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Two-Stage Least Squares Random Forests 
with an Application to Angrist and Evans 
(1998)1

We develop the case of two-stage least squares estimation (2SLS) in the general framework 

of Athey et al. (Generalized Random Forests, Annals of Statistics, Vol. 47, 2019) and 

provide a software implementation for R and C++. We use the method to revisit the classic 

application of instrumental variables in Angrist and Evans (Children and Their Parents’ Labor 

Supply: Evidence from Exogenous Variation in Family Size, American Economic Review, 

Vol. 88, 1998). The two-stage least squares random forest allows one to investigate local 

heterogenous effects that cannot be investigated using ordinary 2SLS.
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1 Introduction

Random forests (Breimann, 2001) are a successful and increasingly popular method for fitting

flexible regression models based on statistical learning. The method consists in successively

splitting a given sample into heterogenous subgroups (yielding regression trees), and on repeating

this procedure on random variations of the data (leading to random forests). Athey et al. (2019)

have generalized the concept of random forests to a general class of estimation methods that

solve conditional moment conditions. The applications presented in Athey et al. (2019) include

the estimation of conditional average partial effects under exogeneity and conditional instrumental

variable estimation based on the classic one-instrument formula (Wald’s formula, e.g., Angrist

and Pischke, 2008). Unfortunately, this formula does not easily extend to the case with multiple

instruments, which is the case often encountered by practitioners.

This paper has two goals. The first one is to develop a conditional instrumental variable estimator

based on multiple instruments in the general framework introduced by Athey et al. (2019), and

to work out the expressions for estimation, sample splitting and variance estimation needed

for implementation in software. This contributes to completing the toolbox of machine learning

techniques for classical econometric problems and to verifying the validity of Athey et al. (2019)’s

general framework. We also address the problem of tuning an instrumental variables forest which,

to our best knowledge, has not been considered in the literature before. Finally, we provide an

implementation in R and C++, extending previous codes contributed by Athey et al. (2019).

Our second goal is to use this estimator to revisit a classic application of instrumental variables by

Angrist and Evans (1998), who used sibling-sex composition instruments in order to investigate

the effect of family size on parental labor supply. Including coarse group categories in their

2SLS regressions, they also provided a basic analysis of heterogeneity of these effects across

characteristics such as mother’s education or husband’s earnings. We revisit this question using

instrumental variables random forests, which allow one to plot detailed maps of heterogenous

effects across multiple dimensions which is not possible using standard regression techniques.

This yields deeper insights into the nature of heterogeneity in these effects, going beyond the

analysis in Angrist and Evans (1998).

The rest of the paper is structured as follows. Section 2 describes the extension of instrumental

variables forests to the case with multiple instruments (two-stage least squares random forests).
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Section 3 presents our empirical application. Section 4 concludes.

2 Two-Stage Least Squares (2SLS) random forests

2.1 Generalized random forests

Athey et al. (2019) develop a general framework for building random forests for the estimation

of local (i.e. conditional) effects θ(x) that are the solutions to moment conditions

E
[
ψθ(x),ν(x)(Oi)|Xi = x

]
= 0 for all x ∈ X , (1)

where ν(x) are nuisance parameters and Oi, i = 1, . . . n are i.i.d. sample data.

The generalized random forests estimates θ̂(x), ν̂(x) are obtained as

(
θ̂(x), ν̂(x)

)
∈ argmin

θ,ν

∥∥∥∥∥
n∑

i=1

αi(x)ψθ,ν(Oi)

∥∥∥∥∥
2

, (2)

with

αbi(x) =
1({Xi ∈ Lb(x)})

|Lb(x)|
, αi(x) =

1

B

B∑
b=1

αbi(x), (3)

where Lb(x) is the set of observations falling into the same leaf as the test point x in tree b. The

weights αi(x) count how often observation Xi was in the same leaf as x across all fitted trees

b = 1, . . . , B. They thus determine the relevance of different observations i for fitting θ̂(x) in

the estimating equation (2) (i.e. a local weight).

