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     Plan of this course:
(PART A) A general introduction on proof assistants (interactive
theorem provers) focussing on their use for the formalisation of 
mathematics; a discussion on the state of the art and recent 
advances. (Focus on Isabelle/HOL). 

(PART B) Formalisation of Aristotle’s Assertoric Syllogistic in 
Isabelle/HOL. 

 Automated:  algorithmic, automatic, interactive (between user and 
machine). 

 Reasoning:  finding new conclusions from premises (axioms, definitions, 
assumptions) using rules of inference.



  

A bit of history

Leibniz (1666)

 Boole (1847)  

“Dissertatio de arte combinatoria”: proposes the development of a symbolic 
language that could express any rational thought (characteristica universalis)
and a mechanical method to determine its truth (calculus ratiocinator). To 
resolve any dispute: “Let us calculate!”/ “Calculemus!”

“The mathematical analysis of logic”: propositional logic.

Frege (1879)
“Begriffsschrift”: an expressive formal language equipped with logical axioms 
and rules of inference.



  

A bit of history

 Whitehead and Russell (1910-1913) 

Hilbert (1920) 

“Principia Mathematica”: (logicism) goal to express all mathematical 
propositions in symbolic logic & solve paradoxes of set theory.Developed 
type theory. 

Formalism and Hilbert’s program: All mathematical statements should be 
written in a precise formal language, follow from a provably consistent finite 
system of axioms, according to well-defined rules. Completeness, 
Consistency, Conservation, Decidability. 

Note: Gödel’s Incompleteness Theorems (1931)



  

A bit of history

 The QED Manifesto (1994)

de Bruijn (late 1960s)

A proposal for a central computer-based library of all 
known mathematics fully formalised and formally verified 
(automatically checked by computers) 

AUTOMATH: a predecessor of modern proof assistants based on type 
theory. Used Curry–Howard correspondence. Late 1970’s: van Benthem 
Jutting translated Landau’s “Foundations of Analysis” into AUTOMATH.

The project was soon abandoned. 

(Or was it?)



  

Modern proof assistants (interactive theorem provers)

         Today

For a direct comparison with examples, see, e.g. the webpage maintained by  
Wiedijk, “Formalising 100 theorems”.

Software tools for formal verification/ the development of formal proofs by user-
computer interaction. A human user writes the proof in a formal language via an 
interactive interface to be checked by a computer. Intermediate proof steps are
often given by automation.

A variety of proof assistants available, based on different logical formalisms: 
Based on: set theory (e.g. Mizar, Metamath); simple type theory (e.g. HOL4, 
HOL Light, Isabelle); dependent type theory (e.g. Coq, Agda,Lean, PVS).
Extensive libraries of formalised mathematics available.



  

“We believe that when later generations look back at the development of mathematics one 
will recognise four important steps: 

(1) the Egyptian-Babylonian-Chinese phase, in which correct computations 

were made, without proofs; 

(2) the ancient Greeks with the development of “proof”; 

(3) the end of the nineteenth century when mathematics became “rigorous”; 

(4) the present, when mathematics (supported by computer) finally becomes 

fully precise and fully transparent.”

 

Barendregt, H. and Wiedijk, F. (The challenge of computer mathematics, Philos. 
Trans. - Royal Soc., Math. Phys. Eng. Sci. 36(1835):2351-2375 (2005)).



  

Why formalise mathematics?
* Verification: Mathematicians can be fallible. (Example: the Fields medalist 
Vladimir Voevodsky started working in formalisation after discovering errors in his 
own work). 
 
* (Future of?) Reviewing.

* Preserving mathematical knowledge in big libraries of formalised mathematics: 
databases with an enormous potential for the creation of future AI tools to assist 
mathematicians in the discovery(/invention) of new results.

* Deeper understanding, new insights: even familiar material can be seen in new 
light when using new tools. High level of detail in which a formalised proof must 
be written forces to think and rethink proofs and definitions. 

* Educational tools.
 
* Last but not least: it is fulfilling and fun!



  

Why formalise mathematics?

...and a comment on an additional 
personal motivation

Work in applied proof theory- proof mining: pen-and-paper extraction of 
constructive/quantitative information from proofs in the form of computable 
bounds (requiring a logical analysis of a proof and rewriting it to make the logical 
form of all the statements involved explicit via revealing the hidden quantifiers).

Provokes the question:

What is it that makes a “good” proof?



  

* a shorter proof;

* a more “elegant” proof;

* a simpler proof (consider Hilbert’s 24th problem (1900)): “find criteria for 
simplicity of proofs, or, to show that certain proofs are simpler than any 
others.”;

* in terms of Reverse Mathematics – a proof in a weaker subsystem of 
Second Order Arithmetic;

* an interdisciplinary proof (e.g. a geometric proof for an algebraic 
problem or vice-versa would be considered to give a deeper 
mathematical insight);

* a proof that is easier to reuse i.e. if it provides some algorithm or 
technique or intermediate result that can be useful in different contexts 
too;



  

* a proof giving “better” computational 
content.

