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Deductive Logical Reasoning

Symbolize in a 
certain logical 
language L.

Apply some 
methods of 
decision

An 
argument in 

natural 
language 

The logical 
form of the 
argument in 

L

(In)Valid

� Logic is the study of valid arguments. 

Semantic or 
Model-theoretic

Syntactic or 
Proof-theoretic 

Logic:
1. A language L (well formed formula).
2. An interpretation for L/ a model-theory for L  (Truth in a model and logical consequence)
3. A deductive system for L/ a proof theory for L  (Sound derivation and proof)



Propositional and Quantificational Logic

Model Theory
� Each sentence is either true or false.
� Truth-conditions definitions for 

logical operators.
� Validity: there is no interpretation 

which makes the premises true and 
the conclusion false. 

� ⊨  model-theoretic logical 
consequence.

Proof-theory
� A system of axioms or rules of 

inference that implicitly define the 
logical operators.

� Validity: the conclusion can be 
logically derived from the premises 
by using the axioms or rules of 
inference.

� ⊦ proof-theoretic logical consequence

Language
1. Propositional letters: A, B, C, D …
2. Logical operators: & (and), v (or), ~ (not), → (if …, then), ↔ (if, and only if, …, then ..)
3. Predicate letters: F, G, H …
4. Individual constants: a, b, c, d …
5. Individual variables: x, y, z …
6. Quantifiers: universal (∀), existential (∃)
7. Parantheses: (, )

Soundness:            If   P1, P2, …Pn ⊦  C, then P1, P2, …Pn ⊨  C
Completeness:       If   P1, P2, …Pn ⊨ C, then P1, P2, …Pn ⊦ C



Logical Inferentialism

Model-theoretic Inferentialism
1)  The meanings of the logical terms 

are determined by the rules of 
inference that govern their use in a 
logical calculus and 

2)   These meanings are to be defined 
in model-theoretic terms 
(truth-conditions, extension, 
reference, validity).

Proof-theoretic Inferentialism
1)  The meanings of the logical terms 

are determined by the rules of 
inference that govern their use in a 
logical calculus and 

2)   These meanings are to be defined 
in proof-theoretic terms 
(proof-conditions, inference, 
derivability). 

The conception based on the idea that the meanings of the logical terms 
are uniquely determined by the formal axioms or rules of inference that 
govern their use in a logical calculus.



Model Theoretic Inferentialism and Categoricity

Model-theoretic Inferentialism

1) The meanings of the logical terms are uniquely determined by the   
rules of inference that govern their use in a logical calculus and 

2) These meanings are to be defined in model-theoretic terms 
(truth-conditions, extension, reference).

Categoricity 
A system of rules or axioms S is categorical iff all its models are standard. 

        or
A calculus in categorical iff it uniquely determines the intended 
model-theoretic meanings of the logical terms. 



Carnap’s Logical Inferentialism 

Let any postulates and any rules of inference be chosen arbitrarily; then 
this choice, whatever it may be, will determine what meaning is to be 
assigned to the fundamental logical symbols. [...] The standpoint which 
we have suggested -we will call it the Principle of Tolerance- relates not 
only to mathematics, but to all questions of logic. (Carnap 1934/1937: 
xv)

While in constructing a calculus we may choose the rules arbitrarily, in 
constructing a calculus K in accordance with a given semantical system 
S we are not entirely free. In some essential respects the features of S 
determine those of K, although, on the other hand, there is still a 
freedom of choice left with respect to some features. Thus logic -if taken 
as a system of formal deduction, in other words, a calculus –is in one 
way conventional, in another not. (Carnap 1942: 218-19)



Carnap’s Inferentialism in FoL

(Carnap 1943) introduces the concept of full formalization:

To fully formalize a logical theory, that is already defined on the basis of 
a semantical system, by a formal calculus means to show that
i. every logical truth is a theorem in the calculus;

ii. every relation of logical consequence is represented by a relation of 
logical derivability in the calculus, and 

iii. all logical terms have the intended semantical meanings in all the 
permissible interpretations of the calculus.