As described in Athey et al. (2019), the tree-building algorithm proceeds by producing successive

splits that maximize heterogeneity. Let P ⊂ X be a parent node which is to be split into

two children C1, C2 ⊂ X . Athey et al., (2019) show that this can be done by first generating

pseudo-outcomes

ρi = −ξ′A−1
P ψθ̂P ,ν̂P

(Oi), (4)

where

Ap =
1

|{i : Xi ∈ P}|
∑

i:Xi∈P

∇ψθ̂P ,ν̂P
(Oi), (5)
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and ξ is a vector that picks out the θ coordinate from the (θ, ν) vector. The parameters θ̂P , ν̂P

are the estimators solving the empirical estimation equation in the parent node, i.e.(
θ̂P , ν̂P

)
∈ argmin

θ,ν

∥∥∥∥∥ ∑
i:Xi∈P

ψθ,ν(Oi)

∥∥∥∥∥
2

. (6)

The splitting is then done on the pseudo-outcomes, i.e. P is split into C1, C2 by maximizing

∆̃(C1, C2) =
2∑

j=1

1

|{i : Xi ∈ Cj}|

 ∑
i:Xi∈Cj

ρi

2

. (7)

In order to achieve consistency, Athey et al. (2019) use in addition a subsample splitting technique

(‘honesty’), which divides subsamples of the data in order to grow trees on one part of the data

and to solve the estimating equation (2) on another part of the data.

For statistical inference, Athey et al. (2019) show that the variance of θ̂(x) can be consistently

estimated as

σ̂2
n(x) = ξ′V̂n(x)

−1Ĥn(x)V̂n(x)
−1′ξ (8)

with

Hn(x) = var

(
n∑

i=1

αi(x)ψθ,ν(Oi)

)
(9)

and Vn(x) a consistent estimator of

V (x) =
∂

∂(θ, ν)
E (ψθ,ν(Oi)|Xi = x)

∣∣∣
θ(x),ν(x)

. (10)

2.2 Application to instrumental variables estimation

We now describe the application of this framework to instrumental variables estimation. As one

of their applications, Athey et al. (2019) consider the structural model

Yi = µ(Xi) + τ(Xi)Wi + ϵi, (11)

where Yi is the outcome, and Wi is a treatment variable that is potentially correlated with ϵi. In

order to estimate τ(Xi), they consider the case of a scalar instrumental variable Zi assumed to

be independent of ϵi conditional on Xi. This yields the moment condition E(Zi(Yi − µ(Xi) −
τ(Xi)Wi)|Xi = x) = 0, which, along with the moment condition defining the intercept µ(Xi),

defines the function ψ(·)τ(x),µ(x) in (2) (Athey et al., 2019, p. 1172).
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If there is more than one instrumental variable (i.e. if Zi is a M × 1 vector), one might be

tempted to use the (vector) moment condition E(Zi(Yi − µ(Xi)− τ(Xi)Wi)|Xi = x) = 0, but

this is not possible because the framework described in Athey et al. (2019) is tailored to the

just-identified case with as many moment conditions as estimated parameters (this is evident

from A−1
P in (4) and V̂n(x)

−1 in (8), showing that the function ψ(·) has as many arguments as it

has dimensions). In order to arrive at a just-identified representation, we use a local variant of the

two-stage least squares estimator (2SLS) to which we apply the technique of stacking moment

conditions to form two-step estimation procedures (e.g., Wooldridge, 2010, p. 529).

This yields the representation

ψ τ(x),µ(x),
γ1(x),γ0(x)

(Yi,Wi, Zi) =


W̃i(Yi − µ(x)− τ(x)W̃i)

Yi − µ(x)− τ(x)W̃i

Zi (Wi − γ0(x)− Z ′
iγ1(x))

Wi − γ0(x)− Z ′
iγ1(x)

 , (12)

where W̃i is the abbreviation of γ0(x) + Z ′
iγ1(x). Defining W c

i = (1 Wi)
′, Zc

i = (1 Zi)
′,

Ŵi = γ̂0(x) +Z ′
iγ̂1(x) and Ŵ

c
i = (1 Ŵi)

′, the M +3 resulting moment conditions in (2) can be

solved analytically yielding

γ̂0(x)
γ̂1(x)

 =

(
n∑

i=1

αi(x)Z
c
iZ

c′

i

)−1( n∑
i=1

αi(x)Z
c
iWi

)
µ̂(x)
τ̂(x)

 =

(
n∑

i=1

αi(x)Ŵ
c
i Ŵ

c′

i

)−1( n∑
i=1

αi(x)Ŵ
c
i Yi

)

=

( n∑
i=1

αi(x)Z
c
iW

c′

i

)′( n∑
i=1

αi(x)Z
c
iZ

c′

i

)−1( n∑
i=1

αi(x)Z
c
iW

c′

i

)−1

(
n∑

i=1

αi(x)Z
c
iW

c′

i

)′( n∑
i=1

αi(x)Z
c
iZ

c′

i

)−1( n∑
i=1

αi(x)Z
c
i Yi

)
.

