case. A top critical pair is not needed since this is computed
in (5). _

h is a strict prefix of n (therefore h = ¢), and n # ¢, and n € G(g) with1-r € Rnl. So G(g) + 2.
Note that the case n = ¢ is covered in (3). By the E-critical pairs lemma, there is a pair <<p, @>>
= <£dO, g[n+r]6>> in CSECP(Rnl, E) and a substitution r such that o g= G-rl(wg) U vy
therefore there exists a proof Q' =<{pr gp«* t>=<dOr ge* t'> with E-applications at
occurrences outside of G(d), and a proof Q" =<t" p+»* q7> (these are indeed finite sequences,
i.e. proofs, because E-equivalence classes are finite). Now <<{p, g>> is g<€-subconnected in 4,
hence, by stability of g<, <{pr, q7>> is also g<€-subconnected in 4’, say with proof W. Again
Q™ poses no problems, with Q" € <t>. Now t' = deg in A has complexity (de, {dol e}, while for t’
in @ we have complexity (de, {do’lm}), hy € G(d). As equality steps occur entirely inside the
substitution part of d, we can write every other intermediate result y; in Q" as a substitution
instance of d, for some substitution ¢; g= o, i.e. y; = do;. This gives (do;, {doilhi' d"ilni}) with
hi, n; € G(d), as complexity of an intermediate result u;. Then do g= d"i[dﬂilhi]- where the
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subterm occurrence is strict. Therefore, de g» dai’hi, and, by the same reasoning, dale E
doj|n;» Which gives Q" g< A. Then, finally, we get Q".W.Q' €= A, whence A is subconnected
in this case, too. Note that if W is a standard subconnecting sequence, then trailing
E-applications on the right of W are all at strict subterms of d©, so that W.Q’ is also a standard
sequence [

All subconnecting sequences indeed satisfy the conditions of lemma 8: We never introduce
E+*-steps in proofs other than those covered by RnlE-rewriting, which do not appear in

*-proofs, or those which only apply at special positions as dicussed in case 8 above. A formal
proof will not be possible until we have presented the completion algorithm itself, but the reasoning
can already be outlined: enforcing subconnectedness by making a coherence pair to a rewrite rule
gives a standard sequence, because no ge+-steps are introduced into the A’ subconnecting

sequence; and predicting subconnectedness implied by some critical pair will yield a standard
sequence as in case (8) above.

LEMMA 10:

Let R = RIU Rnlbe an E-terminating set of rules such that Rl is left-linear, a complete and finite
unification algorithm exists for the theory E, and E-congruence classes are finite. Furthermore, let
R’ = RIU Rnl E be pseudo-E-coherent.

Then R’ = RIU RnLE is locally pseudo-E-confluent with R in 4’ iff all confluence pairs <<p, @>> in
SCP(RI, R) U SCP(RL, Rnl) U CSECP(Rnl, Rnl) U CSECP(Rnl, RI) are subconnected in 4”.
PROOF: By definition, R’ is locally pseudo-E-confluent in A’ iff ¥V A=<t" R€[n, g,1-1]th R [h,
o, g=d] t'> 3 W € B(R/E): W €= A. The only-if part is now trivial, because confluence pairs have
the form of A.

For the if-part, we show €-subconnectedness.

1) hand n are disjoint; we then have default €-subconnectedness.

2) For the remaining cases, one occurrence is prefix of the other. If neither occurrence is g, we
strip the context of the smaller occurrence from all terms in the rewriting ambiguity A. This
gives us a rewriting ambiguity A’, for which we shall construct a proof W’ €= A’ below. Adding
the stripped context to W’ then gives a proof W €=<A by stability of <.

3) n = g If we have reduction with a variable as prefix we get default €-subconnectedness as
usual. The remaining case is proved through the €-subconnectedness of a classical critical
pair (in SCP(R!I, R]) or SCP(RL Rnl) if R is g, and through the €-subconnectedness of
an E-critical pair (in CSECP(Rnl, Rnl) or CSECP(Rnl, RI)) if R™ IS Rp E-. In this case, top
critical pairs are indeed necessary.

4 h = £ and n # & |f we have reduction with a variable as prefix we get default
<-subconnectedness as usual, If R™ is g, the proof is again by the €-subconnectedness
of a classical critical pair (in SCP(RI, RI) or SCP(Rnl, R) C CSECP(Rnl, RD). if g— is RnlLE>
the E-critical pair lemma does not apply, and we use the pseudo-E-coherence property. We
have A=P.M.Q=<t" p& [n, 0, 1-1] W<t E«** DLt g~ [h, o, g=d] t>. F M =<5, we must have
ty =1, and we get €-subconnectedness as in case (3). Otherwise pseudo-E-coherence yields a
proof p’ €= P.M, whence p’.Q €= A 4

THEOREM 2:

Let R = Rl U Rnl be an E-terminating set of rules such that Rl is left-linear, a complete and finite
unification algorithm exists for the theory E, and E-congruence classes are finite. Then R is



16

Church-Rosser modulo E (in RIURnLE) iff

All confluence pairs <<{p, q>> in SCP(R], Rl) U SCP(RL, Rnl) U CSECP(Rnl, Rnl) U CSECP(Rnl,

RI) are R’-pseudo-confluent modulo E (pseudo-E-confluent in R?.

All coherence pairs <<p, q@> in SCP(Rl, E) U SCP(E, R) U CSECP(Rnl, E) are
-pseudo-confluent modulo E (pseudo-E-confluent in R’).

PROOF: For the only-if part, we first remark that g /g— C ». Now let A=<{x g+~ y g+ 2> where
x, >> is a coherence pair. Then there exists a proof V € Bvg(R"), V=A. SoV = <x R4
E+* 1> g-«* 2>, where the subproof <t g~ * z> cannot be empty or trivial lest g /5= were
not Noetherian. So V € A, because y > t; for all t; € V - {x, z}. The case of confluence pairs is
completely analogous.

For the if-part, we have local pseudo-E-coherence in R’ by lemma 9, and hence
pseudo-E-coherence by lemma 1 and its corollary. From lemma 10 we then get local
pseudo-E-confluence, whence Theorem 1 (EGBNL) concludes the proof (]

COROLLARY: [J0&Ki 84]

Let R = RIU Rnl be an E-terminating set of rules such that Rl is left-linear, a complete and finite
unification algorithm exists for the theory E, and E-congruence classes are finite. Then the
R"-Church-Rosser property is decidable for every R”"with RC R°C R” C R/E.

PROOF: According to Theorem 2, finite tests on finitely many critical pairs imply the
Church-Rosser property in R* modulo E, which implies the Church-Rosser property in R” modulo
E by R* C R”. Now assume A is Church-Rosser modulo E in R”. Then all critical pairs are
confluent modulo E in R”, i.e., for every <<p, @>> there are unique R"-normal forms tLths. thoty
E= 1. Now the critical pairs of R” are contained in those of R” by R’ C R”, and R>-normal forms
are the same as R ”-normal forms, whence the pairs of R’ are all confluent o



4 Completion Modulo Equations with Subconnectedness Criteria

4.1 Subconnectedness Crlte_rla

For Theorem 2 to be of any practical use, we must now demonstrate that we can efficiently test for
subconnectedness of critical pairs. Our method is based on two abstract tests, which yield
practical criteria by restricting their application to situations where it is guaranteed that the
preconditions will eventually be fulfilled. In practice we shall not even exhaust the theoretical
possibilities, but resort to applying more restricted criteria which capture the vast majority of all
cases at reasonable cost.

To give some intuition, we first we recall from [Ka 86] the pseudo-confluence criterion for empty E.

LEMMA : (Basic Subconnectedness Criterion)

Let A=<X R¢[¢, p, L>R] Z R™[h, p, g-d] ¥> € B(R) be a rewriting ambiguity with an mgu p such
that <<x, y>> is the critical pair, and let<z g [m, 7, 1= r] ©- Then <<x, y>> is subconnected (in R) if

all critical pairs that exist between <L-R> and <= > (and <= r> and <L- R>), and between <1- 1>
and {g—»d> (and <g— d> and <= 1>), are subconnected.

PROOF: A subconnecting sequence for A is obtained from the concatenation of two proofs m’y
and m’; which subconnect the proofs my =<x R€[e, p, LoR] Z R7[m, 7, 1-1] © and my =<t
R<[m, 7, 1»1] Z R[h, p, g~ d] ¥ respectively. By the case analysis of the relative reduction
positions in my and m,, which is familiar from lemma 10, we have the usual €-subconnectedness
due to default cases without critical overlaps, or else duse to subconnectedness of classical critical
pairs

For the equational case, we have to consider three types of coherence pairs and four types of
confluence pairs. In addition, reduction by the "middle rule™ <1-r> can alternatively be in gz~ or
RnlLE—. This gives us 14 different situations which demand due consideration of the usual relative
overlap positions. Fortunately, our stronger ordering z<€ enables us to reduce drastically the
number of cases to be considered in the criteria. Therefore we shall not go into the details of
showing where we can have <-subconnectedness, and where we necessarily depend on
E<-subconnectedness. In general, €-subconnectedness follows from default subconnectedness,

from classical critical pairs, and from confluence pairs. The following lemma accomplishes the
reduction.