(Carnap1943) discovered that both the standard (single conclusion, finite) 
propositional and quantificational calculi are not full formalizations of 
propositional and quantificational logics.



Model Theoretic Inferentialism and Categoricity
Categoricity 

A calculus in categorical iff it uniquely determines the intended 
model-theoretic meanings of the logical terms. 

Carnap’s Non-Categoricity  Results 
Propositional Logic 
v+ (φ) = true, for all wff φ of L. Thus,  v+(A)= v+(~A) =true.
v⊢(φ) = true, when φ is a theorem
v⊢(φ)=false, when φ is not a theorem.  

Thus, v⊢(A)= v⊢(~A)=false, but v⊢(A v ~A)= true.  
Quantificational Logic
v*(∀xPx)= v*(Pa & Pb & Pc & …& Qb)=true
v*(∃xPx) = v*(Pa v Pb v Pc v…..v ~Qb)=true

Thus, we have models of propositional and quantificational calculi in 
which the logical terms have non-standard meanings.
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Categorical MTI
(Garson 2013) showed that MTI depends both on the format of the 
logical calculus and on the way in which the models for a logical 
calculus are defined. 

Logical calculi                                   Models
Axiomatic                                           Deductive
Natural Deduction                            Local 
Sequent Calculus                               Global

Model Theoretic Inferentialism and Categoricity



Model Theoretic Inferentialism and Categoricity
 Hilbert and Bernays 1934  Axiomatic  Calculus for PL

Axioms for implication
⊢A⟶(B⟶A)
⊢(A ⟶ (A ⟶ B)) ⟶ (A ⟶ B) 
⊢(A ⟶ B) ⟶ ((B ⟶ C) ⟶ (A ⟶ C)) 

Axioms for conjunction 
⊢(A&B)⟶A
⊢(A & B)⟶ B
⊢(A ⟶ B) ⟶ ((A ⟶ C) ⟶ (A ⟶ (B & C)))

Axioms for disjunction 
⊢ A ⟶ A v B
⊢ B ⟶ A v B 
⊢(A ⟶ C) ⟶ ((B ⟶ C) ⟶ ((A v B) ⟶ C)).

Axioms for negation
 ⊢(A ⟶B) ⟶ (~B ⟶ ~A), 
 ⊢ A ⟶ ~~A,
 ⊢ ~~A ⟶ A.

Rules of inference
1) Substitution 
2) Modus Ponens



Model Theoretic Inferentialism and Categoricity
Gentzen Natural Deduction Rules 1934

STRUCTURAL RULES:
Hypothesis:                                           Weakening:              Cut:
 Г ⊢ C, provided that C is in Г                 Г ⊢ C                     Г ⊢ A                                                  

                                                Г, Г’ ⊢ C                Г’, A ⊢ C 
                                                    Г, Г’  ⊢ C 

OPERATIONAL RULES    (Introduction, Elimination)        
Rules for conjunction  
Г ⊢ A                           Г ⊢  A&B          Г ⊢ A & B
Г ⊢ B                           Г ⊢  A                Г ⊢ B 
Г ⊢  A & B 

Rules  for Implication                                     Rules for Negation 
   Г, [A] ⊢ B            Г  ⊢ A                              Г, [A] ⊢ ⋏                       Г ⊢ A 
   Г ⊢ A ⟶ B          Г  ⊢ A ⟶ B                     Г ⊢ ~A                            Г ⊢ ~A 
                                Г ⊢ B                                                                       Г ⊢ ⋏ 
Rules for disjunction 
Г ⊢ A                    Г ⊢ B                    Г ⊢ A v B 
Г ⊢ A v B             Г ⊢ A v B              Г, [A]  ⊢ C 
                                                           Г, [B] ⊢ C
                                                            Г ⊢ C 



Model Theoretic Inferentialism and Categoricity
Gentzen Sequent Calculus Rules 1934

& Left                       &Left                                & Right 
Г, A ⊢ Δ               Г, B ⊢  Δ                          Г  ⊢ A, Δ
Г, A&B ⊢ Δ        Г, A&B ⊢ Δ                      Σ ⊢ B, Π 