(13)

Note that the score function ψ(τ, µ, γ1, γ0) as defined in (12) is the negative gradient of a convex

function .5ψ(τ, µ, γ1, γ0)
′ψ(τ, µ, γ1, γ0) which is required for consistency of the random forest

(assumption 6 in Athey et al., 2019). The score function is very well-behaved and satisfies all

other regularity assumptions listed in Athey et al. (2019).
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The partial derivatives of the score function that are needed to compute the matrix AP and the

pseudo-outcomes ρi are given by

∇ψ τ(x),µ(x),
γ1(x),γ0(x)

(Yi,Wi, Zi) =



W̃PiW̃Pi W̃Pi −Z′
i

(
Yi − µP (x) − τP (x)W̃Pi

)
+ τP (x)Z′

iW̃Pi −
(
Yi − µP (x) − τP (x)W̃Pi

)
+ τP (x)W̃Pi

W̃Pi 1 τP (x)Z′
i τP (x)

0

.

.

.

0

0

.

.

.

0

Zi1Zi1 Zi1Zi2 ..... Zi1ZiM

Zi2Zi1 Zi2Zi2 ..... Zi2ZiM

..... ..... ..... .....

ZiMZi1 ZiMZi2 ..... ZiMZiM

Zi1 Zi2 ..... ZiM

Zi1

Zi2

.

ZiM

1



where τP (x) and µP (x) denote estimates in the parent node and W̃Pi = γP0(x) +Z ′
iγP1(x) (for

simplicity, we have changed the sign of ψ(·) before taking the derivative).

Defining γ(x) = (γ0(x), γ1(x))
′, the matrix V (x) needed for variance estimation is given by

V (x) =



E
[
W̃iW̃i|X = x

]
E
[
W̃i|X = x

]
E
[
−Z′

i

(
Yi − µ(x) − τ(x)W̃i

)
+ τ(x)Z′

iW̃i|X = x
]

E
[
−

(
Yi − µ(x) − τ(x)W̃i

)
+ τ(x)W̃i|X = x

]
E
[
W̃i|X = x

]
1 E

[
τ(x)Z′

i|X = x
]

E [τ(x)|X = x]

0

.

.

.

0

0

.

.

.

0

E [Zi1Zi1|X = x] ..... E [Zi1ZiM |X = x]

E [Zi2Zi1|X = x] ..... E [Zi2ZiM |X = x]

..... ..... .....

E [ZiMZi1|X = x] ..... E [ZiMZiM |X = x]

E [Zi1|X = x] ..... E [ZiM |X = x]

E [Zi1|X = x]

E [Zi2|X = x]

.

E [ZiM |X = x]

1



=



γ(x)′E[Zc
iZ

c′
i |X]γ(x) γ(x)′E[Zc

i |X] −E[YiZ
′
i|X] + µ(x)E[Z′

i|X] + 2τ(x)γ(x)′E[Zc
iZ

′
i|X] −E[Yi|X] + µ(x) + 2τ(x)γ(x)′E[Zc

i |X]

γ(x)′E[Zc′
i |X] 1 τ(x)E[Z′

i|X] τ(x)

0

.

.

.

0

0

.

.

.

0

E [Zi1Zi1|X = x] ..... E [Zi1ZiM |X = x]

E [Zi2Zi1|X = x] ..... E [Zi2ZiM |X = x]

..... ..... .....

E [ZiMZi1|X = x] ..... E [ZiMZiM |X = x]

E [Zi1|X = x] ..... E [ZiM |X = x]

E [Zi1|X = x]

E [Zi2|X = x]

.

E [ZiM |X = x]

1



whose entries we estimate as in Athey et al. (2019) by the honest regression forests produced by

the underlying estimation problem.