LEMMA 11: (Semi g<-subconnectedness)

Let A=<x g-¢*[n,, L-R]Z 4’**[n,, g-»d] V> € B(RUE), and let <z R™[n.m,, 1] D withm =
&. Then there exists A’ € B(R'UE), A’ g<= A, if there exists &’ g€~ a=<t R*<[nm,,1-1] Z
A**[n,, g~»d]¥>-

PROOF: Let A’=<x 4-¢*[nh, , L>R]Z R™[n.m,, 1»r] ©.2". Clearly A’ = A. The complexity of A
is CA={(x, {xn.n}) @ {z]n.n Z|n}) (v, {y]n}}: the complexity of A’ is CA'={(x, {X]n.n}): (z,
Zn.h Zjn.md: & {ome ud) - }. We have z|n E? Z|n.m, and therefore (z, {zn.h, z|n}) *¢ (2,
{z]n.n zJn.m})- We also have z > t and therefore (z, {z]n.n Z|nd) >c & {Yn.m tlu}). For the
remaining complexities of type (t;, {t;|n;, t|u;}) from a’ there could cnly be a problem if (t, {tln.m}
?e (G, {tilm, tiIUi}), because the complexities of z and y from a are unchanged in A; however, t » t;
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implies z > t, and {tjn.m} £ {tjni t]ui} mPlies {tn.m. tfu} £ i tud whence (z, {zjnp,
zZJnd) ?¢ (& {t|n.m tud) >¢ (i {tijni» tjuid)- Note that standard subconnectedness of a implies
standard subconnectedness of A, because the complexity of x is unchanged

Elaborating on this proof exhibits a recurring situation in which we always get
E<-subconnectedness without further preconditions. This observation forms the basis for the
composite superposition test in [K&M&N 86], which consequently can be applied without
restrictions, and in addition to the test which we shall derive. Its compatibility with existing
subconnectedness criteria was first proved in [Ba&De 86]; in the subjcined lemma, we generalize it
to rewriting modulo equations.

LEMMA 12: (Composite E<-subconnectedness modulo Equations)

Let A=<x g>¢*[n, , L>R]Z 4’**[n.h,, g-»d] V> € B(RUE), and let<z g-+*[n hm, , 1-»1] D Withm
# £. Then there exists A’ € B(R'UE), A’ << A.

PROOF: Let A'=<x 4°¢*[n, , L»R]Z R [n.h.m,, 1=1]t R [n.h.m,, 1-1] Z £’**[n.h, , g->d] V-
Clearly A’ == A. The complexity of A is CA = {(x, {xln}), (z, {zIn, zln_h}), (y, {Yln.h})}; the complexity
of Ais CA* = {(%, {x]n}), (2 {z]r Z}n.h.mI (& {n.h.ms Yn.homD: & {Z]nhoms Znnd): 31 Fjnnb}
f<l-r> € R, we have z » tand CA’' g€ CA; if<Io1> € E,wehavez g=t, Z|n.h.m E= Yn.h.m
hence zlnh E*> tnhm and therefore also CA' g< CA. Again we have standard
subconnectedness, because the complexity of x and y is unchanged

COROLLARY: {Equational KMN Subconnectedness Criterion)

Let A=<x g><*[n, p, LoR] Z 4’**[n.h, p, g-»d] ¥> € B(4) with an mgu p such that <<x, y>> is the
critical pair, and let <z g [n.h.m, r, 1o ] © With m # &. Then <x, y>> is (standard) subconnected
in4’'Q

We are now ready for the equational subconnectedness tests. We state the tests in much more
detail than is required for an implementation, in order to have a theoretical basis for more
refinements. The basic idea behind the equational tests is the same as for the case of empty
equations: we show that the subconnectedness of a critical pair follows from the
subconnectedness of other critical pairs. For the test, we find an additional reduction on the
superposition of a critical pair, so that we obtain a new proof of the critical pair, like in lemmas 11
and 12, whose left part already forms part of a subconnecting sequence. Conditions on critical
pairs of the middle rule with the other rules then assure subconnectedness also of the right part.
The task is even simpler for the case of coherence pairs, where the middle rule splits a coherence
ambiguity into both a coherence and a rewriting ambiguity. By construction of g%, the confluence
ambiguity itself is always simpler than the original coherence ambiguity, whence we only have to
look at coherence pairs.

LEMMA 13: (Weak Abstract Pseudo-E-Coherence Test)

a) [For SCP(E, R)]LetA=<x g+=h, . g=>d] Z RIP [¢, p, L»R] ¥ € B(R'UE) with an mgu p such
that <<x, y>> is the critical pair, and let <z R™[m, 1, 1-1] t>. Furthermore, let the following

critical pair be subconnected (in R"UE) below the superpositions: if m = g, any coherence pair
between <(g—d> and <I- 1> at position h. Then <<x, y>> is subcennected (in R'UE).
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b) [For SCP(RIL, E)] Let A=<x RIC[h, p, g2d] Z E¥*[e, p, LoR] ¥ € B(R'UE) with an mgu p
such that <<x, y>> is the critical pair, and let <z R™[m, r,1-1] t>. Furthermore, let the following
critical pairs be subconnected (in R°UE) below their superpositions: if <I-r> € RI, then any
coherence pair that exists between <I-r> and <L-R> at positicn; if <1-1> € Rnl then any
coherence pairs that exist between <l-r> and <L->R> at position m. Then «x, y>> is
subconnected (in R’UE).

c) [For CSECP(Rnl, E)] Let A=<x RnLE<[h, p, g-d] Z E**[e, p, LoR] ¥ € B(R°UE) with an
mgu p such that <<x, y>> is the critical pair, and let<z g [m, r, 1] © (we always have h = ¢).

Furthermore, let the following critical pairs be subconnected (in RUE) below their
superpositions: if 1= > € RI, then any coherence pair that exists between 1= 1> and <L- R} at
position m; if {1=r> € Rnl and m # g, then any coherence pairs in CSECP(<1-1>, m, <L-RD>).
Then <<x%, y>> is subconnected (in R°UE).

PROOF: By the "middle rule” 1- 1, a coherence pair is split into both a coherence ambiguity and a
confluence ambiguity. Standard subconnectedness of the parts is by default if there are
non-critical overlaps; it also follows, by lemma 11 and the case analysis of lemmas 9 and 10, from
the required standard subconnectedness of the coherence pairs, if these exist. The concatenation
is again a standard subconnecting sequence if both parts are standard. We now show that we need
not consider confluence pairs.

In case a), we have {(z, {(e, z|n), (r, DN} E> {(t. {-, ), (-, I (& {(r, ZJm). (1, DI, (¥, {(-, -} no
matter what the reduction subterms of t and y are, because z > t, z » y, and because (e, zlh) E?(r,
zlm) since the mode changes from e to r. If m # ¢, we have also {(z, {(e, zlh), (r, 20} > {(z {(e,
z|n). (r, z'm)})}, sothatX g 2R W EP <X g 23 DLt « 2 g ;1 m = ¢, we need to
assume subconnectedness of the corresponding coherence pair.

The remaining cases are justified analogously

LEMMA 14: (Weak Abstract Pseudo-E-Confluence Test)

a) [For SCP(RI, RD)] Let A=<x RI€Th, p, g»d) Z RIP[e, p, L»R] V> € B(R'UE) with an mgu p
such that <<x, y>> is the critical pair, and let <z g [m, r, 1] ©. Furthermore, let the following

critical pairs be subconnected (in R'UE) below their superpositions: if <1-r> € Rl then any
confluence pair that exists between <1-r> and <L-R> at position m, and, if m = e, any
confluence pair between <g—»d> and <I-r> at position h. If 1->r> € Rnl then any confluence
pairs in CSECP(<1-1>, m, <L->R>); if in addition m = £ and h = ¢ then any confluence pairs in
CSECP(K1=1>, g, <g—d), else it m = ¢ and h # ¢ then let <g—d> be coherent, and let all
confluence pairs of its coherence rules with <I-r> be subconnected (we do not know which
one applies directly at 1), as well as any confluence pair in SCP({g—> d, h, <I-=1>). Then <x, y>>
is subconnected (in R’UE).

b) [For SCP(RI, Rnl)] Let A=<x g1+ [h, g, g=d] Z Ral>[¢, g, Lo R] Y> € B(R'UE) with an mgu p
such that <<x, y>> is the critical pair, and let <z R™[m, r,1-r] ©- Furthermore, let the following
critical pairs be subconnected (in R'UE) below their superpositions: if <1-r> € Rl then any
confluence pair that exists in SCP(<1-»1>, m, <L-R>), and, if m = ¢, any confluence pair
between <g->d> and <lI-»r> at position h. If I-r> € Rnl, then any confluence pairs in
CSECP(KI-1>, m, <L=R>); if in addition m = ¢ and h = ¢, then any confluence pairs in
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CSECP(K1-=1>, g, <g—»>d), else f m = £ and h # ¢ then let <g—> d> be coherent, and let all
confluence pairs of its coherence rules and <l-r> be subconnected as well as all confluence
pairs in SCP({g—>d>, h, <1>1>). Then <Kx, y>> is subconnected (in R’UE).

c) [For CSECP(Rnl, Rn)] Let A=<x Rn1 E<[h, i, g d] Z RaLE[e, p, L»R] V> € B(R'UE) with
an mgu p such that <x, y>> is the critical pair, and let <z R™[m, 7, 1-r] ©. Furthermore, let the

following critical pairs be subconnected (in R'UE) below their superpositions: if <1-r> € R
and m = g, then let <= 1> be coherent, and let all confluence pairs of its coherence rules and
<L-R> be subconnected as well as any confluence pair that exists in SCP(<1-r>, m, <L-R>),
else, if m = g, let any confluence pairs in CSECP(KL-R>, &, <I1=1>) and CSECP(Kg-»d, h,
{-r1>) be subconnected. If <I-r> € Rnl, then let all confluence pairs in CSECP(KI-1>, m,
{L-R>) be subconnected, and, if in addition m = ¢ and h = g, all confluence pairs in
CSECP((g=d, h, <I=1>), else, if m = ¢ and h # ¢, then let {g—» d> be coherent, and let all
confluence pairs of its coherence rules and <I-r> be subconnected as well as any pairs in
CSECP({g—=d>, h, <I-1>). Then <{x, y>> is subconnected (in R"UE).

d) [For CSECP(Rnl, Rl)] Let A=<x RnLE<[h, p, g-d] Z RP[e, p, LoR] ¥ € B(R'UE) with an
mgu p such that <<x, y>> is the critical pair, and let <z R™[m, 7, 1-¢] ©- Furthermore, let the

following critical pairs be subconnected (in R'UE) below their superpositions: if <1-r> € R
then any confluence pair that exists in SCP(<1-r>, m, <L-R>), and, f m = ¢, then all
confluence pairs in CSECP({g->d, h, <1-1>). If <I=1r> € Rnl, then let all confluence pairs in
CSECP(K1-r>, m, <L-R>) be subconnected, and, if in addition m = £ and h = ¢, all
confluence pairs in CSECP({g-»d, h, <I=1>), else, if m = g and h # ¢, then let {g=-+d> be
coherent, and let all confluence pairs of its coherence rules and <d-r> be subconnected as
well as any pairs in CSECP({g~d, h, <I-=1>). Then <<x, y>> is subconnected (in R°UE).