             Π, Σ ⊢ A & B, Δ, Π
⟶ Left                                                               ⟶Right                              

Г ⊢ A, Δ                                                           Г, A ⊢ B, Δ
Σ, B ⊢ Π                                                          Г ⊢  A⟶B, Δ
Г, Σ, A ⟶B ⊢ Δ, Π 

~Left                                                                    ~Right                      
Г ⊢ A, Δ                                                                Г, A ⊢ Δ                    
Г, ~A ⊢ Δ                                                               Г ⊢ ~A, Δ    

v Left                                                            v Right            v Right    
Г, A ⊢  Δ                                                         Г, A ⊢ Δ          Г, B ⊢ Δ   
Σ, B ⊢ Π                                                             Г⊢ AvB, Δ        Г, AvB ⊢ Δ 
Г, Σ, AvB ⊢Δ, Π



Categorical MTI
(Garson 2013) explicitly showed that MTI depends both on the format 
of the logical calculus and on the way the models for the a logical 
calculus are defined. 

Logical calculi                                   Models
Axiomatic                                           Deductive
Natural Deduction                            Local 
Sequent Calculi                                 Global

Model Theoretic Inferentialism and Categoricity



Deductive Model: V is a deductive model of S iff all provable sequents of S  
   are V-valid.

Global Model:  V is a global model of S iff each rule of S preserves V-validity. 
Local Model:     V is a local model of rule R iff R preserves S-satisfaction. 

The difference between being a local model of a rule R and being a global model 
of R amounts to a difference in the scope of quantification: 

Global Model: (∀v∊V)(v sat. the inputs of R)→(∀v∊V)(v sat. the outputs of R)
 

Local Model: (∀v∊V)(v sat. the inputs of R → v sat. the outputs of R) 

Model Theoretic Inferentialism and Categoricity



Model Theoretic Inferentialism and Categoricity
� (Carnap 1943) worked with deductive models and axiomatic systems.
� He was interested in the relation between logical semantics (L-semantics) and 

logical syntax (C-syntax).
� He defined the logical concepts semantically (L-implication, L-true, L-disjunct, 

L-exclusive)  and wanted to find out whether there is a symmetry between then 
and the corresponding syntactic concepts (C-implication, C-true, C-disjunct, 
C-exclusive). 

� Since PL and QL are sound and complete, then:  
L-implication  ↔  C-implication           L-true  ↔ C-true. 

� The problem is with C-disjunct and C-exclusive; they are not defined by 
C-implication.

� L-exclusive: a sentence and its negation cannot both be true (LNC).
� L-disjunct: a sentence and its negation cannot both be false (LEM).

� Thus, we may have interpretations in which LNC and LEM do not hold. 



Conjunction: PC & NTT

p   q              p & q           p & q
p & q                p                  q

 (&I)              (&E)’           (&E)’’  p q p & q

C1 ⟙ ⟙ ⟙

C2 ⟙ ⟘ ⟘

C3 ⟘ ⟙ ⟘

C4 ⟘ ⟘ ⟘
 (&I)  :   C1
 (&E)’ :  C3, C4 
 (&E)’’ : C2, C4



Disjunction: PC & NTT

                                                                  [p]     [q] 
    p             q         p v q      r         r 
p v q      p v q                     r

 (vI)’        (vI)’’                  (vE)  p q p v q

D1 ⟙ ⟙ ⟙

D2 ⟙ ⟘ ⟙

D3 ⟘ ⟙ ⟙

D4 ⟘ ⟘ ?

 (vI)  :  D1, D2
 (vI)’ :  D1, D3
 (vE) :   -------



Material Implication: PC & NTT
 p q p → q

I2 ⟙ ⟘ ⟘
   [p]                
     q                    p    p → q
  p → q                  q                     

 (→I)                   (→E)
I1 ⟙ ⟙ ⟙

I3 ⟘ ⟙ ⟙

I4 ⟘ ⟘ ?

 (→ I)  :   I1, I3
 (→ E) :    I2



Negation: PC & NTT

p ~p

N1 ⟙ ?