What do we mean by “better” computational 
content?

* a bound of lower complexity?

* a bound that is more precise numerically?

* a bound that is more “elegant”?



  

Why formalise mathematics?
A vision for the future of research mathematics:

To create an interactive assistant that would help research 
mathematicians in their creative work by

* providing “brainstorming”/ hints:  
proof  recommendations,  counterexamples,  proofs of auxiliary 
lemmas/intermediate steps;
* suggesting conjectures; 
* providing information on relevant literature results; 
* helping with bookkeeping on the proof structure/proof goals and 
details; 
* formally verifying the new results.

The goal is to assist mathematicians, not to replace them.



  

Why formalise mathematics?
A vision for the future of research mathematics:

Timothy Gowers (Fields Medal 1998) describes how a ”dialogue” 
between a user and a computer would ideally look like in the future to 
interactively assist the human mathematician to arrive at (new) 
conclusions. The computer would have access to an extensive 
database of mathematical material.

W.T. Gowers (2010). Rough Structure and Classification. In: Alon, N., 
Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in 
Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. 
https://doi.org/10.1007/978-3-0346-0422-2_4



  

Some more suggested reading (in addition to the 
material already given in 
“topics”)



  

Some more suggested reading (in addition to the 
material already given in “topics”)



  

Some milestones & recent advances

* Formalisation of the proof of the four-colour theorem in Coq 
by Gonthier (2008). 

* Gonthier has also formalised the Feit–Thompson proof of 
the odd-order theorem in Coq (2012).

* Formalisation of the proof (1998 publ. 2005) by Hales of the 
Kepler conjecture (sphere packing problem) in HOL Light and 
Isabelle/HOL by  Hales et al. (Flyspeck project, 2003-compl. 
2014).
 
* Formalisation of Gödel's  Incompleteness theorems in 
Isabelle/HOL by Paulson (2013).



  

   Some milestones & recent advances
*  Formalisation of an irrationality proof of ζ(3) by Apéry (evaluation of 
the Riemann zeta function) in Coq by Chyzak, Mahboubi, Sibut-Pinote 
& Tassi (2014).

* Verification of an algorithm with Isabelle/HOL to verify Tucker’s proof 
that the Lorenz attractor is chaotic in a rigorous mathematical sense by 
Immler (2015).

* Formalisation of Scholze’s perfectoid spaces in Lean by Buzzard,  
Commelin and Massot (2019).

 * Grothendieck’s schemes in Lean by Buzzard, Hughes, Lau,  
Livingston, Fernández Mir, R.,  Morrison, S. (2020).
Independently in Isabelle/HOL by Bordg, Li and Paulson (2021). 



  

   Some milestones & recent advances
* Formalisation of a substantial amount of material in analytic 
number theory in Isabelle/HOL by Manuel Eberl (2019).

* The independence of the Continuum Hypothesis by Han & 
van Doorn  in Lean (2021). Independently in Isabelle/ZF by 
Gunther, Pagano, Sánchez Terraf & Steinberg  (2022).

* Formalisation of the solution to the cap set problem (Ellenberg 
& Gijswijt, 2017) by Dahmen, Hölzl and Lewis in Lean (2019).

* Szemerédi’s Regularity Lemma and Roth’s Theorem on 
Arithmetic Progressions in Isabelle/HOL by Edmonds, 
Koutsoukou-Argyraki and Paulson. Independently in Lean by
Dillies and Mehta  (2021).



  

     Some milestones & recent advances

       The Liquid Tensor Experiment

Condensed Mathematics is a theory by Clausen and Scholze (Fields Medal 
2018) introducing condensed sets (an alternative notion to topological 
spaces).

In Dec. 2020, Scholze posed a challenge to the Xena Project Blog: to 
formalise the proof of a result of his he had doubts about.

The Lean Prover Community took up the challenge: a huge collaborative effort 
led by Commelin succeeded to complete the proof in the summer of 2022.

Scholze had been reporting on the progress in subsequent Xena blogposts.



  

Scholze (June 2021, 
Xena Project Blog):



  



  

* Kevin Buzzard, Professor at Imperial College London, an expert in arithmetic 
geometry and algebraic number theory who in 2017 launched the Xena project 
teaching undergraduate students to use the proof assistant Lean (with young 
mathematicians participating enthusiastically in increasing numbers) was an 
invited speaker at the 2022 International Congress of Mathematicians to talk 
about the formalisation of mathematics.
 