As described in Athey et al. (2019), the matrix Hn(x) can be estimated by a bootstrap of little

bag technique (Sexton and Laake, 2009), for which the overall number of trees b = 1, . . . , B

is partitioned into g = 1, . . . G bags, where all the l = B/G trees in one bag are estimated

on the same half sample. Let tree b be the dth tree in bag g (i.e. tree gd), and denote

Ψb = Ψgd =
∑n

i=1 αbiψ(Oi) (i.e. using only data from tree b = gd), an estimate Ĥn(x) is then

obtained as the solution to
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1

G

G∑
g=1

(
1

l

l∑
d=1

Ψgd

)(
1

l

l∑
d=1

Ψgd

)′

= Ĥn(x) +
1

l − 1

1

G

G∑
g=1

1
l

l∑
d=1

(
Ψgd −

1

l

l∑
d=1

Ψgd

)(
Ψgd −

1

l

l∑
d=1

Ψgd

)′ .
(14)

We follow Athey et al. (2019) who recommend to carry out all of the above computations not

for the original outcomes {Yi,Wi, Zi}, but for conditionally centered outcomes {Y ∗
i ,W

∗
i , Z

∗
i }.

Let y(x) = E(Yi|X = x), w(x) = E(Wi|X = x) and z(x) = E(Zi|X = x), then Y ∗
i =

Yi − ŷ(−i)(Xi), W
∗
i = Wi − ŵ(−i)(Xi) and Z

∗
i = Zi − ẑ(−i)(Xi), where ŷ

(−i), ŵ(−i) and ẑ(−i) are

estimated using separate regression forests not using information based on observation i.

2.3 Tuning

Growing random forests requires the choice of basic tuning parameters such as the minimal

node size, the subsample fraction, the number of variables used for splitting and parameters that

control the imbalance of splits. The optimal choice of such tuning parameters is an open research

topic. A common practical approach is to minimize a suitable loss function based on out-of-bag

predictions. If Wi in (11) was exogenous, then a possible loss function would be the so-called

R-learner

R =
1

n

n∑
i=1

( [
Yi − ŷ(−i)(Xi)

]
− τ̂(Xi)

[
Wi − ŵ(−i)(Xi)

] )2
(15)

(Nie and Wager, 2019).

This would lead to a spurious fit, however, because Wi is endogenous. The endogeneity of Wi

makes the identification of a suitable loss function more difficult than in the case of unconfound-

edness. For parameter tuning, we therefore resort to an idea based on Chernozhukov and Hansen

(2008) who argue that the reduced form of an instrumental variables problem is a representation

that is always valid and informative about the relationship studied.2 We, therefore, define our

loss function as

L =
n∑

i=1

( [
Yi − ŷ(−i)(Xi)

]
− ρ̂(Xi)

′ [Zi − ẑ(−i)(Xi)
] )2

(16)

2We thank Stefan Wager for pointing this out to us.
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with

ρ̂(Xi) =
( n∑

i=1

αi(x)(Zi−ẑ(−i)(Xi))(Zi−ẑ(−i)(Xi))
′
)−1

n∑
i=1

αi(x)(Zi−ẑ(−i)(Xi))(Yi−ŷ(−i)(Xi))
′.

(17)

3 Revisiting Angrist and Evans (1998) using two-stage

least squares random forests

We apply the above estimator to the estimation of the effect of the number of children on the

labor supply of married women as described in more detail in Angrist and Evans (1998). Based

on over 250.000 observations of married women aged between 21 and 35 years from the 1980 US

Census, we follow as closely as possible the specifications in Angrist and Evans (1998), but use

the alternative method of two-stage least squares random forests. The main difference between

the 2SLS regression models used in Angrist and Evans (1998) and the random forests used here

is that the latter allow us to estimate local effects, i.e. the effect of additional children on female

labor supply for narrow subgroups of women defined by their observed characteristics.

The variables used to measure female labor supply (= Yi) are eitherWorked for pay (indicating

whether the woman reported to work for pay in the given year) or Weeks worked (representing

the number of weeks worked in the given year). The treatment variable (= Wi) is whether the

woman had more than two children, which is instrumented by the two instrumental variables

Two boys (= Z1) and Two girls (= Z2) indicating whether the first two children were either

boys or girls. As argued by Angrist and Evans (1998), these instruments are credibly random

but influence the likelihood of having more than two children.3 Following the construction of the

instrument, the estimation sample is restricted to women who had at least two children. The

covariates of the analysis (= Xi) are dummies for race (= Black, Hispanic, Other race),

schooling of the woman in years (= Mother′s schooling), her age (= Age), age at first birth

(= Age at first birth), whether the first child was a boy (= Boy 1st) and father’s income

(= Father′s income).