N2 ⟘ ?

   [p]                
     ⋏               p     ~p
   ~p                   ⋏                   

 (~I) :  …..                  
 (~E):  …..

 (~I)             (~E)



Carnap’s Solution to the Categoricity Problem in PL
� To eliminate these non-normal interpretations, Carnap introduced new 

syntactical concepts based on the notion of junctive. 
� A junctive is a potentially infinite sentential class that can be constructed either 

conjunctively (as it is usually done when we consider the class of premises of 
an argument) or disjunctively (when we consider the class of conclusions of an 
argument).

�  For obtaining a fully formalized propositional logic, Carnap introduced two 
new rules of deduction:

1)  Ai v Aj ⊢ { Ai, Aj}
v

2)   V& ⊢ Λv 

� Various solutions: Alonzo Church (1944), T. Smiley (1996), Vann McGee 
(2000), J. Garson (2013), Bonnay & Westerståhl (2016), J. Warren (2020), 
Murzi & Topey  (2021) 
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The Categoricity Problem for Quantificational Logic

� The objectual interpretation of ∀:
    v(∀xFx)=true iff  for all d in D, v(Fd/x)=true.

� The substitutional interpretation of ∀:
    v(∀xFx)=true iff  for all t in L, v(Ft/x)=true.

� If every object from the domain of quantification D is named 
in the language, then the two interpretations are equivalent. 



The Categoricity Problem for Quantificational Logic

� The possibility of non-normal interpretations in predicate logic arises because, a 
universally quantified sentence is not deductively equivalent with the class 
formed by the conjunction of all the instances of the operand. 

Г ⊢ Ft                                        Г ⊢ ∀xFx         
Г ⊢  ∀xFx                                  Г ⊢  Ft               
*provided that t does not 
occur in Г

� (∀x)Fx is not a consequence of any proper subclass of its class of instances. 
� To make (∀x)Fx a consequence of all its infinite class of instances, Carnap 

(1937, 1943) introduced an infinitary rule.
 ∀Iω –rule:     Г ⊢ Ft, for all t of L
                       Г ⊢  ∀xFx

 {Ai(ik)}& ⊢ Ai 



Theorem 14.3: S∀ does not express   s⃦∀  ,⃦ nor does it express   d⃦∀  .⃦
Proof sketch: The set {Ay/x: y is a variable of L} ∪ {~∀xA} is 
consistent in S∀, and the set e of all wffs B such that {Ay/x: y is a 
variable of L} ∪ {~∀xA} ⊢ B is deductively closed and so a member of 
[S∀]. The set e however, although it contains Ay/x for each variable y, it 
does not contain ∀xA on pain of inconsistency.

v* (Ay/x, for each variable y)=true, v*(∀xA)=false. 

Garson’s Non-Categoricity Theorem



Model Theoretic Inferentialism and Categoricity

 Hilbert and Ackerman/Bernays  Axiomatic  Calculus for QL 1927

           Axiom for Universal           Axiom for Existential 
                 ∀xFx ⟶ Fy                             Fy ⟶  ∃xFx

                                           Rules of inference
  Let Fx be an arbitrary logical expression that depends on x, and A 

one that does not:
             A ⟶ Fx                                    Fx  ⟶ A
             A ⟶∀x Fx                               (∃x)Fx  ⟶  A



Model Theoretic Inferentialism and Categoricity
Gentzen Natural Deduction Rules 1934

Rules for the universal quantifier  
Г ⊢ Ft                                        Г ⊢ ∀xFx         
Г ⊢  ∀xFx                                  Г ⊢  Ft               
*provided that t does not 
occur in Г

Rules  for the existential quantifier                                      
   Г ⊢ Ft                           Г ⊢ ∃xFx 
   Г ⊢ ∃xFx                      Г, [Ft] ⊢ φ

                           Г, ∃xFx ⊢ φ    
*provided that t does not occur   in 

∃xFx, in Г or in φ.