PROOF: By Lemma 11 we need never consider overlaps between the left and the middle rule
except when the middle rule applies on the top, and by Lemma 12 we need never consider cases
where h is a strict prefix of m. By the case analysis of lemmas 8 and 10, subconnectedness then
follows from the required subconnectedness of the critical pairs if it is not already by default. If E =
@, cases a and b specialize to the classical critical pair criterion. For all cases where we have to
assume coherence, note that for equational overlaps there exists a whole set of superpositions,
which are all E-equal. If the middle rule matches the superposition to which the side rules apply
without E-steps, we do not need to assume coherence, but instead subconnectedness of the
respective critical pair, if any. This will be essential for Lemma 15. For case (c) and RnLE™>
rewriting by the middle rule at £, observe that critical pairs in CSECP({g->d, h, <1-r>) do not
cover the cases where there are E-steps above the overlap position, so that again we have to
assume coherence, and subconnectedness of the critical pairs of the coherence rule which applies
directly at <1->1>.

As an example, we prove case (a) with Rnl E= rewriting by the middle rule at e and h = ¢:

From A=<x pi<[n, t, g8>d] 2RI [e, p, LoR] Y> @Nd<Z Ryl E=[e, 1, 1-r] D WO get B = p.q = <x
RI<[h, p, g>d] Z RnLE[e, 1, 1o1] Pt RLE< [¢, 7, 1-1] Z RI [, #, LoR]¥> B = A. We can
immediately subconnect q by default or a critical pair in CSECP(<1-1>, ¢, <L-R>) C CSECP(Rni,
Rnl); so let g’ <€ q. If the middle rule appiies without E-steps, we get similarly p’ € p, and hence
P’.q" < B. Otherwise we make the E-steps explicitin B' = r.s.q’ = <x RIS[h, p,g~>d]Z EVIO&
Ral?[g, 7, 1-1] ©.q', where B’ =< B. We subconnect r by the coherence assumption, obtaining r’
= <x ge' X pre [, g»d] z>, where <g'>d’> is a coherence rule of <g- . Now r'.s.q’ =
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S.q = x g’ XL R*“[,, g->d]1% Rn[e, 1, 1-r] ©.0", and the remaining confluence
ambiguity s’ is subconnected by default or by a critical pair between <g’->d"> and <I-r); so we
have s" € §'. Finally, r* €<z>, s” €<z”> implies s” €<2>, and @’ €<2>, so thatr".s".q’ € A O

For implementations it is common practice to create all complete sets of critical pairs between two
rules together, so that we do not need to have specific knowledge about certain overlap positions
at which critical pairs are subconnected. At present there is no definite answer as to the trade-off
between the cost of elaborate testing for preconditions and the additional gains of more specific
criteria, which, after all, is a question of good software engineering.

4.2 Completion with Subconnectedness

As we have already seen, Theorem 2 yields a decision procedure for the Church-Rosser property
of term-rewriting systems. Certainly, we shall find this property only very rarely in a rewrite system,
and it would be most desirable to have some automated means of modifying a given rewrite system
R until it is Church-Rosser. Now we know from Theorem 2 a finite number of criticai pairs at which
the desired property fails, i.e., which R fails to subconnect. So it is natural to amend R by additional
rules which are valid consequences of the equational theory R, and which mend those initial
defects. Having more rules, however, there may be more critical pairs, i.e. secondary defects which
force our process into one more iteration. This is the principle of the completion algorithm devised
by D. E. Knuth around 1966 [Kn&Be 70].

One of the simplest ways to close a rewriting ambiguity <x « z = y> is to enforce its local
confluence by adding one of the rules <x = y> or<x « y>. The pair <<x, y>> may also be normalized
first, because <x =* x><x' « y><Ly’ « y> also makes it confluent. Now we have seen that it
suffices to enforce subconnectedness which locally is more general than confluence. Obviously we
cannot expect any gain during a successful Church-Rosser test, because globally the properties
are equivalent. Locally, however, subconnectedness is strictly weaker than confluence, and a
critical pair of a rewrite system which is not Church-Rosser may well be subconnected when it is
not confluent. Therefore, completion with subconnectedness may disregard many critical pairs
whose confluence would otherwise be enforced. In practice, these savings are aggravated further:
critical pairs are often (inherently) unorderable until they are further reduced at later stages of the
completion process; making a wrong ordering decision may lead the completion process into a
dead alley requiring backtracking; making an unnecessary ordering decision may require a
stronger ordering.

Let us come back to some abstract scheme of completion: we adopt the view of completion as a
proof transformation process r: B = B on sets of proofs. r transforms a set of proofs by adding to it
subconnecting sequences for all its critical pairs, i.e., 7(P) = PUSs.th. YAECP(P) Ip € S: p
E<= A. Starting from some initial set /0, P = B(A4" for some axiom system 4, we successively
compute the sets r(Pl) = Pi+1 until we reach a fixedpoint of the transformation, i.e. until we have
r{P)) = Pifor some].

THEOREM 3: (Fixedpoint Semantics of Abstract Completion)

Let 4 = R U E be a set of axioms. Then r(B(R’ U E)) = B(R’ U E) iff A is Church-Rosser modulo E
in R

PROOF: Immediate by Theorem 2 and the definition of = g

Clearly, S need not contain any subconnecting sequences already in P, so that it is obvious even at
the abstract level that we gain efficiency by moving from local confluence to local

subconnectedness. Of course, many more improvemerits are possible on abstract completion. First
of all, the overall abstract organization is by no means practicable, because it amounts to a level
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saturation procedure. In practice, we convert pairs to rules one by one, working with carefully
tailored selection strategies, which guarantee that eventually each level will be exhausted.

The fixedpoint approach to completion semantics also brings about a natural ordering on
fixedpoints: Py < P, iff P} € P,. Now there may be two cases when a fixedpoint P; is less than a
fixedpoint P,: P, may contain more reductions, but still present the same theory (then the rewrite
system generating P, cannot be interreduced); or P, may contain additional proofs which are no
valid consequences of proofs in Py (then P, represents an extended theory, e.g. a group as
opposed to a semi-group).

DEF: We shali write P &= S if all models for the equalities which have proofs in P are alsoc models for
the equalities with proofs in S. We call P a small fixedpoint of R if R = P and 7(P) = P. (In [De&Ma
84], a rewrite system R is called Church-Rosser for a theory 4, if B(R) is a small fixedpoint of A)

It is now immediate that r computes small fixedpoints if the basic completion process is sound, i.e.
it generates only valid proofs. In order to generate a unique least fixedpoint, we have to keep
superfluous proof sequences out of the approximations P, which means that the respective
generating rewrite systems R; must be interreduced. Moreover, practical experience makes it
mandatory to keep rewrite systems interreduced and therefore small in size. This, however,
amounts to introducing deletions of reducible rules in the derivation process, which precludes easy
monotonicity, so that in turn it becomes harder to prove that the process indeed generates least
fixedpoints. So we shall conduct a more specific completeness proof in the next section, where we
shall also come back to the question of uniqueness of fixedpoints in Theorem 6.

The subconnectedness tests of Lemmas 13 and 14 show essentially that reducibie rules are not
needed during completion. This is an important means for our understanding of the completion
procedure, because after reducing a rewrite rule we immediately face the question whether all
future derivations possible with the help of the unreduced object are still possible after its
reduction. While this is comparatively easy to see for our positive reduction moves, it is not at ail
obvious with respect to the negative moves of pair generation, especially since these pairs are in
general not reducible themselves.

Why, then, can a reducible rule not generate any essential critical pairs? For the first time, this
question was implicitly solved in Huet's correctness proof for the KB-algorithm [Hu 81]. A concise
and easy proof is now possible through subconnectedness criteria: assuming coherence, the
reducing rule also reduces all superpositions of the reducible rule, so that it can always serve as a
middle rule and subconnectedness of its critical pairs implies subconnectedness of all rewriting
ambiguities in which the reducible rule takes part. This proof was first given in [KO 85] for the case
of empty E. In [Ba&De 86], an equivalent proof is obtained via a stronger ordering than <.

LEMMA 15: (Justification of intermediate reductions)

Let <L»>R> and <1-r> be rules in R such that L or R is R*-reducible by <I-1>, and let <g-»d> €
RUE be either a rule or an equation. Let all critical pairs between <l= 1> and <L— R>, and between
<1-r1> and <g- &> (and <g— d> and <1-r>) be subconnected. In addition, let <I-> r> be coherent, and
let all critical pairs between its coherence rules and <g- d> be subconnected; if {g-d> € R, then
let also {g—d> be coherent, and let all critical pairs between its coherence rules and <1-r> be
subconnected. Then all critical pairs between <L-R> and <g-» & (and <g-=»d and <L-R>) are
also subconnected.