3Our setup requires that these instruments are valid conditional on observed covariates Xi. Given the nature

of the instruments, this is apriori plausible. In addition, Farbmacher et al. (2020) have shown that the validity of

these instruments cannot be rejected even conditional on observable characteristics.
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Before we present our empirical results, figures 1 and 2 show more details on our tuning procedure.

Figure 1 – Worked for pay: ordered values of loss function for different candidate tuning parameters
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Tuning parameters optimized: minimal node size, subsample fraction, number of splitting variables, split balance parameter α, imbalance penalty. The different colours

show the results for four separate Kriging runs (Roustant et al., 2012). Four each Kriging run, 200 random points from the space of tuning parameters are drawn. These

are complemented by Kriging interpolations to generate 1000 points of the loss function surface.

Figure 2 – Weeks worked: ordered values of loss function for different candidate parameters
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Tuning parameters optimized: minimal node size, subsample fraction, number of splitting variables, split balance parameter α, imbalance penalty. The different colours

show the results for four separate Kriging runs (Roustant et al., 2012). Four each Kriging run, 200 random points from the space of tuning parameters are drawn. These

are complemented by Kriging interpolations to generate 1000 points of the loss function surface.

Following the implementation in Athey et al. (2019), we use a Kriging procedure (Roustant et

al., 2012) to approximate the loss function surface and then choose the tuning parameters that

correspond to the minimal value on the approximated loss function surface. For this purpose, we

draw 200 random points from the space of tuning parameters and complement them by Kriging
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interpolations to generate 1000 points of the loss function surface. We carry out this procedure

four times in order to minimize the risk of unrepresentative random draws. As in Athey et al.

(2019)’s implementation, these computations use forests with a smaller number of trees than our

final forests to save computation time. We optimize the following tuning parameters: minimal

node size, subsample fraction, number of splitting variables, split balance parameter α, imbalance

penalty.4

Figures 1 and 2 show that the minimal values and the shape of the loss functions are very similar

across the four Kriging runs, making us confident that they are representative examples of the

loss function surface. The final minimizing values for the tuning parameters are given in table

1. These were obtained as the smallest minimum out of the four Kriging runs. In general, our

random forest results were quite robust to changes of the tuning parameters in a neighborhood

of the loss function minimizing values, and only moderately sensitive to larger deviations from

them.

Table 1 – Loss function minimizing tuning parameters

Worked for pay Weeks worked

Minimal node size 1066 601

Subsample fraction 0.101144 .1299106

# Splitting variables 6 4

Balance parameter α 2.831253e-03 .0118385

Imbalance penalty 3.672790e-01 1.0620941

Minimal loss function 0.2307317 435.7457

We now present our 2SLS random forest results. Figures 3 to 14 show the estimated treatment

effects of having more than two children on whether the woman reported to work for pay and for

the number of weeks worked per year along different covariate dimensions. Covariates not shown

in a graph were set to median values. All random forests are based on 100,000 trees.

Figure 3 plots treatment effects of having more than two children on working for pay along the

different values of the observed variables father’s income and mother’s education. The estimates

along the dimension of father’s income correspond quite well to the ones in Angrist and Evans for

fathers income in the bottom third (-.122), the middle third (-.165) and the upper third (-.078)

4For the definition of these parameters, see the software implementation of Athey et al. (2019). When splitting

a parent node, the size of each child node must not be smaller than α times the size of the parent node. The

imbalance parameter penalizes size differences between children of a parent node.

9



Figure 3 – Treatment effects of more than two children on worked for pay along

the dimensions father’s income and mother’s education (2SLS random forest)

Figure 4 – Standard errors worked for pay along the dimensions father’s

income vs. mother’s education (2SLS random forest)
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(Angrist and Evans, 1998, p. 468, table 9, panel A, column 5) if one considers mothers with a high

school degree (12 years of education). The estimates for different values of mother’s education

in Angrist and Evans (1998) (table 9, panel B, less than high school: -.121, high school: -.147,

more than high school: -.082) are also similar to the corresponding averaged values in figure 3,

but the simple categorization into three groups misses the complex interaction effects uncovered

by figure 3: for mother’s with low husband’s income, there is a strictly positive education gradient

(higher education leads to a lower loss in labor supply due to children), while the effects become

V-shaped for mother’s with higher husband’s income. If one looks more specifically at the effects

of mother’s education for mothers whose husband’s income is in the middle third (the median is

around 36,000 dollars), then the labor supply effects become even more negative (-.2 or lower).

