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Overview

I This lecture will be an introduction to the idea of a
meaningful formal system – with emphasis on meaningful.

I The idea will be illustrated by means of Martin-Löf’s type
theory, a formal system for which detailed meaning
explanations have been developed.

I We will test the idea by seeing how it makes possible the
justification of the rules of inference in this formal system.

I Dialogues will be introduced towards the end,

1. as an alternative way of formulating the meaning
explanations;

2. as a way of spelling out the notion of assertoric
knowledge, needed in the definition of the validity of an
inference.
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Proof

From the verb to prove (Oxford English Dictionary):

4. To establish as true; to make certain; to demonstrate
the truth of by evidence or argument.
. . .
1. To put (a person or thing) to the test; to test or assess
the genuineness or qualities of. Now rare in general use.

For 1, compare other Germanic languages (and Italian prova?)
and, for example, “proofs” of an article.

: 3



Argument

Cicero:

we may define argument as a reasoning that lends belief
to a doubtful issue [ratio, quae rei dubiae facit fidem]

Oxford English Dictionary:

2. A statement or fact advanced for the purpose of influ-
encing the mind; a reason urged in support of a proposi-
tion.
. . .
4. A connected series of statements or reasons intended to
establish a position (and, hence, to refute the opposite); a
process of reasoning; argumentation.
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Demonstration

Oxford English Dictionary:

1. The action, process, or fact of establishing the truth
of a proposition or theory by reasoning or deduction. . . ;
an argument or sequence of propositions showing that a
conclusion, theorem, etc., is a necessary consequence of
axioms or previously accepted statements.

Ultimately from the Greek apodeixis, verb apodeiknymi, to show.
German Beweis.
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Terminological stipulation

Demonstration
= Deductive argument
= Sequence of valid inferences

from immediately evident starting points

Serves to make its conclusion evident.
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Inference

J1 . . . Jn
J

(Inf)

The letter J here stands for “judgement”.

That the inference is valid means that

I the conclusion J can be known under the assumption that the
premisses J1, . . . , Jn are known.

Contrast this with the holding of a consequence:

I the proposition A is true provided the propositions A1, . . . ,An

are all true.
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Two central tasks of formal logic

1. Describe forms/patterns of inference.

• These patterns are recorded as rules of inference.

2. Justify these rules of inference. Show that they capture
patterns of valid inference.
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Some systems of formal logic

I Aristotle’s syllogistics

I Leibniz’s equational logic

I Frege’s ideography

I Modern (metamathematical) predicate logic

I Martin-Löf’s type theory
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Modern predicate logic I

A “language” L is an inductively defined set of formulas, ϕ.

I Formulas are formal objects, like numbers.

I They are not expressions – they cannot be used to express
anything.

A “semantics” or “interpretation” of L is a mapping of L into a
mathematical structure M.

Then one defines a relation, M |= ϕ, read M satisfies ϕ.

This definition does not give meaning to ϕ, but to “M |= ϕ”.

If M is a set-theoretic model, then “M |= ϕ” is a set-theoretic
proposition.
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Modern predicate logic II

An “inference”,
ψ1, . . . , ψn

ϕ

is “valid” if for every M,

M |= ϕ is true provided M |= ψ1, . . .M |= ψn are all true

Side remark: this is a reduction of inference to consequence.
Göran Sundholm has called this “the Bolzano reduction”.
It is taken for granted in most of current logic and philosophy.
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The language of set theory

Two forms of atomic formula: x ∈ y and x = y .

How do we give meaning to this language?

We make stipulations regarding the notion of set.

We spell out a conception of set, e.g., the iterative conception,
answering the questions

I What is a set?

I When are sets equal?

I What does it mean to be an element of a set?
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Martin-Löf type theory

External characteristics:

I Developed around 1970 as a foundation for constructive
mathematics.

I Later (from 1980s) it has found important applications in
computer science and linguistics.