PROOF: If <1-r> reduces the right-hand side R, then all critical pairs of the unreduced rule reduce
to the corresponding critical pairs of the reduced rule, whence the lemma follows from » =2 =.Now
let<L g [m, , 1-1] L’>. We first observe that <<L', R>> is (E-equal to) a critical pair of <1-r> and

{L->R>. Let A=<x g+ [h,,g=d]Z R[n,, L-»R]¥> € B(4’) be associated to the confluence pair
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«x, y>>. Observing that <I-r> applies directly at <L+ R>, we make the g<»-steps involved in the
application of <L—R> explicit, and we get an equivalent proof A’ = p.q = <x g« [h,,g—d]Z g+’
Z R[m, ,1-1] <t R*¢[m, , 1-1] Z R[e, , L»R] ¥> Which involves <1-1>. Now the right part q
is subconnected by subconnectedness of the critical pair <<L’, R>>, while subconnectedness of the
left part p follows from coherence and the subconnectedness of the critical pairs of the coherence
rule, as in the proof of Lemma 14. In case A is a coherence ambiguity, subconnectedness of p is
immediate by the coherence assumption

In essence, Lemma 15 tells us that it suffices to create the reduced rule, which is the critical pair
between the reducing and the reducible rule, and then continue to work as usual with the reducing
rule. Note that this lemma also justifies intermediate reductions on critical pairs: we did not need to
assume coherence of the reducible rule, nor the existence of any critical pairs other than that
represented by the reduced rule, which we could not establish or create in case we reduce a
critical pair prior to its conversion into a rewrite rule.

Of course, we must assure during completion that the coherence rules and their confluence pairs

will eventually be created. This is not a trivial endeavour, because we may conceive of a situation

where a rule Rnl E-reduces one of its own coherence rules at a subterm. Therefore we follow

[Jo&Ki 84] and protect coherence pairs against all reductions, thus guaranteeing that they are

converted to rules and that their confluence pairs will be created. Note that it makes sense to speak

of the left-hand side of a coherence pair, because E-application must result in a >-larger term than
*~application.

In addition, we adopt the general policy never to remove a reducible rule from a rewrite system in
our completion algorithm, because this greatly simplifies the completeness proof. Instead, we
rnerely set a reducibility flag on unprotected reducible rules; flagged rules then cease to partake in
the critical pair generation process, according to the above lemma. In the end, the set of unflagged
rules will be shown to comprise the E-unique R/E-rewriting system for the given presentation A
and ordering »; a slightly larger system, essentially including some flagged rules from Rnl, will then
be even R*-Church-Rosser for A and ordering ». In practice, one may of course immediately delete
those rules that are not needed in the end. On the other hand, they may well aid in the
normalization process, especially as long as global coherence is not guaranteed, and they do not
burden critical pair generation.

In addition, our generalized equational completion algorithm has a different crganization than that
in [Jo&Ki 84]. Our tenet is to create as many pairs as possible at any one time, so that a completion
strategy have as wide a selection as possible for converting a pair to a rule. At the same time we do
not enforce that all pairs be converted to (unmarked) rules, because orientation of pairs may be
impossible, especially if a pair is unnecessary for completion.

We take the general view of completion as a producer-consumer process, with pair generation
serving as the producer, and pair reduction and orientation as the consumer. The exchange buffer
between the two processes is the queue of critical pairs awaiting orientation. We attempt to
strengthen the consumer, by reducing stored pairs as much as possible, and to weaken the
producer by a suitable selection strategy for prospective new rules and by our critical pair criteria.
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R:= GEKB(A, E, ?)

[Generalized Equational Knuth-Bendix Completion Procedure.

A = A U E is afinite set of equations, » is a Noetherian E-reduction ordering. 4° is »-orderable,
and there exists an E-unification algorithm. If the procedure terminates without failure, R is a
Noetherian E-confluent and E-coherent set of rewrite rules for the variety defined by A4.]

(1) [Initialize: Q is the queue of critical pairs awaiting conversion to rules, R is the set of rules.]
Q0:= A% R0:= (; i:=0; p:=0;

(2) [Find new rule.]
(2.1) [Trivialcase.] i Q; = () then {R:= R; retum}.

(2.2) [Reduce equation.] Select an equation M =N in Q, according to a fair completion
strategy. Let M1 and N1 be (RLURnl,E)-normal forms of M and N, respectively,
where no reduction takes place on the left-hand side of a protected pair.
fFMI g=Nlthen{Q,,:= Q0 -{M=N}; R, 1:=R; i:=i+1; goto2}
elseifM{ »NI then{A:=Ml; p:=N!}
elseif ML {NI then{A:= Ni; p:= M} else {retum with failure}.

(23) [Addnewrule.] p:= p+1; Let K be the set of labels k of unprotected rules of R; whose
left-hand side Ay is reducible by A p, say to A’y. All rules with label k € K are flagged
for deletion. _

Oiy1:= Q- IM=N}U {Ay = pyf <k:Ay - o >ER; with KEK};

Let L be the set of labels | of rules of R; whose right-hand side p, is reducible by A-p,
say to p’|. All rules with label | € L are flagged for deletion.

Riy1:= Ry U {<Aj p’pl <j:Aj= pP€ER; with | € L} U {<p:A- p>}, where p’jis anormal
form of p; using (flagged or unflagged) rules from R; U {A-p}.

(3) [Compute critical pairs]

(3.1) [Compute superpositions.] Let S = (). For each unflagged rule in R;withlabelj<pletS
= S U {all superpositions between rule p and j (and j and p)}.

(3.2) [Subconnectedness test.] For each superposition s = SP(ry, q, 1) in Sdo
{if any rule in R; with label j matches s at position u then
{if, for each critical pair with origination information (n, v, m) that must be
subconnected (according to Lemmas 9 and 10) in order for CP(ry., q, ry~) to be
subconnected, (n, v, m) << (K, g, k") according to a well founded partial ordering <,
then S:=S-s}}

(38.3) [Create critical pairs.] Let Q;,; be Q;, augmented by the set of critical pairs, with
origination information attached, computed from the superpositions still in S; all
coherence pairs are protected against reductions on the left-hand side. i:= i+ 1; goto

2n

The AC-completion algorithm of [Jo&Ki 84] is more elaborate than our GEKB, e.g. in its protection
scheme. Our algorithm is more general than Jouannaud and Kirchner’s algorithm EKB only in that
it converts fewer critical pairs to rules, and hence may succeed where the other one failed due to
orientation problems. Also, it tests pseudo-E-confluence which locally is strictly more general than
confluence modulo E. Let us make the relationship more precise. We may picture GEKB as doing
the same as EKB, except for marking some critical pairs as disposable. Then it becomes obvious
that for each completion with GEKB there is a completion with EKB that converts exactly the same
pairs to rules, but in addition has to reduce to tautologies all the marked pairs. In practice, EKB will
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often convert some marked pair which may be unnecessary, and may result in an unnecessary
abort (the pair may also be necessary, when it is around a second time in unmarked form). Of
course, we may also have GEKB fail and EKB succeed, because of different completion sequences,
see e.q. [De&Ma 84].

In the following chapter we are going to prove completeness of GEKB. In Chapter 6 we discuss
refinements of this agorithm motivated by our findings for the case of empty E. We shall see that for
this case it can be specialized to a very efficient procedure by a suitable choice of strategies, which
is substantiated by empirical results. The AC-subconnectedness test has been implemented in the
REVE system [Ki&Ki 83] (on top of version 3.4), but there the overall organization of completion is
different, and empirical results are still inconclusive.



5 Complete Correctness of GEKB

First we show that by equational reasoning with the limit rewriting system constructed by GEKB,
plus the equations in E, we can prove exactly the same facts as by equational reascning with A.
Then we shall see that the limit rewriting system is even R’-Church-Rosser, so that purely
reductional reasoning (modulo E in R’ suffices to prove all equalities valid in A. This also implies
completeness of the procedure, i.e. every equality valid under 4 can be proved by purely
reductional reasoning after a finite number of iterations of GEKB. Finally, we shall see that the set
of all unflagged rules in the limit rewriting system comprises the unique R/E-Church-Rosser term
rewriting system for the theory A with equational part E and ordering ».

DEF: We denote by Roo the limit rewriting system constructed by GEKB; we have Rog = U; &
because there are no deletions.

DEF: Let 4, and 4, be two sets of equations. We write B(4;) C~< B(4,) iff VP €B(4;) 3Q €
B(4,): P=Q; and we write B(4;) = B(Az) iff B(Al) Cc= B(Az) and B(Az) c= B(Al).

Note that B(4) =< B(4"), so that we can work with A’ as usual.

LEMMA 16: For a finite set of equations A = R U E, and > an E-reduction ordering, there is an
iteration i in GEKB(A4, E, ?) such that B(4") = B(R,"UE), if GEKB does not abort with failure before.
PROOF: R = {,. By fairmess of the completion strategy, for each equation (1 = 1) in Qg there is an
iteration i at which it is converted to a rule or reduced to a tautology. f (1 = r) is reduced at all
before becoming arule, say to (I’ = r’) by the respective proofs p =<1 A""' I>and q=<r g2+° 1,
then <1 gre>* 1D & DL goe" 1> € B(RUE). Taking the finite maximum iteration m, we get
B(4) €= B(R,,UE). Now of course GEKB is sound, i.e. B(R;'UE) C= B(4), because the new
equations generated as critical pairs are valid consequences of their parents by equational
reasoning. So B(R,,"UE) C=< B(4") O

COROLLARY: B(R’eoUE) = B(47 O

In the next theorem, we encounter one more fundamental restriction for Jouannaud and Kirchner's
method of completion modulo equations to be complete: the strict subset of the E-subsumption
preorder must be well-founded. This is not the case for arbitrary equations, but it holds for all
equational theories of practical interest [Jo&Ki 84]. In the following, we shall often write A, and p,
for respectively the left-hand side and right-hand side of aruler.

DEF: We write R prifr strictly subsumes R; it is equivalent to say that r reduces (the left-hand side
of) R at the top, but R does not reduce r. We define the reducibility ordering Z onrewrite rulesasr
£ Riff ris applicable at the left-hand side of R, while R is not applicable at the left-hand side of r.

