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Magnetars — the Universe’s strongest magnetic fields
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Introduction

Neutron stars are a melting pot of some of the most extreme phys-
ical conditions known, with densities exceeding those of an atomic
nucleus. One particular class of neutron star is also distinguished

by extreme magnetic fields, thought to exceed 10™° gauss. These
are the magnetars: volatile neutron stars seen most spectacularly
In their X/~-ray flaring. With their slow rotation, magnetars are
believed to be magnetically-powered: their chief source of free
energy comes from their ultra-strong field.

A main strand of research of the Theoretical Astrophysics (TAT)
group In Tubingen has been to understand the behaviour of these
objects through theoretical modelling; in particular, the challenges
assoclated with magnetic-field phenomena.

Steady-state models

To understand magnetar dy-
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magnetar field contains both
poloidal and toroidal compo-
nents;, see Fig. 1. There iIs
a complication, however: the
protons in a magnetar are ex-
pected to be superconducting,
making the governing equa-
tions more complicated and
harder to solve [3, 4, 5].
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Figure 1. Equilibrium of a
normally-conducting  magnetar.
The lines show the direction of the
poloidal field and the colour scale
the magnitude of the toroidal field.
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Figure 2: Magnetar models with a superconducting core and a normal
crust, showing poloidal/toroidal field as before. Left. a magnetar model,
B =2 x 10 G, right: a pulsar or weak-field magnetar, B =5 x 10*° G.

Glant flares

Magnetar giant flares are among the most energetic astrophysical
phenomena known; they are believed to represent a huge release
of magnetic energy from the star. The trigger mechanism for a
glant flare and the subsequent dynamics remain open guestions.
By modelling the flare as the onset of a hydromagnetic instabil-
ity, TAT members have used nonlinear MHD simulations to follow
the dynamics of the instability and subsequent post-flare field re-
arrangement [6]. A giant flare might even excite magnetic modes
strongly enough to produce detectable gravitational waves [7].

Figure 3. Unstable ‘kinking’ motion of closed field lines (red) in a magne-
tar. The inner region of the star is shaded blue and the outer region left
white. As the instablility saturates the field rearranges, releasing energy;
this represents a simple giant flare model.

Oscillations

The giant flares described above are followed by an X-ray tall,
In which quasi-periodic oscillations have been detected. These
are believed to represent oscillations of the star itself, and offer
a tantalising opportunity to probe its interior physics — If we can
work out what specific oscillations are excited. The TAT group has
been building increasingly sophisticated models to understand
this complex problem: including the effects of relativity [8, 9], the
elastic crust [10], more complex field configurations [11] and the
presence of superfluid neutrons in the core [12, 13]. In addition to
this theory work, the group has been involved In reanalysing the
original flare data, discovering several new QPOs [14].

Figure 4. X-ray tall
following the giant
flare of SGR 1806-
20. The visible os-
cillations represent
rotational modula-
tion of the star; data
analysis IS needed
to extract the QPOs
within this signal.
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