Towards a new era in Mathematics?

 

* The 2020 Mathematics Subject Classification includes for the first time
subject classes on the formalisation of mathematics using proof assistants 
(68VXX).

A big shift: Formalisation was until recently an area of computer science. 
Now it is quickly attracting the interest of working mathematicians and 
mathematics students. Enthusiastic online communities and tools e.g. Zulip 
enable massive collaborative projects. Libraries of formal proofs are 
expanding at an increasingly high pace, day-by-day. Student-run projects are 
emerging too. Everyone welcome to join.



  

                               Main Obstacles

* Better automation is needed to provide proofs for intermediate
proof steps (proofs are analysed in an extremely high level of 
detail).

* Efficient search features. 

* Efficient organisation and management of libraries. 

* Interoperability of proof systems, translation of proofs between 
proof assistants needed (Goals of the Dedukti System/ 
EuroProofNet COST Action). 



  

AI/ machine learning and the future of research 
mathematics

Proof assistants and foundations are only one side of the story. Progress 
seems to require the combination of alternative approaches. An interesting 
analogy due to Georg Gottlob: 

``rule knowledge and logical reasoning VS machine learning e.g. neural 
networks" as 

 ``left part of the brain VS right part of the brain". 

Different but complementary functions:
inducing rationality VS inducing imagination and creativity.



  

AI/ machine learning and the future of research 
mathematics

New advances in artificial intelligence and machine learning can promise novel 
developments in mathematical practice through their applications to automated 
theorem proving and proof assistants. E.g.: pattern recognition tools from 
machine learning can find applications in searching the libraries of formal proofs 
and in recognising proof patterns and providing proof recommendation methods 
thus enhancing automation.

The communities of machine learning and formal verification have been growing 
increasingly close during the past few years: 

Successful conference series e.g. AITP, CICM, MATH-AI.  



  

  

Autoformalization with Large Language 
Models
Wu, Y., Jiang, A. Q., Li, W., Rabe, M. 
N., Staats, C., Jamnik, M., Szegedy, C. 
  arXiv:2205.12615v1



  

Davies, A., Juhász, A., Lackenby, M.,
 Tomasev, N., The signature and 
 cusp geometry of hyperbolic knots,
     arXiv:2111.15323v1

(Not related to proof assistants but
demonstrates the pattern-matching
efficiency of AI to assist
research mathematics.) 



  

Isabelle – A Quick Introduction

● Isabelle/HOL: Higher Order Logic (HOL)  (Includes AC; Proofs in classical 
logic). Simple types.

Interactive development of verifiable proofs

● Emphasis  on producing structured, easy-to-read proofs:

ISAR (Intelligible Semi-Automated Reasoning) proof language. 
Internal languages: ML and Scala.

(Integrates automated reasoning tools in an interactive setting:

Proof scripts in Isabelle are interactive sessions between user and     
theorem prover)

● Features efficient automation (Sledgehammer and counterexample-
finding tools like nitpick and Quickcheck).

Developed by Lawrence C. Paulson (since late 1980’s), 
Tobias Nipkow, Makarius Wenzel. 



  

Isabelle – A Quick Introduction
https://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html



  

Isabelle – A Quick Introduction
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/index.html



  

Isabelle – A Quick Introduction
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Analysis/
index.html



  

Isabelle – A Quick Introduction
Theory dependencies in the Analysis library
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/HOL-Analysis/
session_graph.pdf



  

Example of a structured proof in Isabelle/HOL 
(from Theory Weierstrass_Theorems in the Isabelle Analysis Library)



  

Isabelle – A Quick Introduction

https://www.isa-afp.org/index.html

The Archive of Formal Proofs

A vast collection of formalised material in Mathematics, 
Computer Science and Logic.
 

Currently:
 
Number of Entries: 690
Number of Authors: 424
Number of Lemmas: ~212,500
Lines of Code: ~3,436,100



  

The ALEXANDRIA Project at Cambridge 

● Automated and semi-automated environments and tools to aid 
working mathematicians.

● Tools for managing large bodies of formal Mathematical Knowledge

● Expanding the body of formalised material on the Archive of Formal 

Proofs and the Isabelle Libraries.