Model Theoretic Inferentialism and Categoricity
Gentzen Sequent Calculus Rules 1934

∀ Left                                ∀ Right 
Г, Ft ⊢ Δ                            Г ⊢ Fy, Δ                         
Г, ∀xFx ⊢  Δ                     Г ⊢ ∀xFx, Δ

                                    *provided that y does not 
                                                                       occur in Г, Δ, ∀xFx

        ∃ Left                              ∃ Right 
     Г, Fy ⊢Δ                                   Г ⊢ Ft, Δ         
    Г, ∃xFx ⊢ Δ                             Г ⊢ ∃xFx, Δ 

  *provided that y does not 
   occur in Г, Δ , ∃xFx 



Two Ideals of Logical Formalization
(Hintikka 1989: 71-73) distinguishes two main uses of logic in 

mathematics:
1. The descriptive use of logic:

� The use of logical notions for the purpose of capturing different structures 
studied in mathematical theories. 

� Ideal: to attain a categorical axiomatization S for a mathemathical theory, 
i.e., any two models of S are isomorphic. (descriptive completeness)

2. The deductive use of logic: 
� The use of logical inferences for systematizing and criticizing 

mathematicians reasoning about the structures they are interested in. 
� Ideal: to attain a deductively complete system S, i.e. for each sentence C in 

the language of S, either S⊢C or S⊢ ~C. 

Remark: categoricity and deductive completeness are properties of 
the mathematical theory formally axiomatized in a certain logical 
system and not of the underlying logical system itself. 
The underlying logical system L of S  is semantically complete  iff all 
valid formulas and all consequences can be derived in the system, i.e. 
if Г⊨φ, then Г⊢Lφ. 



Two Ideals of Logical Formalization

Some connections:
� If S is deductively complete, then L is semantically complete.
� If S is deductively complete, then the models of S are elementary equivalent.  
� If S is not deductively complete, then either its logic is not semantically 

complete, or its models are not elementary equivalent, i.e., S is 
non-categorical. 

� In the case of first order PA, since L is semantically complete, then S is 
non-categorical. 

Gӧdel’s Incompleteness Theorem: If we reach a categorical 
mathematical theory S (containing elementary arithmetic), then our 
underlying logic cannot be sematically complete. Thus, we can have 
categoricity only at the price of semantical completeness of the 
underlying logic. We can have either the categoricity of S, or the 
semantical completeness of L, but not both.  

(See Hintikka 1989, Tennant  2000, Hazen 2006, Smith  2020)



Two Ideals of Logical Formalization

Which should be the preferences of a MT-logical inferentialist? Would he 
abandon the semantic completeness of L for obtaining the categoricity of S?  
� (Murzi and Topey 2021) argued that the open-ended rules for SOL fix the 

standard meanings of the second order quantifiers. Thus, they prefer the 
categoricity of S.

� I think that the semantic completeness of L should not be abandoned by a 
MT-logical inferentialist. One of his main aims, after all, is to formally 
capture all valid arguments. 

� My view is that the MT-inferentialist should accept in his inferential 
framework the infinitary rules of inference. In this way he uniquely 
determines the standard meanings of the first-order quantifiers and, in 
addition, ω-logic is semantically complete and makes PA deductively 
complete. 

� The price paid is the categoricity of first-order theories. Due to 
Lӧweinhem-Skolem theorem, PA closed under ω-rule is non-categorical.



Carnap on Infinitary Rules
The Principle of Conventionality of Language Forms

There are no theoretical constraints that the consequence 
relation of language must satisfy. 

� Thus, each formal theory T determines a consequence 
relation.

The Determinacy Desideratum
    The syntactic consequence relation of T should be such that 

any logico-mathematical sentence φ is either analytic, i.e. 
provable, or contradictory, i.e. refutable. (T⊢ φ or T⊢ ~φ) 
� If T is negation-complete, then all its terms will be logical.
� If T is not negation-complete, then some of its terms will be 

non-logical, i.e., descriptive. 



P1.  PRA0  (BA) is negation-complete. 
P2.  PRA (Q) is not negation-complete.
P3.  PRA= PRA0  + ∀
C1. Therefore, ∀ is a logical sign in PRA0  (BA) and a 

non-logical sign in PRA (Q). 