If r £ R and reducibility is at ¢, then R » r, which we have to assume well-founded. Z is Noetherian
on sets of rewrite rules in which no two left-hand sides are E-equal (modulo a permutation of
variables): let ry, ry, ..., T, Tj41, ... D@ @n infinite sequence where ¥ i € IN: r; £ 1;.y. Clearly, we
cannot have an infinite sequence of p-steps, so we must have an infinite sequence of (inverse)
£ -steps interspersed with finite »-sequences. Associated is the sequence of instantiated left-hand
sides, i.e. AFO’ ;\rlal, 5id Aridi' Ari+lai+1! ..whereVi€IN13 Uiy € O(Ar(i-l)): Ar(i-l)ll.l{i-l) E= Ariai'
SO Ai-1) E? Ano; if uj.y is strict, and A 1) E= Ajo; otherwise. Collecting substitutions we get Ao,
Ar101: Ap(o207), ...y AL(0504.1 .. 01), ... . W write r; for (0,0,_; -.. 01). By observing thatt g s implies
U g»sif ' = t, we factor out E-equivalence classes corresponding to b-runs, e.g. by collapsing
them to their first term. So we get an infinite sequence Ay (1yTi(1) E* Ar(2)Tk(2) E? - » Contradicting
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well-foundedness of g>.

THEOREM 4: Let E be such that the strict subset of the E-subsumption preorder is well-founded.
Then Rep is locally pseudo-E-confluent and locally pseudo-E-coherent iff all critical pairs of only

unflagged parent rules are subconnected.

PROOF: The only-if part is trivial. For the if-part we order rules by the reducibility ordering Z. Now
let <<ty, t;>> = CP(r,, h, 1) € CP(Reop). We proceed by Noetherian induction on £, assuming that
all critical pairs of parent rules £ r, or £ r, are already subconnected. If both I, and r; are
unflagged, CP(ry, h, ;) is subconnected by assumption. Now assume only r,, is flagged. Then, by
construction of the R;, there must be a reducing rule r withr’ Z I, and all confluence pairs of r’
and rp;, and r’ and r,,, are subconnected by induction hypothesis. Furthermore, all coherence rules
of r’ and rpp,, and r’ and ry, exist in Rop by fairness of the completion strategy and because they are
protected. Confluence pairs of the unflagged coherence rules and the unflagged r,, are
subconnected by assumption. So CP(r,, h, ry) is subconnected by Lemma 15. If we have a
confluence pair and in addition 1, is flagged, there must be a rule r" / rm and we have the
following situation (with z = SP(r,, h, r,)): <t" RE[,,m]XR™[,,P1X R“[,,r]XE 2ge"y
R™[,, 1Y R*[,, r"]Y R2[,, m] > Here, t” and x’ are connected below x by a confluence
pair of r’, X’ and some z" { z are connected below z and x by coherence of r, z” and y’ are
connected below z and y by coherence of r", and ¥’ and ' are connected below y by a confluence
pair of r” =)

LEMMA 17: (Stability of subconnectedness) Let <x «+* y> be subconnected in R;. Then<x «»* y>
is subconnected in each Ry withj > i.

PROOF: Immediate, since there are no deletions and » does not change in the course of GEKB 0

LEMMA 18: For each critical pair of Rep there is an iteration i of GEKB at which it is subconnected
in B(Al )

PROOF: If the pair <<t;, t;>> = CP(r,, h, 1)) is ever created and added to Q, then by faimess we
eventually get proofs <t; p;=*t'1> and <t; g;—* t'2>, and in addition either <t’; p+* t',>, or Uy o
t';> € B(R;") in the form of a rule which implies default subconnectedness. If the pair is not created
because a parent rule is flagged, we have subconnectedness by Theorem 4; if a parent rule is
reducible on the right, we have subconnectedness by Lemma 15. Otherwise, the
subconnectedness test must have applied. We proceed by Noetherian induction on <, assuming
the hypothesis for each critical pair with origination << (n, h, m). Observing that << is finitely
branching, we immediately get a subconnecting sequence in B(Aj’) where j is the maximum of the
iterations at which the dependent pairs are subconnected O

COROLLARY: Reo is Church-Rosser modulo £ in R'eo O

THEOREM 5: (Completeness for Validity)

Let A = R U E be a finite set of term equations and » a Noetherian reduction ordering on R/E.
Then AEx=yiff3Ii€IN,PE BVE(RY) : P=<x «* y> (if GEKB(4, E, ») does not abort with failure
before). Hence the generalized Knuth-Bendix Algorithm modulo equations is a semi-decision
procedure for validity in equational varieties.

PROOF: By Birkhoff’'s completeness theorem we have 4 k= x = yiff IW €B(4) : W=<x «* y>. By
A C A4’ W € B(4), Lemma 16, and the observation that RiCR p,wegetdAEx = yif IW=<x
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+* y> € B(R’ooUE). By the corollary to Lemma 18, Reg is CR, so W € B(R’egUE) only if 3V €
BVE(R’00): VA=W. Now each proof in BvE(R’oo) is finite, so that there is a finite iteration at which
Bvg(R;) contains V 4

Recall that RUE is a small fixedpoint of an equational theory 4 iff A = RUE and R is
Church-Rosser modulo E in R’. We may also say that R is R*-CR for A.

LEMMA 19: Let RUE be a small fixedpoint of 4, and let » be a Noetherian reduction ordering on
R/E. Let S be a »-ordered ETRS such that S is coherent, A= S,and V1> > € R3<g » D € S,
teET:1 571, , g~»d]t Then SUE is a small fixedpoint of 4.

PROOF: Let A = () = t). Since R is R™-CR for 4, there exists W =<t; «" t,> € Bvg(R’). We show
that there exists VA=W, V € BvE(S"). G = R U S is Noetherian modulo E because R and S are
commonly >-ordered, so that we can use induction on proofs in B(G'UE). (Note that we can
actually use induction on € because we have coherence). We therefore assume that V P €
B(GUE), P < W3V EBVE(S): VEP.W.Lo.g. W = p.Q,p=<t; » ©,p € BvE(R"), and so, by our
premises, 3<g > D> €S,y €ET: S™[,,g~»d] ¥ butg=<y « t; = x> must be subconnected in
RUE, say by @ <= q, because 4 = S and RUE is a fixedpoint of 4. Clearly, @’ < p and by
embedding q'.Q € p.Q = W, whence by hypothesis IV € BvE(S), @.Q = V. Now finally <t; -» y>.V
€ Bvg(S) is equivalent to W and in V-form

Motivated by the following uniqueness result, which is apparently due to Lankford and Ballantyne
[La&Ba 83] (see also [De&Ma 84]), we call a Church-Rosser rewrite system canonical if it is also
interreduced. More precisely, R is a canonical rewrite system modulo E for an equational theory 4,
if A= RU E, and 4 is Church-Rosser in R/E.

THEOREM6: (Unigqueness of canonical term-rewriting systems modulo E)

Let Ry and R, be canonical term-rewriting systems modulo E for an equational theory 4, and let
them be ordered by the same E-reduction ordering ». Then R; = R;.

PROOF: [Jo&Ki 84] O

COROLLARY: Let » be a Noetherian E-reduction ordering. Let R be a canonical >-ordered ETRS
for an equational theory 4, and S a finite, interreduced, »-ordered ETRS s.th. 4 &= S, 87 is
coherent, and all rules in R are S*-reducible on the left-hand side. Then S g= R

The éorollary is of limited interest, because usually S is not interreduced if S’ is coherent. However,
S’ is always coherent if E is empty.

LEMMA 20: Any R’-Church-Rosser set of rewrite rules contains a unique set S of rewrite rules
which is Church-Rosser in S/E.

PROOF: [Jo&Ki84]

THEOREM 7: (Completeness for Canonicity)

Let 4 = RUE be a finite set of term equations s. th. E-equivalence classes are finite and
E-subsumption is well founded, » a Noetherian reduction ordering on R/E, and S a finite »-ordered
canonical ETRS for A. Then (if GEKB does not fail before) GEKB terminates on (A, E, ») with result
Reo 2 S, where Reg is Church-Rosser in R’og. Furthermore, S is E-equal to a subset of the set of

unflagged rules in R.



PROOF: By the finiteness of S and completeness of GEKB for validity, there exists i € IN s.th.
Bvg(R;) contains proofs for all rules in S. Now R;” must reduce the left-hand side of each rule in S,
because otherwise > cannot be Noetherian; then, by Lemma 19, any R D R; is CR if R’ is coherent.
Now R;” will in general not be coherent, but, as E-equivalence classes are finite, there are only
finitely many coherence pairs whose subconnectedness would mend the deficiency. Hence, by
protection of coherence pairs and faimess of completion, there must be an iteration j > i such that
all coherence pairs of R; are subconnected in R;, and hence R; 2 R;is CR in Ry’, whence R; = Roo-
By construction, the set F of unflagged rules in Rgp must reduce the left-hand side of each rule in
Roo, 50 again by Lemma 19, Fis CR if it is coherent. Taking an interreduced subset F* of F, we get
F* g= S from the corollary to Lemma 19 and Theorem 6, since by construction F is ordered by >,
and by definition F*/E is coherent

Note that for empty E there are no coherence pairs and therefore no protected rules. Therefore, F
itself is interreduced so that the unflagged rules in the limit rewrite system computed by GEKB(4,
@, ») comprise the unique canonical rewrite system for (4, @, »).

COROLLARY: GEKB remains complete when rules are deleted instead of being flagged, and in
the following cases protected rules are deleted while their reducing rules are in turn protected: any
rule in RIwhose left-hand side is R*-reducible, and any rule in Rnl which is Rnl, E-reducible on top,
where the reducing rules must not be flagged.

PROOF: We note that under the above conditions deletions of protected rules do not impair
coherence, which is still guaranteed by unflagged rules. We have already seen that reducible rules
are not needed for critical pair creation, and we note that normal forms of rewrite systems are
preserved under deletion of reducible rules, if coherence is invariant

This is a reformulation of the completeness result in [Jo&Ki 84] for their algorithm, which uses
rule-deletions and an even more elaborate protection scheme.



6 Refinements of Abstract Completion

Algorithm GEKB of chapter 4 is still not fully specified, because it does not tell us how to implement
the ordering << on critical pairs, and because checking the coherence precondition in some of the
subconnectedness criteria is not trivial. By presenting GEKB in abstract form, we wanted to
facilitate the development of a variety of specializations of the abstract subconnectedness test. We
shall discuss below possible realizations that are known so far, some of which have already worked
quite well in practice. At present, this discussion cannot possibly be exhaustive, because of limited
computational experience, the more so as there are still significantly different opinions about the
best overall organization of the completion procedure apart from subconnectedness criteria.