This is also the case in Angrist and Evans, although the estimates there tend to become rather

imprecise when smaller subgroups are being considered (Angrist and Evans, 1998, table 9, panel

C).

Figure 4 shows that most of the effects in figure 3 are reasonably precisely estimated, with most

estimated standard errors ranging between .06 and .1.5 The plot also nicely reflects the density

of observations along the two dimensions (low standard errors in the center and rising standard

errors towards areas with few observations).6

Figure 5 displays the corresponding estimates for weeks worked per year. Again, the estimates in

Angrist and Evans for father’s income (table 9, panel A, bottom third: -7.55 weeks, middle third:

-7.11 weeks, top third: -3.17 weeks) are quite similar to the ones in the graph for mothers with

a high school degree (12 years of education). In the direction of mother’s education, the Angrist

and Evans’ estimates (less than high school: -7.12, high school: -6.42, more than high school:

-2.93) correspond well to the estimates shown in the graph for a range of father’s income between

40,000 and 60,000 dollars, but the random forest estimates suggest that the effects depend a lot

on the exact value of father’s income. For median father’s income (around 36,000 dollars) and

low values of mother’s education, labor supply effects again get more negative (-10 weeks per

year), both in the graph and in Angrist and Evans (1998, table 9, panel C, last column).

The patterns revealed by figure 5 make much sense: for women with high husband’s income, the

5These standard errors were computed according to equations (10) and (14) using a bag size of 200.

6The axes typically cover around 90 percent of the sample observations in each dimension (each axis approxi-

mately ranges from the 5th to the 95th percentile of the corresponding variable).
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Figure 5 – Treatment effects of more than two children on weeks worked along

the dimensions father’s income and mother’s education (2SLS random forest)

Figure 6 – Standard errors weeks worked along the dimensions father’s

income vs. mother’s education (2SLS random forest)
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loss in labor supply is small and not very sensitive to own education, while highly educated women

in poorer households face high opportunity costs (in terms of foregone household income) if they

do not participate in the labor market. The corresponding standard errors shown in figure 6

suggest that most effects are reasonably precisely estimated, although there are always areas in

which this is not the case (areas with sparse density, e.g., few husbands have earnings close to

zero).

Summing up our comparison of the instrumental variables random forests with the estimates

in Angrist and Evans (1998) based on including basic group categories into 2SLS regressions

(e.g. low/middle/high father’s income, or low/middle/high education), we find that the general

magnitude of the effects as well as basic qualitative patterns generally coincide well, but that

the random forest shows in a much more detailed way, and simultaneously in more than one

dimension, the exact geometry of effect heterogeneity.

A strength of the random forest methodology is that it models interaction effects in a fully

unrestricted and automatic way. Figure 7 presents another example of such interaction effects,

plotting the effects of having more than two children on the number of weeks worked per year

across the dimensions father’s income and mother’s age. While the labor supply effect for low

to medium values of father’s income is U-shaped (young and old mothers do not reduce labor

supply as much as middle aged mothers), it more and more transforms into a monotonically

falling pattern for higher values of father’s income. A possible explanation is that women in low

income households face the necessity to return to the labor market once the children have reached

a certain age, while those in high income households do not. Figure 9 shows the corresponding

graph for the extensive margin (i.e. whether the woman worked for pay). The overall pattern is

similar, but the interaction effect is less strong.

Another example for heterogenous effects with interactions is given in figure 11, showing the

labor supply effects at the extensive margin along the dimensions of mother’s age and mother’s

education. For older mothers, higher schooling is related to a lower loss in labor supply in the

presence of children, while for younger mothers, the gradient is inversely U-shaped. Again, an

explanation may be that mothers with high levels of education have a large incentive to return to

work once their children have reached a certain age. Figure 13 suggests that this interaction effect

does not apply to the number of weeks worked per year, where the effects of higher schooling is

the same at all ages (i.e. more schooling leads to a smaller loss in labor supply due to children).