I Homotopy type theory (HoTT) is, formally speaking, just an
extension of Martin-Löf type theory with some new axioms.

Internal characteristics:

I Synthesizes ideas from constructive mathematics and logic,
typed lambda-calculus, and proof theory.

I Based on the principle of types: every object is typed.

I It is equipped with precise meaning explanations.
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Portrait

Per Martin-Löf
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The language

The unit of expression is called a judgement.

For simplicity, we will concentrate on two forms of judgement:

A : type

a : A

These are read:

A is a type
a is an element of the type A

We shall concentrate on types of individuals, hence

type = type of individuals
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Type theory and logic

It may seem restrictive only to be allowed to say that something is
a type, A : type, or an element of a type, a : A.

The Curry–Howard correspondence gives an embedding of full
(constructive) predicate logic into type theory.

type = proposition

element of A = proof of A

In other words, we read

A : type as A is a proposition
a : A as a is a proof of A
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Meaning explanations

I We are not interested merely in a formal system that we can
say something about (metalogic).

I Instead we want a language that we can use to say something
with.

I The language of set theory is often assumed to serve such a
role.

I Type theory will be another such language.

I Martin-Löf’s meaning explanations for his type theory are
much more detailed than anything similar provided for
classical set theory.

: 17



Some questions

Meaning explanations should provide answers to the following two
questions (among many others):

I What is a type?

I What does it mean to be an element of a type?

There are parallel questions of identity:

I What is it for A to be the same type as B?

I What is it for a to be the same element of A as a′?

We shall not deal with these here.
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Answers

We transform the questions into

What must I know in order to have the right to assert

I A : type?

I must know how the canonical elements of A are formed (and how
identical canonical elements are formed).

I a : A?

I must know that a evaluates to a canonical element of A.
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Evaluation

By evaluation we understand definitional reduction.

2 −→
Def of 2

s(1) −→
Def of 1

s(s(0))

1 + 1 −→
Def of 1

1 + s(0) −→
Def of 1

s(0) + s(0) −→
Def of +

s(s(0) + 0) −→
Def of +

s(s(0))

Non-mathematical example:

human −→ mortal rational animal

−→ mortal rational percipient living body

−→ mortal rational percipient living corporeal substance
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Canonical element

I A canonical element is an endpoint of evaluation.
I Since evaluation is definitional reduction, a canonical element

is an element given in fully primitive notation.

• This is a half-truth: lazy evaluation.

In a school class, a teacher asks, What is 7× 5?

In one sense, 7× 5 is a correct answer, but the teacher wants the
same number canonically given: 35.
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Generation of canonical elements

By inductive definition.

Paradigm:

0 : N n : N
s(n) : N

Also an inductive definition (degenerate):

t : bool f : bool

Also:
a : A b : B
〈a, b〉 : A× B

: 22



Type-forming operators: examples

nullary: N, bool, ∅ (⊥)

binary:
A× B A + B A→ B

A ∧ B A ∨ B A ⊃ B

dependently typed:
Id(A, a, b) (Πx : A)B

a =A b (∀x : A)B
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Rules

With each type-forming operator there are associated four sorts of
rule.

I Formation rule describes the behaviour of the type-forming
operator in question – how a type is formed by means of it.

I Introduction rules describe how the canonical elements of
the type are formed.

I Elimination rules stipulate the existence of certain functions
going out from the type.

I Equality rules give the definitional equations for such
functions.
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Example: binary product (conjunction)

A : type B : type

A× B : type
(×-form)

a : A b : B
〈a, b〉 : A× B

(×-intro)

c : A× B
fst(c) : A

c : A× B
snd(c) : B

(×-elim)

fst(〈a, b〉) = a : A

snd(〈a, b〉) = b : B
(×-eq)
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The justificatory status of the rules
I Introduction and equality rules are stipulations, and a question

of justification does not arise for them.

• It is, however, not so that anything goes: we must check
that they serve their intended role as definitions.