The majority of our empirical results [KO 85] have been obtained with the ALDES/SAC-2
TC-system, an implementation of the Knuth-Bendix Algorithm for empty E [K{ 82a). For the case of
completion modulo associativity and commutativity (AC), we have modified the Réve system [Ki&Ki
83] by an instance of our abstract test. However, our basis cf empirical results is too limited so far
to allow definite conclusions as to optimum realizations of the abstract test. All that we claim to
have accomplished so far is demonstrating that there are indeed practical ways to implement
(subsets of) the test, both for the basic algorithm and for completion modulo AC. (This was still an
open question after [Wi 83]). To date, the only other empirical results put to paper are those in
[K&M&N 86], which report a deterioration in run-time behaviour after their criterion was added to
the basic algorithm, and a rather dramatic speed-up by up to an order of magnitude for the
AC-version. While the authors attribute at least part of the latter improvements to the fact that a
subconnectedness test may help to weed out superfluous critical pairs generated from AC-unifiers
which are (erroneously) not most general, we shall attempt below an explanation for the other more
disappointing findings.

We shall take the basic case of empty E as a foundation for our discussion, entering E-specific
considerations afterwards. When exploring the potential of the abstract subconnectedness test, we
are faced with the decision of how to assure well-foundedness of the dependency ordering << on
critical pairs. One of the most general features in this respect would be to dynamically grow with
each criterion application a directed graph of dependencies, and to restrict applications so that the
graph remains acyclic. This has not been tried so far in practice, becauss it seems comparatively
difficult to implement and costly to perfom; instead, we focussed first on ways to build the ordering
into the test itself, i.e. to work with a uniformly restricted test with built-in well-foundedness.

From this point of view, the tests of Kapur, Musser, and Narendran on the one hand, and Winkler on
the other hand, are both subconnectedness tests with position restriction, i.e. they limit the
positions in a superposition at which a rewrite by a third-party rule, the middle rule, may be
attempted. We have already shown that the KMN restriction to strict subterms of the innermost
overlap preserves well-foundedness of << (because it can then be embedded in g<). As mentioned
in [K&M&N 86], this restriction contains the blocked critical pair test of Lankford, who conjectured
that it would be unnecessary to consider critical pairs whose overlap substitution contains
reducible terms. The original proposal of Winkler in [Wi 83] amounted to a subcennectedness test
where the middle rule is allowed to match at non-top strict prefixes of the overlap position if two
dependent pairs exist. The last restriction is easily lifted, and we can observe that the middle rule
partitions the overlap position into two strictly smaller substrings. Now we define <<,, by (r, p, s) <<,
(R, q, S) if p is a strict substring of g. Clearty, <<, is well-founded, which proves completeness of
Winkler's original criterion, and it is apparent that <<, could be extended to allow p to be
lexicographically smaller than q.

The extended <{,, coincides with the intuition, that, when starting pair generation by a depth-first
scan of overlap positions, we will already have created all the pairs lower in the ordering which we
may use to show connectedness of later pairs. This intuition formed the basis of the developments
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in [KG 85]. It can be made explicit by an appeal to our knowledge of the exact sequence of pair
generation engraved in the algorithm. Pairs are stored in the central queue of the
consumer-producer process, and we only apply the connectedness test if all immediately
dependent pairs are already in the queue (or have already become rules). By faimess and a simple
induction, all transitively dependent pairs will then eventually be confluent.

This age restriction on critical pairs is appealing both in theory and in practice: it preserves the full
power of Lemma 15 (justification of intermediate reductions), because there are no position
restrictions; it is easy to code (some additional 30 lines of code both for Reve and for TC), and it is
compatible with one of the most powerful completion strategies known, viz. selection of smallest
pairs. The latter point is especially important because of the fundamental impact of completion
strategies on the overall behaviour of completion, which is second only to variations in the
ordering, and much more important than improvements by subconnectedness. To make the
restriction more precise, we represent rules by their labels, i.e. the numbers they get upon creation,
and we define the natural dependency ordering <<, by (n, q, m) <<, (0", p, m’) if max(n, m) < min(r’,
m’) and max(n, m) < max(n’, m’). The natural completion strategy selects the least complex critical
pair for conversion into a rule.

The natural dependency ordering corresponds to a rule restriction on the set of possible matching
rules in the subconnectedness tests: we use only those rules for the additional reducibility test, for
which we know that all their critical pairs have already been created, provided the order of pair
creation is the (natural) one of ascending labels, where pairs are first created between new rule n
and rule 1 (and 1 and n) through to n and n-1 (and n-1 and n), and n and itsel. The natural
completion strategy follows the heuristic to always keep things simpie; it has been recommended in
[KO 82] for the Knuth-Bendix Algorithm, in [Bu 70] for the Buchberger-Algorithm, and is known as
the unit preference strategy in resolution theorem proving.

Clearty, the size of a superposition s between rules r and R grows in proportion to the sizes of the
rules’ left-hand sides A, and Ag. On the other hand, the likelihood of a rule r’ to match (a subterm
of) s grows with the inverse of the size of A,., because A must not have more symbols than s in
order to match s at all. (Here, intuitively, the size of a term is to be a monotonic function on the
number of its symbols; e.g. it may or may not include a count of the variable symbols).

Taking the natural dependency ordering <<, critical pairs with parent rule 1 are always K, -least
because there are no legal rules to match the superposition, while the larger the minimum label of
its parents is, the more rules do we have to test reducibility of a superposition s. So it appears to be
advisable to give small labels to those rules with small left-hand sides, because those are less likely
to produce reducible superpositions and thus do not suffer from a lack of rules to try reductions
with; while those rules with large left-hand sides should be given large labels, so that for their large
superpos:tlons (which probably produce unwanted new large rules) we have a great number of
small rules with which we can reduce them.

Now, given the natural completion strategy, rules are already likely to ba ordered by increasing
size, so that our confluence criterion is likely to be applicable quite often. This may explain the
relative success of our algorithm even on small examples as compared to the results of [K&M&N
86]. With the KMN criterion, there are no explicit restrictions as to the middle rules, but by the
requirement that they match within the overlap subterm, rules with larger left-hand side are in
effect excluded, because they cannot match these small subterms. In order to tune the rule
restriction so that it effectively excludes large rules that are unlikely to match, pair creation should
strictly proceed by ascending size of rules rather than following the somewhat haphazard ordering
produced by the natural completion strategy.

So a further refinement of GKB consists in sorting the rules at the end of pair creation in ascending
order according to the size of left-hand sides. A new rule is provisionally added after the largest
rule, whence pair creation proceeds beginning with the new rule and the smallest old rule,
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proceeding to larger old rules and ending with the new rule and itself; finally the new rule is
inserted at its proper place according to its size.

These considerations lead to yet another completion strategy and, moreover, a quality measure for
strategies, which were both first proposed for Buchberger’s algorithm in [Bu 79], but went largely
unnoticed for Knuth-Bendix implementations: We want to have a maximal Noetherian subset of the
"true™ dependency relation, in which the rules of Reg are the <<-least elements, and of course we

want the completion process to follow the <{-graph from the bottom, i.e. to convert to rules only the
{K-least critical pairs. The essential question when judging the quality of a completion strategy is
thus how accurately it can predict whether a pair is a <{-least element in CP(R¢g). Enforcing the

confluence of any other pairs without need will entail superfluous work, later to be undone through
deletions and garbage collections. So an appropriate strategy would be to select for conversion to
a rule the pair with associated smallest superposition, which is unlikely ever to be found
subconnected by the test.

So far we have applied our subconnectedness test only prior to pair creation. Lemma 15 indicates,
however, that we may also remove pairs from the critical pair queue if one of their parents is found
reducible. Owing to this result, we may call pairs with a reducible parent rule flagged pairs. In terms
of the age restriction on pairs, removal of flagged pairs is justified by the observation that by the
time the pair representing the reduced rule is fed back into R, all the corresponding unflagged
critical pairs are computed.

Thus if we refine any completion strategy to the extent that it converts only unflagged pairs into
rules it remains complete (if it was so before). For reductions at left-hand sides this is easily
incorporated into GKB when, for each newly flagged rule, we remove all its critical pairs from the
critical pair queue. It is powerful in practice because it collects a lot of garbage at negligible cost:
no matches are needed whatsoever, and the necessary book-keeping information should be
present in an implementation anyway, to allow derivation traces of all lemmas generated during
completion.

Lemma 15 also justifies the peculiar way in which we treat rules that are reducible on the
right-hand side: we preserve the critical pairs of the unreduced rule, yet continue to produce pairs
only with the reduced parent. Now since in this case pairs of the unreduced rule reduce to
corresponding pairs of the reduced rule, we create the corresponding new ones very efficiently by
simply reducing the existing pairs, and subconnecting the flagged pairs will also implicitly
subconnect the unflagged ones (and vice versa). So nothing is lost even for those pairs that were
not even created owing to the connectedness test, or those that have already been converted to
rules. We can now take every liberty in reducing existing pairs: empirical results with our
implementation of GKB support the heuristic to keep intermediate results (i.e. the critical pair
queue) maximally reduced, obviating the need for the reduction in step 2.2 before conversion to
rules. Apart from minimizing storage requirements, the crucial parameter in theorem proving, this
also aids completion strategies that judge pairs by their size, as reported in [Kao 82].

Of course we would also want to remove (or flag for deletion) thcse pairs that have become rules in
the meantime. However, this refinement does not preserve completeness in all those cases where
the rule had also been derived in a different way. Since all the equivalent forms would have been
reduced before, they must now be recomputed, and in practice this means that all critical pairs of
the system must be recomputed. Still, a backtrack of this kind might be promising in tight situations
with very many rules.