 The universal operator (𝖟) in both [Princ. Math.] and IId is not logical 
but descriptive. By this nothing is said against the usual translation, in 
which the correlate of 𝕲 is a logical  sentence (for example, the 
identically worded sentence 𝕲 in II), and  the correlate of (𝖟) is a 
logical expression (for example, a proper universal operator in II). The 
fact that 𝕲 and (𝖟) are descriptive only means that in addition to this 
usual translation others are possible, amongst  them some in which the 
correlates of 𝕲 and (𝖟) are descriptive. (Carnap 1937:231)

The ‘Non-normality’ of ∀ in LSL



P1.  ∀ is a proper logical sign iff a universal quantified sentence is a 
syntactic logical consequence of the class of all its instances. 

P2. A universal quantified sentence is a syntactic logical consequence 
of the class of all its instances in a logical calculus iff the calculus 
contains infinite rules of inference. 

 C. ∀ is a proper logical sign in a logical calculus iff the calculus 
contains infinite rules on inference. 

 In Languages I and II the universal operators with 𝖟 are proper  universal 
operators. For not only is every sentence—and hence every closed 
sentence—of the form pr1(𝖅) a consequence of  (𝖟1)(pr1(𝖟1)), but, conversely, 
this universal sentence is also a consequence of the class of those closed 
sentences (by DC 2, p. 38) and therefore equipollent to it. In the other 
languages which we have mentioned, on the contrary, the same thing is not 
true for the  universal operators with 𝖛 or with 𝖟 (unless Hilbert's new rule is 
laid down; hence these operators are improper. (Carnap 1937:197)

 

The ‘Non-normality’ of ∀ in LSL



Carnap’s Gӧdelian Dilemma 
∀ is a proper logical sign in a logical calculus iff the 
calculus contains infinite rules on inference.

 Because of its generality Gӧdel’s theorem presents Carnap with 
a dilemma: every Carnapian language strong enough to contain 
quantified arithmetic must either have a non-effective 
consequence relation or make some arithmetical vocabulary 
count as descriptive. (Potter 2002: 269)



Murzi and Topey –Categoricity by convention
� Consider the ∀I- rule:

Г⊢φ
Г⊢∀xφ , where x does not appear free in Г.      

� This rule is locally valid with respect to a class of valuations V iff it 
preserves sequent satisfaction in V.  

� (Standard meaning of ∀): For any φ with at most x free, ∀xφ is true  
iff every object in the domain is in the extension of φ in v. 

1. If the rules are locally valid, then ∀xφ is true in v iff the range of x in 
v is included in the extension of φ in v. (Weakened First Order Thesis)

2. If the rules are locally valid and the interpretation of ∀ is 
permutation invariant (or the rules are open-ended), then the 
standard meaning of ∀ is determined by the rules. (First Order 
Thesis)



Is the local validity of ∀I-rule compatible with Carnap’s  v+?
� We can define a classical valuation v+ such that:

 v+(∀xFx) = true 
 v+(Fa & Fb & Fc & … & Qb) =true. 

� Consider the ∀I- rule:
Г⊢φ
Г⊢∀xφ , where x does not appear free in Г.      

� This rule is locally valid with respect to a class of valuations V iff it preserves 
sequent satisfaction in V. A sequent Г⊢φ is satisfied by a valuation v relative 
to a variable assignement s iff  s makes φ true, or makes a member of Г false. 

Case 1: Г≠⌀. v+ satisfies Г⊢φ since it satisfies φ, and also satisfies Г⊢∀xφ 
since it satisfies ∀xφ . 
Case 2: Г=⌀. Idem. 

Thus, v+ ∊ V, but v+ provides ∀ with a different meaning. 
 



Is the local validity of ∀I-rule compatible with Garson’s v*?

� The set {φ(t/x) for every term t of L, ~∀xφ} is consistent in the standard 
sense. A sentence may be provable from an infinite set of premises without 
being provable from a finite subset of the initial set. 