13



Figure 7 – Treatment effects of more than two children on weeks worked along

the dimensions father’s income and mother’s age (2SLS random forest)

Figure 8 – Standard errors weeks worked along the dimensions father’s

income vs. mother’s age (2SLS random forest)
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Figure 9 – Treatment effects of more than two children on worked for pay along

the dimensions father’s income and mother’s age (2SLS random forest)

Figure 10 – Standard errors worked for pay along the dimensions father’s

income vs. mother’s age (2SLS random forest)
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Figure 11 – Treatment effects of more than two children on worked for pay along

the dimensions mother’s education and mother’s age (2SLS random forest)

Figure 12 – Standard errors worked for pay along the dimensions mother’s

education vs. mother’s age (2SLS random forest)
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Figure 13 – Treatment effects of more than two children on weeks worked along

the dimensions mother’s education and mother’s age (2SLS random forest)

Figure 14 – Standard errors weeks worked along the dimensions mother’s

education income vs. mother’s age (2SLS random forest)
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We now present a summary of the effect heterogeneity as detected by our two-stage least squares

random forests.7 Figures 15 and 16 display the mean values of each covariate at different points

of the treatment effect distribution. To fit all results on one scale, we standardize the covariates

by dividing them by the difference of their maximal and minimal values (for dummy variables,

this yields the fraction of cases at a particular point in the distribution).

Figure 15 – Worked for pay: average values of covariates across

different points of the treatment effect distribution
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The y-axis shows the mean standardized values of the given covariate for a given decile of the distribution of treatment effects. The standardized values are obtained by

dividing the value of each covariate by the difference between the maximal and the minimal value. In the case of dummy variables, this shows the fraction of cases.

The two graphs provide interesting insights into the structure of labor supply effects of children

across different covariate dimensions. For example, it turns out that ethnic minorities and young

mothers are very much overrepresented among large reductions in participation due to children

7To our best knowledge, this way of summarizing effect heterogeneity was first proposed by Athey et al.

(2020).
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(see lower deciles in figure 15). On the other hand, older women, women with more years of

education, women who were older at the time of their first birth as well as women with high

husband’s earnings are much overrepresented among the cases with relatively mild reductions in

labor supply due to children (see upper deciles in figure 15).

Figure 16 – Weeks worked: average values of covariates across

different points of the treatment effect distribution
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The y-axis shows the mean standardized values of the given covariate for a given decile of the distribution of treatment effects. The standardized values are obtained by

dividing the value of each covariate by the difference between the maximal and the minimal value. In the case of dummy variables, this shows the fraction of cases.

The most striking pattern in figure 15 is that of the variable indicating whether the first child

was a boy. It turns out that extremely negative labor supply reactions are very tightly related to

having a boy as the first child, while relatively mild labor market reactions are tightly related to

not having a boy as first child. At first glance, this appears to be consistent with the findings in

Ichino et al. (2014) who find that women with first-born boys are less likely to work and work

fewer hours in variety of countries. However, they argue that a likely channel for this is reduced
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marital stability after a first-born girl. This channel does not apply to our application (we only

consider married women), suggesting an independent effect of having a first-born boy on later

labor supply.8

Figure 16 shows the corresponding results for the number of weeks worked per year. The general

patterns are very similar to those in figure 15, but the differences are more gradual across per-

centiles. This is not suprising given that the outcome modeled is a continuous variable (weeks

worked). By contrast, the patterns are more nonlinear for the binary case of working vs. not

working (mostly horizontal for the central deciles and strongly changing towards the boundaries,

see figure 15). Also note that the median effects shown in the lower panels of figures 15 and

16 are close to the estimated two-stage least squares coefficients reported by Angrist and Evans

(1998) for the whole sample (-.113 for worked for pay, and -5.15 for weeks worked, Angrist and

Evans, 1998, Table 7).

4 Conclusion

This paper develops the case of two-stage least squares random forests (2SLS random forests)

based on the general framework of Athey et al. (2019). Our application to Angrist and Evans

(1998) demonstrates the usefulness of the method for evaluating effect heterogeneity along multi-

ple dimensions, leading to a richer description of effect differences across observable characteristics

and their interactions compared to conventional methods for average effects.

8See Ichino et al. (2014) for more discussion. A possibility is sample selection bias, i.e. women still married

may differ in unobserved ways from those not married.
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