The last observation is important in practice, because it has repercussions on the overall
organization of completion with subconnectedness. In the tradition of Huet's completeness proof
[Hu 81], which needed a convenient loop-invariant, some implementations (essentially including
Reve) empty the pair queue at each iteration and store critical pairs as {(unmarked) rules in the
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rule-system. There they may immediately partake in reductions and help to normalize the system,
but they cannot be removed any more by critical pair criteria. If rule-deletions are frequent in an
application, this is quite likely a disadvantage.

Our last refinement is only a special case of the more general principle to apply critical pair criteria
also to stored pairs. In practice, this can easily be done if superpositions are stored along with the
pairs. Now if we tamper with the pair queue, we are in danger of loosing well-foundedness of the
age restriction. This is however not the case for other restrictions. As we have already seen, both
Ky and g< are Noetherian, so that the criteria of Winkler and Kapur, Musser, and Narendran can

also be applied to stored pairs.

Yet another class of criteria suitable for application to stored pairs is associated with substitution
restrictions based on the strict part g< of the E-subsumption ordering, whose well-foundedness is
needed anyway in GEKB, and which is also assured if E is empty. In this class, removal of flagged
pairs may be justified by the ordering (r, p, s) <<; (R, q, S) if {A, A} < {AR, Ag), where <, is the
multiset extension of g<. In the same spirit, we may define the ordering K where (r, p, s)<{ (R, q,
S) if 3 u € O(SP(R, q, 8)): SP(r, p, s) g< SP(R, q, S)lu, i.e., the superposition SP(r, p, s) is smaller
than a subterm of the superposition SP(R, q, S) in g<. Clearly, <, is Noetherian if the equational
theory E is such that g< is well-founded. This ordering is close to Winkler's original criterion; it has

the same serious disadvantage that it is very expensive to test for, because smaller superpositions
must be explicitly created and compared separately. In special completion settings, however,
where there is domain dependent knowledge, these objections may not hold; the restriction seems
to work very well in the Grdbner basis algorithm [Bu 79].

Let us now look at some empirical data for basic completion with subconnectedness. Based on the
system documented in [Ka 82a] (written in the ALDES language for the SAC-2 Computer Algebra
system), an experimental implementation was made for the case of empty E, and the effect of
several of the refinements were measured with some examples from [Kn&Be 70]. The reduction
strategy was innermost labelled [Ki82b], the reduction ordering was the Knuth-Bendix ordering,
and the natural strategies were used, where the size of a critical pair was taken to be the maximum
number of non-variable symbols in its terms. Rules are of course deleted instead of flagged, and
their reduced forms are recycled into the system with preference; Q is kept in maximally reduced
form.

The first version incorporated what was believed to be the core of the method: the weak test, and,
because rule-deletions are frequent on these examples, removal of flagged pairs. Additional code
is about 30 lines, practically all for the removal algorithm. The second version in addition strictly
ordered rules for pair creation according to the extent, i.e. the number of symbols, of their left-hand
sides, again at the cost of some 30 lines of code. The third version, finally, stored superpositions
together with the pairs and extended the test to the pair queue. The additional reducibility tests
were inserted into an already existing algorithm that looks for pairs reducible by the new rule; of
course the new test took precedence as its success allows immediate deletion of the pair. The old
removal algorithm of the first version was kept in place because it saves matches, and its
applications were not counted.

Note that the dependency ordering of the third version is not well-founded, contrary to the
premature statement in [Ki 86], but completion succeeded on our examples. (One counterexample
is the system {(1) f(x, x) = = A; (2) f(a, X) = = B; (3) f(x, @) = = C} from [K&M&N 86]). Therefors,
the figures give only an approximation on the number of additional deletions that might be
expected from an extension of the test to stored pairs.

The subjoined table gives figures for version 1 vs. the original form of KB. (A matching attempt was
counted for the matches column only if at least the top symbols were equal.)



Example  completionsteps pairs generated Q maximum matches rewrites
left group 14/14 72/ 9N 9/12 1894/ 2591 111/204
right group 16/17 89/122 18/21 2798/ 4214 143/290
LR-system 13/16 85/134 15/23 3283/ 6048 164/381
RL-system 21721 197/282 25/27 14300/21009 443/897

The following table is for version 3 / version 2. The test column gives the number of successful
applications of the weak test, not counting removal of flagged pairs.

Example steps pairs test Q max matches rewrites
LG 14/14 75/ 72 33/31 8/ 9 2008/ 1949 105/113
RG 16/16 85/ 85 47/42 18/18 2083/ 2799 122/134
LR 13/13 83/ 83 39/36 13/14 3203/ 3232 150/160
RL 21/21 203/203 108/98 18/18 14785/15043 446/465
Total completion times of version 3 / the original KB on a (UNIX) VAX/785 are (in milliseconds):
LG RG LR RL
6640/ 6800 8440/ 8850 8250/ 10070 19250/ 21500

These results are of course very much dependent on the examples. Detecting unnecessary critical
pairs is a pruning process on some derivation tres, so that long completion runs will benefit most,
while short runs will suffer an additional overhead. The actual savings in run-time will be more
substantial in applications where rewriting is more costly, as e.g. in the Grobner basis algorithm of
Buchberger, or in special theories where the test can be built into completion, in that whole classes
of critical pairs need not be generated at all.

When working with some non-empty set E of equations, additional problems are caused by the
coherence property. It becomes more difficult to check the conditions of the pseudo-E-confluence
test which require the existence of a set of coherence rules, which may not be readily accessible
from a rewrite rule. Most notably, however, these conditions must also be checked at intermediate
rule applications, which now introduce more complex dependencies. Therefore, we must explicitly
view interreduction on rules and pairs as applications of subconnectedness criteria, and suitably
restrict them in order to preserve well-foundedness of <<. In this framework the protection scheme
of Jouannaud and Kirchner is already an instance of a restriction scheme, guaranteeing for each
rule that its coherence rules are present, and, in the absence of connectedness criteria, that critical
pairs of its coherence rules will indeed be generated.

To ensure completeness we might restrict application of subconnectedness criteria to such
positions that the coherence preconditions are never needed. We could also further exploit the
protection scheme by disallowing application of the subconnectedness test to critical pairs with a
protected parent. While protection guarantees that all coherence rules exist, the latter provision
then assures even in the presence of a connectedness test that all critical pairs of coherence rules
are formed.

If eventual coherence is ensured, much the same arguments apply to completion modulo equations
as for basic completion. The tentative experiments with Reve are so far inconclusive; changes in
run-time behaviour range from a slight deterioration to a two-fold speed-up on very limited
examples. In particular, it requires a major and non-trivial reorganization of the system to
incorporate removal of flagged pairs, whose effect could therefore not be tested so far. On the
other hand, incorporating the subconnectedness criteria with the natural dependency restriction is
fairly easy, and the built-in protection quarantees the coherence conditions.



7 Applications of Subconnectedness

We present two applications of the principle of subconnectedness. First, we show that it gives us a
unigue opportunity to enforce the Church-Rosser property of ground rewriting systems without
requiring confluence on a general level, which has immediate applications on inductive theorem
proving. Second, we derive a subsumption criterion for resciution theorem proving which predicts
situations where a resolvent of two clauses is eventually going to be subsumed by some other
clause derived by later stages of the resolution process.

7.1 A Criterion for Pseudo-Confluence of Ground Critical Pairs

We present a criterion to test for the pseudo-confluence of all ground instances of a critical pair,
without enforcing general pseudo-confluence of the pair. We thereby obtain a generalization of the
Jouannaud-Kounalis algorithm for theorem proving in initial algebras.

We are interested in proving the confluence of a Noetherian term-rewriting system R on ground
terms, henceforth called ground confiuence. Of course R is ground-confluent if it is confluent, but
the converse does not hold, as exemplified by R = {+(0,x) = = X; +(S(X), ¥) = = S{(+ (%, ¥)); + (X,
+(,2) == +(+(x,y),2)}

DEeF: For any two rules, the set of ground critical pairs is the set of all critical pairs of all ground
instances of the rules. Note that for any two non-ground rules, the set of ground instances of
critical pairs is a strict subset of the set of ground critical pairs. A critical pair is ground
pseudo-confluent if all its ground instances are pseudo-confluent. For convenience we sometimes
say that the pair is ground subconnected (in R) below s.

A trivial adaptation of the Buchberger-Newman Lemma for the ground case shows that a
Noetherian rewrite system R is ground confluent iff its ground critical pairs are pseudo-confiuent.
However there are in general infinitely many ground instances for any two non-ground rules, and
therefore it is essential that the condition can be restricted to the ground instances of critical pairs
of R itself.

LEMMA:

A term-rewriting system R is ground-confluent if all critical pairs of R are ground
pseudo-confluent.

PROOCF: Clearly, R is ground-confluent if all ground critical pairs, i.e. critical pairs of ground
instances of rules of R, are pseudo-confluent. Now, by the usual lifting argument (see e.g. the
semi-lifting lemma for critical pairs in [K{ 85]), a ground critical pair is either by default confluent in
R (and hence pseudo-confluent), or it is a ground instance of a critical pair of R O

If a critical pair is not pseudo-confliuent, it is obviously still difficult to test for pseudo-confluence of
at least all ground instances, because there are in general infinitely many. In a completion
environment, the traditional remedy would be to add the critical pair to R as a new rule; but this is
unnecessary it the pair really is ground pseudo-confluent. Now our confluence criterion can easily
be modified to predict specifically ground pseudo-confluence instead of general
pseudo-confluence, and may therefore offer at least a partial solution to the problem.

DEF: Aterm tiis called quasi-reducible by R if all ground-instances of t are reducible by R.

Quasi-reducibility was introduced in [Jo&Ko 85] for a new approach to proving inductive theorems
with the Knuth-Bendix Algorithm,; this is our main area of application for the following criterion.



THEOREM : (Ground Pseudo-Confluence Criterion)

Let <t,, t,> be a critical pair between rule r and R of R and let s be the corresponding superposition;
let S € R. Then <t;, ty> is ground pseudo-confluent if s is quasi-reducible by S and all critical pairs
between r and R on the one hand and rules in S on the other hand are ground pseudo-confiuent.