� We can define a classical valuation v* such that v*(φ(t/x), for every term t of 
L) is true, while v*(∀xφ) is false. 

� Consider the ∀I-rule:
Г⊢φ
Г⊢∀xφ , where x does not appear free in Г.      

Case 1: Г≠⌀. Then the rule is locally valid if some δ in Г is made false by v*. 
Thus, if v*(Г) = false, then v*∊ V. 
Case 2: Г=⌀. The rule then says that if φ is a theorem, then its logical closure 
is also a theorem. Apparently, in this case v* ∉ V ….

 



Is the local validity of ∀I-rule compatible with Garson’s v*?
However, we do not always use ∀I-rule only in proofs, i.e., when the 
premises are theorems.
There are cases in which ∀xφ follows semantically from the entire class of 
instances of φ, although φ is not a theorem. For instance a Gӧdel sentence for 
PA: 

PA ⊢ φ1 PA ⊢ φ2 PA ⊢ φ3 ….. PA ⊬ ∀xφ
From PA ⊢ φ1 PA ⊢ φ2 PA ⊢ φ3 ….. it does not follow that PA ⊢ φx

We would need the Carnapian transfinite rule which says that a sentence Ai 
containing a free variable ik is directly derivable from the infinite conjunctive 
set of all its instances:
 {Ai(ik)}& ⊢ Ai    

Therefore, the valuation v* is available for a person who uses ∀I- rule in an 
ordinary derivation.

 



Why the ω-logic? 
The ω-rule is an infinite rule of inference:
From φ(0), φ(1), φ(2) ….  infer  ∀xφ(x) 

The  ω-logic  is formed by adding the ω-rule to the axioms or  rules 
of inference of FOL and allowing infinite proofs. 

If we consider the language L={+, x, S, 0}, an ω-model is a model M 
in which D={0, 1, 2, ….}. That is, M omits the set: {x≠0, x≠1, ….} 
This formulation of ω-logic is intended for the study of the standard 
model of arithmetic. 

ω-Soundness and Completeness Theorem:
 A theory T in L is consistent in ω-logic iff T has and ω-model. 



Why the ω-logic? 

 Gӧdel’s Incompleteness Theorem: If we reach a categorical mathematical 
theory S (containing elementary arithmetic), then our underlying logic cannot 
be sematically complete. Thus, we can have categoricity only at the price of 
semantical completeness of the underlying logic. We can have either the 
categoricity of S, or the semantical completeness of L, but not both. 

The ω-logic is semantically complete. 
PA in ω-logic is deductively complete.
The ω-rule uniquely determines the standard meaning of the ∀.
The price paid is the categoricity of the theories formalized by the ω-logic.

However, if we find a good inferentialist reason to pick out only the 
ω-models, then categoricity of the PA could also be attained.  (further work to 
be done …)



ω-rule Reasoning? 
The Supertask Computer Verification

� Goldbach conjecture (GB) asserts that every even number greater than 2 is the 
sum of two prime numbers.

� (Warren 2020) invites us to consider a supertask computer (SC) that is able to 
perform a countably infinite number of computations is a finite time. 

� The SC is set to verify GB and it checks 0 in half a minute, one in half of half a 
minute, and n in 1/2n+1 minutes and, thus, the computation will finish in one 
minute.

�  The SC either sends a halt signal if a counterexample is found before one minute 
or no counterexample is found and, thus, we receive no signal. 

� If the SC fails to halt, then we accept GB(0), GB(1), GB(2) … by using as 
evidence the computations. Then we conclude (∀x)GBx. 

� Therefore, on the basis of the computation, we accept each of the infinitely many 
premises and infer from them, according to the omega rule, the truth of GB: 
          GB(0),  GB(1),  GB(2) … 

(∀x)GBx
� The acceptance of the premises is supposed to be justified by the result of the 

computation, namely, that no counterexample was to be found. The conclusion is 
inferred by using the omega rule. Thus, this would count as a situation in which 
we, human beings, perform an infinite reasoning, by using infinite inferences. 



Outline
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Thank you!