I Formation and elimination rules, by contrast, are in need of
justification.

• A formation rule asserts that a certain type exists (under
the assumption that certain other types exist). We must
show how its canonical elements are formed.

• An elimination rule introduces a non-canonical element of
a type. We must show how it is evaluated to a canonical
element.

Roughly:
I Formation rules are justified by introduction rules.
I Elimination rules are justified by equality rules.
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Example: justification of ×-formation

A : type B : type

A× B : type
(×-form)

I Assume that we know the premisses, A : type and B : type.

I We then understand judgements of the form a : A and b : B.

I Hence we also understand ×-introduction, regarded as a
stipulation:

a : A b : B
〈a, b〉 : A× B

(×-intro)

I This stipulation shows how the canonical elements of A× B
are formed.
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Example: justification of ×-elimination

c : A× B
fst(c) : A

(×-elim)

I Assume that we know the premiss, c : A× B.

I We then know an a in A and a b in B such that
c ⇒ 〈a, b〉 : A× B.

I By definition, we have

fst(c) = fst(〈a, b〉) = a : A

I Since a is an element of A, we have a⇒ a′ : A, for a
canonical element a′ of A.

I Since evaluation is definitional reduction, also fst(c)⇒ a′ : A.
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Justifying the rules of inference

In Martin-Löf type theory, all rules of inference are justified by
reference to the meaning explanations.

I A stipulatory rule (e.g. introduction or equality rule) is
justified by the role that such a rule plays according to the
meaning explanations.

I A postulatory rule (e.g. formation or elimination rule) is
justified by the meaning given to the judgements involved as
premisses and conclusion according to the meaning
explanations.
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An explanatory circle
Recall the definition of the validity of an inference,

J1 . . . Jn
J

I The conclusion J can be known under the assumption that
the premisses J1, . . . , Jn are known.

In mathematics and logic, “knowing J” typically means “having
demonstrated J”:

I the conclusion J can be demonstrated under the assumption
that the premisses J1, . . . , Jn have been demonstrated.

We defined a demonstration to be a sequence of valid inferences.

We are caught in an explanatory circle:

demonstration refers to valid inference refers to demonstration
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Enter dialogues

In recent years, Martin-Löf has discovered that the notion of
dialogue is useful for avoiding the circle.

More precisely, the notion of dialogue can be used to articulate an
alternative notion of “knowing J” that is weak enough to avoid the
circle, but strong enough to support the definition of validity of
inference.
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Knowing J as knowing how

I We stipulate that the content of a judgement is a task.

I A judgement is correct if the agent making it knows how to
perform (do, fulfil) the task that constitutes its content.

A dialogical view of judgement/assertion:

I If I make a judgement with content C , and an interlocutor
challenges my assertion, then I am obliged to do C .

` C ?C
C done
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Assertoric knowledge

Recall from previous slide:

I A judgement is correct if the agent making it knows how to
perform (do, fulfil) the task that constitutes its content.

We call this knowledge-how assertoric knowledge.

Novel definition of the validity of an inference:

I The conclusion can be assertorically known under the
assumption that all of the premisses are assertorically known.

The explanatory circle is now avoided, since we do not appeal to
the notion of demonstration.
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Dialogue rules

The dialogue structure

` C ?C
C done

spells out the assertoric knowledge conveyed by the judgement
` C .

Doing C might well consist in making further judgements.

Examples:

c : A× B
?〈a, b〉 : A× B

c ⇒ 〈a, b〉 : A× B

〈a, b〉 : A× B
?

a : A
b : B

Similar rules are given for each type-forming operator.
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Rules, plays, strategies

I It is the dialogue rules that primarily matters here.

• They provide a formal presentation of the meaning
explanations.

• The dialogical format shows that understanding J is
understanding what it takes assertorically to know J.

I Plays are important because they illustrate the rules in action.

I The notion of a (winning) strategy seems to play no role at all.

: 35