PROOF: Let <a, b> be any ground instance of <t;, t,>; wa note that <a, b> is the critical pair of two
corresponding ground instances r’ and R’ of r and R, respectively, with superposition s’, a ground
term. Since s is quasi-reducible, there is a ground instance p’ of a rule p C S which reduces s’, say
to m. Now <a, m> and <m, b> are critical pairs of r’ and p’, and R’ and p’, respectively; hence they
are ground critical pairs of the respective uninstantiated rules; hence, by the semi-lifting argument,
they are pseudo-confluent if all ground instances of critical pairs between r and R on the one hand
and p on the other hand are ground pseudo-confluent. Now since s’ reduces to m, and < is
compatible with substitution, the concatenation of the subconnecting chains between a and m, and
m and b, also subconnects a and b below s. Repeating the argument for all other ground instances
of <t;, t;> we finish the proof O

Note that a term may well be quasi-reducible while not reducible in general, whence the ground
pseudo-confluence criterion may apply where our general pseudo-confluence criterion does not.

Suppose we want to prove equalities in the initial algebra /4 of a set A of equational axioms. The
set of valid equalities in /4 contains of course all equalities which are universally valid under A (i.e.
in all models of A); in addition, it may contain equalities which are valid only in the initial (standard)
model (i.e. if only ground substitutions are allowed). The latter are commonly proved by some kind
of induction, and hence altemative proof methods came to be known as induction/ess induction.

Improving earlier work initiated by Musser, it was shown in [Jo&Ko 85] that a comparatively minor
modification of the Knuth-Bendix completion procedure constitutes an inductionless induction
method. The key observation there is the usefulness of the concept of quasi-reducibility: rewrite
rules which are quasi-reducible on the left-hand side do not change normal forms of ground terms.

THEOREM: (Inductive Validity Criterion, Jouannaud, Kounalis 1985)

Let R be a confluent set of rules, and 1 - r a rule where 1 is quasi-reducibleby R. f RU {1 - r} is
also confluent, then1 = ris valid in the initial model of R.

PROOF: The ground rewrite system corresponding to R U {l = r} is confluent, so all ground
instances of 1 and r have a respective common unique normal form, which must be the same as
their respective normal forms under R alone o

This proof reveals that asking for general confluence is realty more than we need.

THEOREM (Refined Inductive Validity Criterion):

Let R be a set of rules whose critical pairs are ground pseudo-confluent, and 1 = r a rule where 1 is
quasi-reducible by R. If all critical pairs of {1 = r} and rules in R are also ground pseudo-confiuent,
then! = ris valid in the initial model of R.

PROOF: Since all ground instances of critical pairs of R are pseudo-confluent, all ground critical
pairs of R are pseudo-confluent by the lemma. Hence R is ground confluent, i.e. each ground term
has a unique normal form. By our premises the same holds for R U {1 - r}, where obviously all
ground instances of 1 and r have a respective common normal form. Now these normal forms must
be the same as those under R alone, because 1 is quasi reducible under R. So in the initial model of
R, i.e. when there are only ground substitutions, 1 = r is valid 0O



Of course, the weaker precondition for the above theorem only makes a difference in practice now
that we have a method to test for it. It is easy to see how the corresponding completion algorithm
would look like: we take our Generalized Knuth-Bendix Algorithm, add a quasi-reducibility test for
left-hand sides of rules, and replace the pseudo-confluence test by the ground pseudo-confluence
test.

To give an example of the potential of this method, consider the system R = {1) +(0,x) = = x; 2)
+(S(x), ¥) == S(+(x, V)); 3) +(x, +(¥, 2)) == +(+(x, y), 2)} from [Fr 86]. We prove its ground
confluence by considering overlaps of (1) and (3) and (2) and (3) at positions ¢ and 2, and overlaps
of (3) and (3), at position 2in +(x, + (Y, Z)). We observe that at position ¢ the term (and hence every
instance) is quasi-reducible. Therefore we can quasi-reduce all overlaps with rule (3) by the
"middle rules” (1) and (2) at e. This eliminates all critical pairs except the ones between (1) and (3),
and (2) and (), at position ¢, which tum out to be confluent, so that R is ground-confluent by the
criterion. Note that producing the pairs corresponding to overlap position 2 results in an infinite
completion sequence.

This example is due to Fribourg, who also presents an improvement of the Jouannaud-Kounalis
algorithm that will handle this case. The relative strength of the two approaches is currently under
investigation, but we conjecture that the Jouannaud-Kounalis algorithm with ground-pseudo
confluence test sketched above will be as powerful as with Fribourg’s improvements.

7.2 A Subsumption Criterion for Resolution Theorem Proving

In [Pa 85], it was shown that the resolution method of Robinson and the completion method of
Knuth and Bendix are intimately connected. We now present the resolution analogue to our
subconnectedness test, a criterion to detect whether the resolvent of any twoclausesinasetSis
eventually going to be subsumed by some other resolvent in S. In particular, we show that
subsumed clauses produce only subsumed resolvents, which yields a syntactic justification of their
deletion apart from the usual semantic proof that unsatisfiability is invariant.

We assume the usual environment of resolution theorem proving in first-order predicate calculus
and of term-rewriting as in [Pa 85]. In particular, S is a set of clauses in Skolem normal form, hence
quantifier free. We do not specifically consider factoring steps, so that our notion of a resolvent of
clauses C and D includes resolvents of factors of Cand of D. LetE = (XV (Y V 2) = XVY)VZ
XVY =YV X} by =g we denote equality modulo E. R = {X V X = X} is a one-rule term-rewrite
system; the R/E-normal form of a clause C is denoted by C | g.

DEF: The clause C, subsumes the clause C, if there is a substitution & such that either (C;o) R
=g G or(XV Cy)a i =g C,, where Xis a variable not otherwise occurring in C, or G,.

So what we have to compute is an AC-match of C, (or its extension) onto C, followed by removal of
duplicate literals. We note that the extension is needed so that we can also detect a subterm of G
as an E-instance of Cy; we call this subterm the focus of the match. For simplicity, we shall write
(C10) L g € C, to denote that C; subsumes C,.

THEOREM: (Subsumption Criterion)

LetC = C; V L, D = Dy V L be two clauses resolvable on the literals L¢ and L with m.g.u.
pandletSPlg = (Ciu V Lep V Tilpp V Dyp) L g. Furthermore, let M be a clause (with variables
different from those of C and D), which subsumes SP { R- Then the binary resolvent Rgp = (Cip V
Diu) + g is subsumed either by M itself, cr by one of M's descendants under factoring and
resolution.




PROOF: By definition of subsumption, there exists a substitution ¢ such that (Mg) { g CSP ! . We
distinguish four cases according to whether Lop or —Lpp are in the focus of the match. i) If neither
Lcw nor ilpp are in the focus, then it is plain that (Me) 4 g € Rcp. ii) Assume now that both Lo
and TLpp are in the focus of M. Then M = M VL V T and (Lie) i = (Le)ig = Lep =
Lpp, where for L) and =L, we take the subsets (disjunctions) of literals in M which are unified by o
and matched onto Lcp and —lpp, respectively. Here ¢ and p can be merged into a common
substitution p’ because the variables are disjoint. Clearly, L; and Lp, unify, say with m.g.u. 8, and
p’ =48. Similarly, L, and L¢ unify, say with ¥, and p’=yr’. So both M and C, and M and D, have
resolvents Rpc = (C1y V My V i) g and Ryp = (D18 V M8 V —1L,8) L g, respectively.
(Note that this may include factoring steps if L; or =L, represent more than one literal). Now Lyyr
= Lip’ = Lo = Lyo = Lyp’ = L,87; hence Ly and L,8 unity, and R)pomp = (D181 V M87 V
Ciyr’ V Myy7’) L g is an instance of the resolvent Rycmp of Rpc and Ryp. But (R'memp) 4 g =
O VM’ VO’ VMp)dg = O’ VO VM) g = O1p VCip VMe) g = D1p V
Cip) 4 R, the latter because (Myo) L g C Dyp V C;p. Therefore, there exists a substitution © s.th.
(RmMcMDO) L g € Rep, whence Rgp is subsumed by Ryicmp- iii) Assume that L, but not =1Ly,
is in the focus of M’s match on SP ! g. This implies thatM = M; V L}, and that (Lyje) L g = Lep =
Lpu, where for L; we take the subset of literals in M which are unified by o and matched onto Lcp.
Again, o and p can be merged into p’, and L, and Lp, unify with some 8, with p’ = 87, whence M and
D have a resolvent Ryp = (D18 V M;8) ! g. In this case, Ryp already subsumes Rgp because
BmDT = (D187 VM87)ig = D1p VM )ip = D1 VM) g C(Cilp VD1p VMa) g =
(D1p V Cyp) ¢ p, the latter because (Myo) L g € (Cju V Dyp) { g. Finally, the remaining case iv) is
purely symmetric to the one just discussed 0

Note that, most importantly, the subsumption criterion does not require that the resolvents of M and
either C or D have already been created. It is quite sufficient to assure that eventually they will
either be created or else that they themselves will be shown to be subsumed by some other clause.
In particular, we can now concisely justify the deletion of subsumed clauses in the absence of other
deletion strategies.

COROLLARY: Subsumed clauses can produce only subsumed resolvents O

In complete analogy to the pseudo-confluence criterion for the Knuth-Bendix Algorithm, the above
theorem only constitutes the abstract framework for a practicable subsumption rule, i.e. a deletion
rule based on the subsumption test. Application of the criterion induces a dependency relation <<
on clauses, i.e. Rgp is subsumed only if the necessary resolvents are eventually created. However,
the dependency relation induced by the abstract test is clearly reflexive and cyclic, which
precludes completeness. Hence in practice we must somehow restrict actual applicatic: of the test
to keep the corresponding << acyclic, and for the sake of finiteness assure that each resolvent is
given fair consideration. Basically we face the same problem with classic subsumption rules:
Clearly, any clause subsumes itself, but the actual subsumption rules disallow deletion on this
ground.
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