● Case studies to explore the limits of formalisation 

(Intelligent Search/ Computer-aided Knowledge Discovery).

https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/ 
 (since Autumn 2017)

Large Scale Formal Proof for the Working Mathematician

PI: Lawrence C. Paulson FRS
Postdocs: Wenda Li, Anthony Bordg, Yiannos Stathopoulos,
Angeliki Koutsoukou-Argyraki. PhD Student: Chelsea Edmonds.
Many external collaborators and interns. 

https://www.cl.cam.ac.uk/~lp15/Grants/Alexandria/


  

* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first 
published  18/3/2000, substantive revision 17/2/2017, available on:  

https://plato.stanford.edu/entries/aristotle-logic/

Aristotle’s Assertoric Syllogistic

* Formal Proof Development: Angeliki Koutsoukou-Argyraki; Aristotle’s 
Assertoric Syllogistic, Archive of Formal Proofs, first published  08/10/2019, 
available on:  
https://www.isa-afp.org/entries/Aristotles_Assertoric_Syllogistic.html

(Only ~200 lines of Isar 
code!)

Back to the 
origins :-) 



  

Aristotle’s Assertoric Syllogistic

Syllogisms are structures of sentences each of which can meaningfully be 
called true or false (assertions “apophanseis”).

A deduction is speech (logos) in which, certain things having been supposed, 
something different from those supposed results of necessity because of their 
being so. (Prior Analytics I.2, 24b18–20).



  

Aristotle’s Assertoric Syllogistic

Assertions (apophanseis): every such sentence must have the same structure: 
Subject (individual/universal) ; predicate (only universal); must either affirm or 
deny the predicate of the subject.

Aristotle treats individual predications and general predications as similar in 
logical form (“Socrates is an animal”, “Humans are animals”). 
When the subject is a universal, predication can be either universal or 
particular. 



  

Aristotle’s Assertoric Syllogistic
* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first 
published  18/3/2000, substantive revision 17/2/2017, available on:  
https://plato.stanford.edu/entries/aristotle-logic/



  (Note: Aristotle would never consider A to be an 1-element set)



  



  

Aristotle’s Assertoric Syllogistic: the Deductions in 
the Figures (Moods)

* Source: Robin Smith; Aristotle’s Logic, Stanford Encyclopedia of Philosophy, first 
published  18/3/2000, substantive revision 17/2/2017, available on:  
https://plato.stanford.edu/entries/aristotle-logic/



  

Aristotle’s Assertoric Syllogistic: the Deductions in 
the Figures (Moods)

* Source: Robin Smith; 
Aristotle’s Logic, Stanford 
Encyclopedia of 
Philosophy, first published  
18/3/2000, substantive 
revision 17/2/2017, 
available on:  
https://plato.stanford.edu/
entries/aristotle-logic/



  

Aristotle’s Assertoric Syllogistic: the Deductions in 
the Figures (“Moods”) * Source: Robin Smith; 

Aristotle’s Logic, Stanford 
Encyclopedia of 
Philosophy, 
https://plato.stanford.edu/
entries/aristotle-logic/



  



  

* Source: Robin Smith; 
Aristotle’s Logic, Stanford 
Encyclopedia of 
Philosophy, 
https://plato.stanford.edu/
entries/aristotle-logic/



  

* Source: Robin Smith; Aristotle’s 
Logic, Stanford Encyclopedia of 
Philosophy, 
https://plato.stanford.edu/entries/
aristotle-logic/



  



  

Aristotle’s Assertoric Syllogistic

                                       A metatheorem by Aristotle: 

                   All deductions can be reduced to Barbara/ Celarent.



  

            Observations
1) Using Isabelle’s automation (Sledgehammer),
the proofs of the deductions in the Figures are straightforward (one-line)

The de Bruijn factor would be < 1 !

Example:  Compare

with the original proof:

(note: Cesare 
reduces to Celarent)



  

Aristotle’s proof of Camestres 

“If a belongs to every b (:= every b is a) but to no c (:=no c is a), then neither 
will b belong to any c (:=no c is b). For if a belongs to no c (:= no c is a) , then 
neither does c belong to any a (:= no a is c); but a belonged to every b 
(:=every b is a); therefore, c will belong to no b (:= no b is c) (for the first figure 
has come about). And since the privative converts, neither will b belong to any 
c (:=no c is b).”

Written as:

 

(1) Aab, (2) Eac,  To prove:  Ebc.

(3) Eac (from (2))
(4) Eca (from (3) and conversion)
(5) Aab (from (1))
(6) Ecb (from (4), (5) and Celarent)
(7) Ebc (from (6) and conversion)



  

               Observations

2) The metatheorem that all deductions can be reduced to Barbara/ Celarent  can 
be seen easily from the formal proofs:



  



  



  



  

             Observations
3) The assumption that sets at hand must be nonempty is picked up by Isabelle’s 
counterexample tools. (Example) 



  

       Topics for presentation

(II) Install Isabelle (optionally: also install the Archive of Formal Proofs) and 
experiment with basic examples of your choice according to your interests.

I) Explore the Archive of Formal Proofs.  
Focus on developments of your choice according to your own interests. 
Describe your experiences.



  

Suggested material for the topics

                 



  

       Thank you!
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